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Purpose: To examine the possible role of alternate splicing leading to aggregation of myocilin in primary open-angle
glaucoma.
Methods: Several single nucleotide variations found in the myocilin (MYOC) genomic region were collected and
examined for their possible role in causing splice-site alterations. A model for myocilin built using a knowledge-based
consensus method was used to map the altered protein products. A total of 150 open-angle glaucoma patients and 50
normal age-matched control subjects were screened for the predicted polymorphisms, and clustering was performed.
Results: A total of 124 genomic variations were screened, and six polymorphisms that lead to altered protein products
were detected as possible candidates for the alternative splicing mechanism. Five of these lay in the intronic regions, and
the one that lay in the exon region corresponded to the previously identified polymorphism (Tyr347Tyr) implicated in
primary open-angle glaucoma. Experimentally screening the intronic region of the MYOC gene showed the presence of
the predicted g.14072G>A polymorphism, g.1293C/T heterozygous polymorphism, instead of our predicted g.1293C/-
polymorphism. Other than the prediction, two novel SNPs (g.1295G>T and g.1299T>G) and two reported SNPs (g.
1284G>T and g.1286G>T) were also identified. Cluster analysis showed the g.14072G>A homozygous condition was
more common in this cohort than the heterozygous condition.
Conclusions: We previously proposed that the disruption of dimer or oligomer formation by the C-term region allows
greater chances of nucleation for aggregation. Here we suggest that polymorphisms in the myocilin genomic region that
cause synonymous codon changes or those that occur in the intron regions can possibly lead to altered myocilin protein
products through altered intron–exon splicing.

Glaucoma is a term used to describe a group of disorders
that have in common a characteristic degeneration of the optic
nerve associated with typical visual field defects and usually
elevated intraocular pressure (IOP). If left untreated, the
disease progresses to absolute, irreversible blindness. There
are different types of glaucoma, depending upon the time of
disease manifestation. Juvenile open-angle glaucoma (JOAG)
manifests clinically between the ages of 3 and 30 [1,2]. The
late onset form of this condition, primary open-angle
glaucoma (POAG) usually manifests clinically before the age
of 40 and is the most prevalent type [3-5]. The obstruction of
the trabecular meshwork—the aqueous humor outflow
pathway—is the major cause of the increase in IOP in open-
angle glaucoma. It has been reported that mutations in the
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myocilin (MYOC) gene cause POAG [6], which implies a
possible role for the product of this gene in the IOP elevation
in JOAG. The MYOC gene consists of three exons that
together encode for 55–57 kDa myocilin protein with 504
amino acids [7,8].

More than a hundred mutations have been associated with
POAG and JOAG in studies performed by different groups in
various populations (Appendix 1). A plausible model has been
built for myocilin protein, to understand the structural basis
of the protein and the mutations. To understand the association
of these mutations with POAG, the mutations were mapped
onto the structural model. The cause of the disease due to these
mutants can be either a change in protein conformation
resulting from an amino acid change or the production of a
shorter peptide due to the generation of a stop codon (stop)
such as Arg46Stop, Asp247Stop, Gln368Stop, Glu483Stop
[9-11]. Though synonymous or silent mutations do not cause
any amino acid change, such mutations have been reported to
be associated with POAG. Although environmentally induced
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conformational changes remain a distinct possibility, since
these mutations cannot be directly correlated with possible
protein conformational changes, they become attractive
candidates for investigating other possible mechanisms.
Single base changes could lead to activation of cryptic splice
sites, resulting in aberrant splicing. Such is the case for
Hutchinson Gilford progeria syndrome, in which a silent
mutation Gly608Gly leads to the activation of a cryptic splice
site, resulting in the production of a truncated protein product
[12]. The possibility of such an alternative splicing
mechanism induced by genomic variations in the human
myocilin gene was explored using sequence analysis tools.

METHODS
The model for myocilin was built using a knowledge-based
consensus-modeling approach [13,14]. Fold recognition was
done using the following Web-based software programs: (1)
searches against the protein data bank by position specific
iterative BLAST (PSI-BLAST), (2) the Conserved Domain
Database, and (3) superfamily (SUPFAM) searches with full-
length sequences and overlapping fragments. The SUPFAM
search identified a significant match with part of 1h70
(dimethyl arginine dimethyl aminohydrolase, also called
pentein) [15]. The 180-to-433 myocilin region was threaded
onto A0 through A253 of 1h70 with gaps using the Insight
2000 software. The disulfide bond between Cys245 and
Cys437 was identified [16] and found to be feasible in the
threading. It was incorporated into the model. For other
regions, FASTA searches against the protein data bank were
done using overlapping fragments, and significant matches
were used as templates for modeling. Myocilin regions 1 to
61, 70 to 174, and 453 to 504 were modeled using 1BOK (445
to 505), 1I84 (S823 to S923), and 1 K8Q (A92 to A816),
respectively. The helical segments (34 to 180) were put
together, taking into account the secondary structure packing.
Consecutive fragments were joined using loop searches with
the Insight 2000 software. Splice repair was performed to
optimize the peptide geometry using the homology module of
the Insight 2000 software. Energy minimization by applying
a conjugate gradient algorithm was done using the consistent
valence force field until the minimum energy value was
obtained. Mutations were mapped onto the model for
visualization and interpretation.

To find a possible candidate for alternative splicing,
several variations found in the myocilin genomic region were
collected and examined for their possible role in causing
splice-site alterations. The sequence analysis was done using
the GCG software. The genuine splice sites and alternative
splice sites from the expressed sequence tag (EST) confirmed
splice dataset. The splice datasets were used for the analysis
[17]. Multiple alignments of both these sets of splice sites
were done using the GCG software. The alignment was done
such that the splice-site consensus was retained, that is, with
GT in the donor site and AG in the acceptor site. Of the 392

genuine splice sites, 282 (approx 72%) were randomly
sampled and used for the multiple sequence alignment. The
donor and acceptor sequences were segregated and used
separately for creation of multiple alignments. A total of 20
multiple alignments of both donor and acceptor sequences
were generated from the sampled set, with each multiple
alignment having approximately 15 sequences each. All 209
alternative splice sites were used for the creation of multiple
alignments. A total of ten multiple alignments for both the
donor and acceptor sequences were created, all of them having
approximately 20 sequences each. Thus, a total of 60 multiple
alignments were used for profile analysis.

In the original dataset, the splice data were represented
with a 70 bp sequence on either side of the splice site. After
testing by trial and error, window sizes of 20 bp and 30 bp on
either side of the splice site were used for the donor and
acceptor sequences, respectively. Using the above-mentioned
window sizes, hidden Markov model profiles were created of
the 60 multiple alignments and calibrated for use in searching
datasets. The single nucleotide polymorphisms (SNPs) in the
genomic region of myocilin were collected from the single
nucleotide polymorphism database (dbSNP) and from the
literature. The base changes corresponding to different SNPs
were incorporated into the genomic sequence of myocilin. A
dataset of all these sequences was created and used for
searching using the GCG software. All the 60 profiles, that is,
the 30 donor and 30 acceptor profiles, were used to search the
dataset of SNP-incorporated myocilin sequences.

The alternate splicing of the predicted possible splice
sites was theoretically made using GCG by deleting the region
that would be deleted if the alternate splicing had occurred.
Then the alternate spliced product was translated using the
translate command in the GCG. The expected length of the
protein product was tabulated (Table 1). Using the same
methodology, the product of the deletion mutants due to
mutations causing stop codons was obtained. An illustrative
bar diagram was made based on the results (Figure 1). These
results were also mapped onto the model built to show the
possible altered, or truncated, region (Figure 2).

Case and control study subjects: Unrelated POAG
patients of Indian ethnic origin were recruited from the
glaucoma services of the Aravind Eye Hospital, Madurai,
South India. The study was performed in accordance with its
institutional guidelines and the Declaration of Helsinki.
Informed consent was obtained from each participant.

Ophthalmic evaluation included best-corrected Snellen
visual acuity, measurement of IOP by Goldmann applanation
tonometry, anterior chamber angle evaluation by a Goldmann
two-mirror gonioscope, and optic disc and retinal nerve fiber
examination by a 90-diopter indirect lens. Family history of
glaucoma and ocular diseases were also involved in the
clinical diagnosis.

Molecular Vision 2010; 16:2891-2902 <http://www.molvis.org/molvis/v16/a310> © 2010 Molecular Vision

2892

http://www.pdb.org
http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/psi1.html
http://www.ncbi.nlm.nih.gov/sites/entrez?db=cdd
http://www.ncbi.nlm.nih.gov/sites/entrez?db=cdd
http://supfam.org/SUPERFAMILY/hmm.html
http://www.accelrys.com
http://www.accelrys.com
http://www.ebi.ac.uk/Tools/sss/fasta/
http://www.pdb.org
http://www.accelrys.com
http://www.accelrys.com
http://www.accelrys.com
http://www.ncbi.nlm.nih.gov/About/primer/est.html
http://www.accelrys.com
http://www.ncbi.nlm.nih.gov/SNP/
http://www.accelrys.com
http://www.accelrys.com/
http://www.accelrys.com/
http://www.molvis.org/molvis/v16/a310


Diagnosis of POAG was based on exclusion criteria of
congenital glaucoma, angle closure, inflammation, and other
secondary causes (trauma, uveitis, or steroid-induced
glaucoma). The inclusion criteria were that individuals were
diagnosed with POAG, based on the optic disc changes typical
of glaucoma, and by matching visual field defects by
autoperimetry and open iridiocorneal angles detected by
gonioscopy.

Unrelated age-matched control subjects recruited for the
study from the general ophthalmology clinic of the Aravind
Eye Hospital were diagnosed not to have glaucoma or other
major eye diseases. The control population was chosen to
match the ethnic and geographic background of the patients
with POAG.

Sample collection and DNA preparation: Our study
included 69 JOAG patients, 81 adult onset POAG patients,
and 50 normal age-matched control subjects known to be free
of glaucoma. The peripheral blood was collected from the
patients and control subjects. Genomic DNA was isolated
using the salt precipitation method [18]. Briefly the method
involves salting out of the cellular proteins by dehydration and
precipitation with a saturated sodium chloride solution.

Polymerase chain reaction: PCR was performed to
amplify the specific DNA region corresponding to the
predicted alternate splice site causing SNPs of the MYOC
gene. Four sets of primers were used, as described in Table 2,
using a gradient thermocycler (ASTEC, Fukuoka, Japan). A
20 μl reaction was set up using 50–100 ng of genomic DNA,

TABLE 1. POSSIBLE ALTERNATE SPLICE SITE CAUSING SNP.

SNP number Genomic location (bp) Location of new site
in MYOC genome

Location of new site in
Mutated MYOC

genome

Splice site
type

Length of
altered
protein
product

Known
association with

disease

SNP 67 (A>G) 4453 (Intron) 4449 4449 A 215 No
SNP 12 (G>A) 14072 (Intron) 14075 14075 A 258 No
SNP 88 (C/-) 1293 (Intron) 1299 1298 D 214 No

SNP 22 (-/TTTT) 12975 (Intron) 12989 12993 A 225 No
SNP 68 (T/-) 4445 (Intron) 4450 4449 A 275 No

SNP 121 (T>C) 16233 (Exon-3) 16206 16206 A 337 POAG

        The genomic location, the location of the splice site in the genome, the location of the splice site in the mutated genome, length
        of the translated product of the alternate spliced product are shown.

Figure 1. Full length myocilin is of 504 residues. The stop codon mutations Arg46Stop, Asp247Stop, Gln368Stop, Glu483Stop) in mutated
myocilin contains 45 residues, 246 residues, and 367 residues, 482 residues, respectively and the rest of the region gets deleted. SNP121
results in shorter protein product containing 410 residues with amino acids 244 to 337 deleted from full length myocilin protein. SNP12
(rs2032555) consists of 248 residues with 243 to 248 residues altered from the full length myociln and the rest of the region from amino acid
249 to 504 deleted. SNP22 (rs10690049) has 218 residues with altered amino acids from 201 to 218 and 219 to 504 residues deleted. SNP67
(rs9600235) with 273 residues, 202 to 273 residues altered and 274 to 504 residues deleted. SNP68 (rs11295938) with 270 residues, 201 to
270 residues altered and 271 to 504 residues deleted. SNP88 (rs11366556) with 214 residues, 201 to 214 residues altered and 215 to 504
residues deleted. The maroon colored regions indicate sequence changes introduced because of the possible alternate splicing due to the Single
nucleotide polymorphism indicated.
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1×PCR buffer, 200 µM of dNTPs (Medox Biotech India Pvt.
Ltd, Chennai, India), 0.25 picomoles of each primer, and 1
unit of Taq DNA polymerase (Sigma, Saint Louis, MO). The
conditions followed were initial denaturation at 94 °C for 3
min, followed by 32 cycles (94 °C for 45 s, 64 °C for 45 s, and
72 °C for 1 min) and final extension at 72 °C for 7 min.

DNA sequencing: PCR Products were extracted from
agarose gel and column purified using an EZ-10 spin-column

DNA gel extraction kit (Bio Basic Inc., East Markham
Ontario, Canada). Bidirectional sequencing was performed
using an ABI 3130 Genetic analyzer (Applied Biosystems,
Foster City, CA) with dye-termination chemistry.

Restriction digestion: The PCR amplicon of 440 bp was
obtained by using the SNP-12-FP and SNP-12-RP primers
digested with Eco72I (Fermentas) to reconfirm the
g14072G>A sequence change. Similarly, restriction digestion

Figure 2. Space-filling model in four orientations for modified myocilin proteins. Full length myocilin, deletions due to presence of stop codon
and deletions/modifications due to possible alternative splicing caused by the single nucleotide polymorphism shown in the model, as explained
in Figure 1. Different regions in the model are colored as follows; NH2-terminal region (Orange), coiled coil region (Pink), hinge region
(Cyan), COOH-terminal region (Yellow), regions predicted to be deleted (White) due to stop codon mutation or possible alternative splicing,
regions predicted to be modified due to possible alternative splicing.

TABLE 2. PRIMER SEQUENCES USED TO AMPLIFY THE SPECIFIC DNA FRAGMENT.

Primer Primer sequence (5′> 3′) Amplicon size (bp)
SNP-12-FP GTCATCCTCAACATAGTCAATCCTTGGGC 440
SNP-12-RP CAAGTGTGGGTGATAGGATAGAGGGCTTTG  
SNP-22-FP GCAAAACTGGTCTCAGAAAGGAATCAGACAG 835
SNP-22-RP GGCTGGTTTGTGAATAGGTGAGTCGTAATTTC  
SNP-67 & 68-FP GCTTTGGACTGGTCTCCTGTTGAACAGAGCC 798
SNP-67 & 68-RP GTTTCTCCCCTCACCCTCCCCTCACATCC  
SNP-88-FP GAGATGGCACCTCTCTGTCAGTTTTCTTAATATG 595
SNP-88-RP CCTTCGCAACCACAGTATCATTATCTCACCAAG  
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was performed with HinfI (Fermentas) on the amplified
fragment of 798 bp product using using the forward primer
SNP-67 & 68-FP and the reverse primer SNP-67 & 68-RP
primers to reconfirm the g.4453A>G sequence change.

Cluster analysis: Cluster analysis was performed using
the k-means clustering node of the Clementine software. The
MS Excel file with 150 records containing patients’ details
such as disease (either POAG or JOAG), age, sex, and g.
14072G>A sequence variation was used as input. Using the
TYPE node available in the software, the data type of each
parameter was defined for further analysis. Then k-means
clustering was performed with the five patient detail input
categories defined as the optimal “specified number of
clusters.” The g.14072G>A polymorphism that we identified
in our study was interpreted in these five clusters (Table 3).

RESULTS
The NH2-terminal region of our predicted myocilin model has
less secondary structure content than the other regions in our
model. The mid-region forms a set of disjointed helices. This
region of disjointed helices can provide flexibility and allow
inter-molecular interaction through the coiled coil helical
region. The COOH-terminal (181–504) region is quite
compact and beta strand rich with the Cys245-Cys433
disulfide bond. Characterization of COOH-terminal
olfactomedin-like domain by circular dichroism (CD) has
shown that it is predominantly consists of beta-sheet [16]. It
contains the olfactomedin-like region (245-504) along with
an adjacent 181-244 region. It is identified as the pentein fold
of Dimethyl arginine Dimethyl aminohydrolase, which is also
reported to form dimers and oligomers [15]. All the mutations
are surface exposed. Most of the mutations are surface
exposed on the COOH-terminal region [19,20].

Six mutations were detected as possible candidates for
having an alternative splicing mechanism (Table 1) when
screened for a total of 124 genomic variations. Among the six
predicted alternative splice sites causing polymorphisms, one
was present in the exon-3 region and the other five were
located in the intronic regions. As a result of the theoretical
alternate splicing, the protein product obtained after
translation had altered regions and deleted regions due to the

alternate splicing. The protein products were shorter than full-
length myocilin, which consists of 504 amino acids (aa). The
stop codon mutations (R46X, E247X, Q368, and E483) seen
in the mutated myocilin sequence contained 45 aa, 246 aa, 367
aa, and 482 aa, respectively, and the rest of the region was
deleted. The details are shown as a bar diagram in Figure 1.
A view of the region being deleted or altered in the model is
given in Figure 2.

Screening for the predicted intronic SNPs: In our study,
open-angle glaucoma patients had been screened for the
presence of such predicted intronic SNPs. We found one of
the predicted g.14072G>A (IVS2+35G>A) polymorphisms
(rs2032555) in all the 150 patient samples and also in the 50
control subjects with different frequencies of homozygous
(AA) and heterozygous (GA) states (Table 4). The
homozygous and heterozygous conditions of the g.14072G>A
polymorphisms of a patient sample are showed in the Figure
3 chromatogram. This sequence variation was reconfirmed by
restriction digestion analysis with Eco72I. The sequence
change lacked the Eco72I site and showed a distinct band of
440 bp (mutant allele) with a homozygous condition, whereas
in the heterozygous condition, it showed three distinct bands
of 440 bp, 233 bp, and 207 bp after digestion (Figure 4). The
wild type should show two distinct bands of 233 bp and 207
bp, which were not found in this study.

The predicted g.4453A>G polymorphism (rs9660235)
was not identified in our study subjects (patient and control
subjects). This was reconfirmed by restriction digestion of
specified PCR fragments with HinfI. The wild type showed
two distinct bands of 437 bp and 361 bp due to the presence
of the HinfI site. The g.4453A>G sequence change should
show a 798 bp product in the homozygous condition, and the
heterozygous condition of this should show three distinct
bands of 798 bp, 437 bp, and 361 bp, which were not identified
in the patient nor in the control subjects. Both patient samples
and control samples showed two bands of 437 bp and 361 bp
product (Figure 5), which confirms the absence of g.4453A>G
polymorphism (Table 4).

Among the five predicted intronic polymorphisms, the g.
1293C/- (rs11366556), g.4445T/- (rs11295938), and g.

TABLE 3. CLUSTER ANALYSIS DATA FOR SNP-12 (G14072G>A).

Cluster number Number of records Disease Sex SNP-12 (g.14072G>A) GG/GA/
AA

1 46 JOAG Male AA (65.22%)
    GA (34.78%)
4 23 JOAG Female AA (69.57%)
    GA (30.43)
2 25 POAG Male GA (88%)
   Female GA (12%)
3 41 POAG Male AA (100%)
5 15 POAG Female AA (100%)
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12975TTTT/- (rs10690049) were deletion polymorphisms
which were not identified in the present study population.

Other polymorphisms identified: We identified five
polymorphisms other than the six predicted polymorphisms
(Table 5). Instead of our predicted g.1293C/- polymorphism,
we identified a g.1293C/T heterozygous polymorphism in five
of the patient samples (Figure 6). This variation was not
shown in any of the control samples.

The g.1284G>T (rs2901559), g.1286G>T (rs2901558),
g.1295G>T, and g.1299T>G sequence variations were also
identified with different frequencies in the POAG samples and
control samples (Table 5).

The screening results showed that, in JOAG patients, the
g.14072G>A homozygous polymorphism was seen at a
frequency of 65.22% in males and in females at 69.57%;
whereas the g.14072G>A heterozygous condition was seen at
34.78% in males, and a genotypic frequency of 30.43% was
seen in females. POAG patients had a g.14072G>A

homozygous condition at a 65.07% frequency in males and an
83.33% frequency in females. The g.14072 heterozygous state
was seen in 34.92% of the males and in 16.66% of the females.

Cluster analysis for SNP-12 (g.14072G>A): With the
analysis of SNP12, clusters 1 and 4 showed frequencies of g.
14072G>A polymorphisms with homozygous and
heterozygous states in male and female JOAG samples.
Cluster 2 showed the frequency of g.14072G>A
polymorphisms with heterozygous states in male and female
POAG samples. Cluster 3 and cluster 5 showed the frequency
of g.14072G>A. polymorphisms with homozygous
conditions in male and female POAG samples (Table 3).

DISCUSSION
Among the six predicted mutations, one mutation has
previously been reported to be associated with POAG—the
Tyr347Tyr mutation (Table 1). The Tyr347Tyr silent
mutation results in a single base change T>C in exon 3 of
myocilin. In a study done on POAG patients from five

TABLE 4. GENOTYPE FREQUENCY FOR THE PREDICTED MYOC POLYMORPHISMS.

   Genotype frequency (%)*
Location Polymorphism Genotype POAG n=150 (%)* Control n=50 (%)*
Intron-2 SNP-12 (g.14072G>A) GG 0 (0) 0 (0)

  GA 47 (31.3) 18 (36)
  AA 103 (68.7) 32 (64)

Intron-1 SNP-22 (g.12975TTTT/-) TTTT/- 0 (0) 0 (0)
Intron-1 SNP-67 (g.4453A>G) AA 150 (100) 50 (100)

  AG 0 (0) 0 (0)
  GG 0 (0) 0 (0)

Intron-1 SNP-68 (g.4445T/-) T/- 0 (0) 0 (0)
Intron-1 SNP-88 (g.1293C/-) CC 145 (96.6)† 50 (100)

  C/- 0 (0) 0(0)

         The asterisk represents the genotype frequency in brackets. The dagger indicates that out of 150 POAG, the rest 5 samples
         showed the g.1293 C>T sequence variation (data was included in Table 5).

Figure 3. Chromatogram of MYOC showing predicted splice site variation (A) homozygous g.14072G>A in patient-1 and (B) heterozygous
g.14072G>A in patient-2. Top line: wild type sequence. Bottom line: observed sequence. The arrow indicates the position of sequence variation.
Box represents the variation.
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different populations [9], this mutation showed a high
frequency of occurrence, that is, 4.6%, which was
considerably higher than most of the other detected mutations
used in that study. Thus, this mutation becomes a likely
candidate for experimental validation to confirm the role of
alternate splicing in POAG. The remaining five mutations are
found in the intronic region of myocilin and have not been
associated so far in any case of open-angle glaucoma (Table
1).

After incorporation of the six identified splice sites into
the myocilin genomic sequence, as expected, the predicted
protein products were truncated for all these mutations (Figure
1). Such products may result in altered myocilin protein in
which the COOH-terminal oligomer formation would be
disrupted resulting in protein aggregates. This helps to explain
the characteristic increase in IOP during open-angle glaucoma
due to accumulation of protein aggregates in the trabecular
meshwork of the eye. The view that disease-causing mutations

in myocilin could be a gain of function [21] also supports the
implication that altered protein products lead to POAG.

The location of these mutations in the model, the
truncation of the protein due to mutations causing stop codons,
and the altered protein products due to possible alternative
splicing (Figure 2) suggest that a plausible mode of action
could be by disruption of dimer or oligomer formation by the
COOH-terminal region or conformational changes of the
NH2-terminal. Hinge regions induced by the molecular
environment in the normal protein could also favor
aggregation. This would also explain why only 2%–4% of
POAG are associated with mutations [19,20]. The Tyr347Try
polymorphism implicated in POAG cannot be understood in
terms of conformational changes, as the amino acid is not
modified. However, the implication from this study that the
SNP leading to the Tyr347Tyr polymorphism could lead to
alternate splicing resulting in an altered protein product is a
possible hypothesis that can be experimentally verified.

Figure 4. Eco72I restriction digestion to reconfirm the predicted g.14072G>A polymorphism. 1,4,5,7,8: POAG samples showing three distinct
bands of 440bp, 233bp and 207 bp (reconfirms the heterozygous g.14072G>A polymorphism. 2,3,6,9,10,11,12: POAG samples showing a
distinct band 440 bp (reconfirms the homozygous g.14072G>A polymorphism). C1: Control sample showing heterozygous g.14072 G>A
polymorphism. C2: Control sample showing homozygous g.14072 G>A polymorphism. M: 100 bp DNA ladder. Arrow indicates the product
size.

Figure 5. HinfI restriction digestion to screen the g.4453A>G polymorphism. 1 to 13 : Patient samples showing two distinct bands of 437 bp,
361 bp (absence of predicted g.4453A>G polymorphism). C: Control sample. M: 100bp DNA ladder. Arrow indicates the product size.
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Identification of such possible polymorphisms that can cause
splice-site variations, especially in the intron regions, has not
been screened so far. This analysis suggests that it will be
necessary to look for the occurrence of such SNPs (especially
in intron regions) that are likely to create putative alternate
splice sites in open-angle glaucoma patients and also to

experimentally validate the presence of alternate spliced
products.

This study looked for occurrences of the predicted SNPs;
g.14072G>A sequence variation was observed in both
homozygous and heterozygous states. This polymorphism
was reported as a common polymorphism with the frequency

TABLE 5. GENOTYPE FREQUENCY FOR THE IDENTIFIED MYOC POLYMORPHISMS (OTHER THAN PREDICTED POLYMORPHISM).

   Genotype frequency (%)*

Location Polymorphism Genotype POAG n=150 (%)* Control n=50 (%)*
Intron-1 g.1284G>T GG 6 (4) 0 (0)

  GT 0 (0) 6 (12)
  TT 144 (96) 44 (88)

Intron-1 g.1286G>T GG 6 (4) 0 (0)
  GT 0 (0) 6 (12)
  TT 144 (96) 44 (88)

Intron-1 g.1293C>T CC 145 (96.6) 50 (100)
  CT 5 (3.3) 0 (0)
  TT 0 (0) 0 (0)

Intron-1 g.1295G>T GG 141 (94) 47 (94)
  GT 9 (6) 3 (6)
  TT 0 (0) 0 (0)

Intron-1 g.1299T>G TT 6 (4) 0 (0)
  TG 0 (0) 6 (12)
  GG 144 (96) 44 (88)

                The asterisk represents the genotype frequency in brackets.

Figure 6. DNA sequence from Intron-1
of MYOC showing the g.1293C>T
polymorphism. Top line: wild type
sequence. Bottom line: observed
sequence. The arrow indicates the
position of sequence variation. Box
represents the variation.
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of 47.83% in Iranian JOAG patients with both homozygous
and heterozygous conditions [22]. This SNP was also reported
as the most common polymorphism, with the frequency of
31.3% (p =0.77) in a Chinese cohort [23]. Our study shows
that the g.14072G>A polymorphism is most frequently
harbored in the Indian population.

The g.4453A>G polymorphism was observed in 8
unrelated adult African Americans (4 male and 4 female)
enrolled in Houston, TX (Trace data was generated by
Whitehead Institute for Biomedical Research through a grant
from NIH. Whitehead Institute/MIT Center for Genome
Research, Sanger Institute, UK and NHGRI, NIH). The 8
samples were derived from the Baylor Polymorphism
Resource which includes >500 ethnically diverse samples
used as controls (unpublished data). As there are no other
reports or frequency data available, this SNP is not known to
be present in any other population. The g.4453A>G
polymorphism was not identified in the present study
population also.

The g.1293C/- deletion polymorphism was another
prediction of this study. Though it was observed in eight
people of African-American descent from the Baylor
Polymorphism Resource, this SNP was not identified in our
study subjects.

One thymidine base-pair deletion in the g.4445T/-
polymorphism and four thymidine (TTTT) base-pair deletions
in the g.12975TTTT/- polymorphism should have been
identified according to the prediction. In direct sequencing we
could not identify these two variations in our study subjects.

Other than the six predicted polymorphisms, in the
present study we identified five other polymorphisms (Table
5). Among them, one was identified as a g.1293C/T

heterozygous polymorphism, which was located in our
predicted g.1293C/- polymorphic site. This g.1293C/T
heterozygous polymorphism was observed in five of the
patient samples (Figure 6). Out of five samples, four harbored
the predicted g.16233T>C (c.1041T>C) polymorphism in
exon-3, which results in the Tyr347Tyr silent mutation
associated with POAG. The remaining sample was from a 30-
year-old JOAG patient carrying a homozygous g.14072G>A
polymorphism. Since the g.1293C/T polymorphism has not
been reported elsewhere, we considered it a novel
polymorphism. Myocilin accounted for about 2%–4% of the
gene mutations in POAG patients [20]. The g.1293C/T
heterozygous polymorphism, observed at a 3.3% frequency,
was not identified in any of the control samples that could be
associated with the disease. Further studies with a large
number of sample sizes from various ethnic groups and
functional studies are necessary to identify the disease
association with this polymorphism.

Among the other four sequence variations, the
homozygous g1284G>T, g1286G>T, and g1299T>G
polymorphisms were commonly present in the study subjects
(Figure 7). The heterozygous g1295G>T sequence change
(Figure 8) was observed with less frequency in POAG samples
and the control subjects (Table 4). To our knowledge, the
g1295G>T and g1299T>G variations were novel
polymorphisms that were seen in both POAG samples and in
the control subjects.

The cluster analysis results showed that the g14072G>A
homozygous polymorphism were more common than the
g14072G>A heterozygous polymorphism in both JOAG and
POAG patients (Table 3). In an Iranian JOAG population, the
g14072G>A homozygous polymorphism was also reported at

Figure 7. Chromatogram representing
the g.1284G>T, g.1286G>T, and g.
1299T>G polymorphisms from Intron-1
of MYOC. Top line: wild type sequence.
Bottom line: observed sequence. The
arrow indicates the position of sequence
variation. Box represents the variation.
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a slightly higher frequency than the g14072G>A
heterozygous polymorphism [22]. However, this condition
may vary from one ethnic group to the other. Further studies
have to be done with a larger number of samples to determine
which age groups are more prone to having the g14072G>A
polymorphism.

The presence of truncated or altered mRNA products also
needs to be experimentally verified. The computational and
experimental analysis in this study has provided a new line of
experiments for research in POAG.
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Appendix 1. Mutations associated with open angle glaucoma.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a Microsoft Word
document (.doc) that contains the file.
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