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abstract

Sarcomas are a heterogeneous group of raremalignancies that exhibit remarkable heterogeneity, withmore than
50 subtypes recognized. Advances in next-generation sequencing technology have resulted in the discovery of
genetic events in thesemesenchymal tumors, which in addition to enhancing understanding of the biology, have
opened up avenues for molecularly targeted therapy and immunotherapy. This review focuses on how in-
corporation of next-generation sequencing has affected drug development in sarcomas and strategies for
optimizing precision oncology for these rare cancers. In a significant percentage of soft tissue sarcomas, which
represent up to 40% of all sarcomas, specific driver molecular abnormalities have been identified. The challenge
to evaluate these mutations across rare cancer subtypes requires the careful characterization of these genetic
alterations to further define compelling drivers with therapeutic implications. Novel models of clinical trial design
also are needed. This shift would entail sustained efforts by the sarcoma community to move from one-size-fits-all
trials, in which all sarcomas are treated similarly, to divide-and-conquer subtype-specific strategies.
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INTRODUCTION

Sarcomas are a heterogeneous group of mesenchymal
malignancies that comprise less than 1% of adult and
12% of pediatric cancers.1,2 The WHO has defined
more than 50 sarcoma subtypes, including a wide
array of tumors that arise from adipose, muscular,
bone, cartilage, and vascular tissues.3 Treatment
options for patients with advanced soft tissue sarco-
mas (STSs) are limited, and a one-size-fits-all para-
digm has prevailed despite the diverse nature of STSs.
For metastatic STSs, anthracycline-based chemo-
therapy remains the backbone of first-line treatment
regimens.4 However, efficacy is limited, with a median
progression-free survival (mPFS) of approximately
6 months, and the incidence of treatment-associated
adverse events (AEs) is high.5 Therefore, more in-
dividualized treatment options are critical to improve
the survival and quality of life of this patient population.

Reflecting STS heterogeneity, multiple molecular
pathways are implicated in the development and
progression of these cancers. The characterization of
specific genetic aberrations has led to the identifica-
tion of novel diagnostic, prognostic, and predictive
biomarkers.6 An understanding of the prevalence and
function of specific genetic alterations in STS subtypes
is critical to developing more-effective diagnostic tests
and therapeutic approaches. Targeted therapies have

the potential to produce significant tumor response by
disrupting molecular pathways that drive oncogenesis,
thus providing highly personalized treatment.7 A re-
cent report by Lucchesi et al8 analyzed 584 patients
with STS in the American Association for Cancer
Research (AACR) Project Genomics Evidence Neo-
plasia Information Exchange (GENIE) database and
identified that 41% of patients harbored a genetic
alteration with potential to influence therapy. Ac-
cordingly, a single-center report by Boddu et al9 an-
alyzed 114 patients with sarcoma and identified that
49% carried a mutation deemed actionable; 15 pa-
tients had next-generation sequencing (NGS)–guided
therapies, with 26% of these achieving clinical benefit
(Table 1). This review focuses on how incorporation of
NGS has affected drug development in sarcomas and
strategies for optimizing precision oncology for these
rare cancers.

SARCOMA SUBTYPES

Traditionally, STSs have been classified on the basis of
a presumptive tissue of origin or unique architec-
tural pattern.3 However, molecular diagnostics have
enhanced our understanding of the complex
morphologic-genetic associations of STSs, establish-
ing the foundation for a precision approach to therapy.
Indeed, the current classification system was designed
with meticulous correlation of recurrent molecular
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alterations with discrete histologic subtypes.15 Of the STS
subtypes, the most prevalent in adults are undifferentiated/
unclassified STS, undifferentiated pleomorphic sarcoma
(UPS), liposarcoma, and leiomyosarcoma (Fig 1).

A number of subtypes are associated with specific chro-
mosomal translocations. Molecular approaches to detect
the protein products of these fusion genes, such as fluo-
rescence in situ hybridization and reverse transcriptase
polymerase chain reaction, can aid in the diagnosis of these
tumors. For example, myxoid liposarcomas are charac-
terized by reciprocal t(12;16)(q32;q16) translocation be-
tween the DDIT3(CHOP) and FUS genes, and synovial
sarcomas demonstrate the translocation t(X;18)(p11.2;
q11.2), which results in the fusion of the SS18 and SSX
genes.16 A prospective, multicenter, French Sarcoma
Group observational study demonstrated that dia-
gnosis was modified after molecular genetics analysis
for 53 (14%) of 384 patients with STS, and it has
been argued that such testing should be considered
mandatory.17

Previous studies have described the occurrence of po-
tential driver mutations in a significant fraction of patients
with sarcoma (Table 2), and these alterations are often
type specific.8,18 For illustration, well-differentiated/
dedifferentiated liposarcomas have a simple genomic
profile characterized by amplification of the MDM2 and
CDK4 genes.19 Alternatively, ALK fusions are observed
in 50% of inflammatory myofibroblastic tumor (IMTs),
whereas a subset of non-ALK–rearranged IMTs carry fu-
sions in other tyrosine kinases, such as ROS1 or NTRK.20,21

These examples emphasize the heterogeneity of STSs
and the importance of understanding the underly-
ing biologic differences to enable rational therapeutic
interventions.

CONVENTIONAL THERAPY

For most patients with advanced STS, systemic therapy is
administered with palliative intent to alleviate symptoms
and extend overall survival (OS). The majority of clinical
trials that have assessed chemotherapy for advanced
STSs have included heterogeneous populations, which
complicates the assessment of clinical activity in specific
subtypes.

Anthracyclines remain themost-used agents in the first-line
treatment of metastatic STS. Several phase II/III trials have
evaluated the efficacy of doxorubicin as a single agent, with
objective response rates (ORRs) of approximately 10% to
30% and median OS of 8 to 17 months.123-125 In most
prospective trials, anthracycline-based combination regi-
mens, such as doxorubicin with ifosfamide, are associated
with a higher ORR compared with single-agent doxorubi-
cin, although in general, combinations have not prolonged
OS.125 One exception is the combination of doxorubicin and
olaratumab, which led to improved OS compared with
doxorubicin as a single agent in a randomized phase II trial
(26.5 v 14.7 months).5 Of note, these anthracycline-
containing regimens are associated with considerable
toxicity, with up to 70% of patients experiencing grade-3-or-
higher AEs.125 The combination of gemcitabine and
docetaxel is another widely used regimen for the treatment
of STS.124,126 In a retrospective analysis by the French
Sarcoma Group that involved 133 patients with STSs
(leiomyosarcomas, [n = 76]; other subtypes, [n = 57])
treated with gemcitabine and docetaxel, the ORR was 18%
and median OS was 12 months.127

Eribulin, trabectedin, and pazopanib are approved as later
lines of treatment. Eribulin, an antimicrotubule agent, was
shown to improve median OS in a multicenter phase III trial
with dacarbazine as control.128 Of interest, benefit was

TABLE 1. Studies That Evaluated NGS in Patients With Sarcoma

First Author Population
No. of
Patients

Potentially
Actionable

Mutations, % Comments

Boddu9 Adult, STS and bone 114 49.1 4.4% diagnosis change as a result of NGS

13.2% therapeutic selection influenced by NGS; 26.7% of those
had clinical benefit

Cote10 Adult, STS and bone 133 40 2 patients with high tumor mutational burden; no treatment data

Lucchesi8 Adult, STS 584 41 No treatment data

Groisberg11 Adult and pediatric, STS and
bone

102 61 16% received targeted therapy as a result of NGS; 50% of those
had clinical benefit

Gounder12 Adult and pediatric, STS and
bone

5,635 42 Of 107 patients with clinical data, 57% had actionable mutation
and 30% enrolled in matched trial

NGS identified resistance mutation and avoided futile therapy in
5%

Harris13 Pediatric tumors, including
STS and bone

100; 71 with
sarcoma

31 4.2% sarcoma diagnostic implication

Jour14 Adult, STS 25 60 No treatment data

Abbreviations: NGS, next-generation sequencing; STS, soft tissue sarcoma.

Carmagnani Pestana et al

2 © 2019 by American Society of Clinical Oncology



112

75

28

38

18

18

53

97

23

47

27

56

16
16

34

10

14

14

74

10

14

32

13

41
5

5

5

9

8

8

9

8

9

7

3

3

3

7

3

6

4

4

2

2

1

14

Alveolar rhabdomyosarcoma
Alveolar soft part sarcoma
Angiosarcoma
Chondroblastic osteosarcoma
Chondrosarcoma
Clear cell sarcoma
Dedifferentiated chondrosarcoma
Dedifferentiated liposarcoma
Dermatofibrosarcoma protuberans
Desmoid/aggressive fibromatosis
Desmoplastic small-round-cell tumor
Embryonal rhabdomyosarcoma
Endometrial stromal sarcoma
Epithelioid hemangioendothelioma
Epithelioid sarcoma
Ewing sarcoma
Extraskeletal myxoid chondrosarcoma
Fibrosarcoma
Follicular dendritic cell sarcoma
Hemangioma
Histiocytic dendritic cell sarcoma
Inflammatory myofibroblastic tumor
Intimal sarcoma
Leiomyosarcoma
Liposarcoma
Low-grade fibromyxoid sarcoma
Mesenchymal chondrosarcoma
Metaplastic carcinosarcoma
Myxofibrosarcoma
Myxoid chondrosarcoma

Myxoid/round-cell liposarcoma
Ossifying fibromyxoid tumor
Osteoblastic osteosarcoma
Osteosarcoma
Ovarian carcinosarcoma/malignant mixed mesodermal tumor
Perivascular epithelioid cell tumor
Pleomorphic liposarcoma
Pleomorphic rhabdomyosarcoma
Rhabdomyosarcoma
Round cell sarcoma, NOS
Sarcoma, NOS
Sarcomatoid renal cell carcinoma
Sclerosing epithelioid fibrosarcoma
Secondary osteosarcoma
Small cell osteosarcoma
Solitary fibrous tumor/hemangiopericytoma
Spindle cell rhabdomyosarcoma
Synovial sarcoma
Tenosynovial giant cell tumor diffuse type
Undifferentiated pleomorphic sarcoma/malignant fibrous
histiocytoma/high-grade spindle cell sarcoma
Undifferentiated uterine sarcoma
Uterine adenosarcoma
Uterine carcinosarcoma/uterine malignant mixed müllerian tumor
Uterine leiomyosarcoma
Uterine perivascular epithelioid cell tumor
Uterine sarcoma, other
Well-differentiated liposarcoma

FIG 1. Prevalent sarcoma subtypes in the Association for Cancer Research Project Genomics Evidence Neoplasia
Information Exchange database (n = 584). NOS, not otherwise specified.
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TABLE 2. Specific Targets and Associated Sarcoma Subtypes
Target/Pathway Specific Sarcoma Evidence

Insulin-like growth factor 1 receptor Ewing sarcoma22 C

Desmoplastic small round-cell tumor23 P

Rhabdomyosarcoma24 P

Wild-type GIST25 P

Phosphatidylinositol 3-kinase/AKT/mammalian
target of rapamycin

Ewing sarcoma22,26 C

Desmoplastic small round-cell tumor26 P

MPNST27 P

PEComa28 C

Chondrosarcoma29 P

Myxoid liposarcoma30 P

GIST31 C

Apoptosis ligand 2/tumor necrosis factor–related
apoptosis-inducing ligand

Bone sarcoma32, 167 C

Receptor activator of nuclear factor-κB and ligand Giant-cell tumor of bone34 C

Osteosarcoma35 P

Bone metastasis36 C

Macrophage colony-stimulating factor 1 Pigmented villonodular synovitis37 P

Tenosynovial giant-cell tumor38 C

CDK4 Well- and dedifferentiated liposarcoma39 C

Ewing sarcoma39 P

Synovial sarcoma39 P

Rhabdomyosarcoma39 P

p53/mouse double minute inhibitor Well- and dedifferentiated liposarcoma19 C

MPNST40 P

Osteosarcomas41 P

Ewing sarcoma42 P

Alveolar rhabdomyosarcoma42 C

Vascular endothelial growth factor receptor Alveolar soft-part sarcoma43 C

Hemangioendothelioma44 C

Solitary fibrous tumor45 C

Mesenchymal-epithelial transition factor Clear-cell sarcoma46 P

Alveolar soft-part sarcoma47 P

Alveolar and embryonal rhabdomyosarcoma48 P

MPNST49 P

Osteosarcoma50 P

Ewing sarcoma51 P

Heat shock protein 90 GIST52 C

Liposarcoma52 C

Aurora kinase Ewing sarcoma53 P

Liposarcoma54 P

Histone deacetylases Osteosarcoma55 P

Dedifferentiated chondrosarcoma56 P

Liposarcoma57 P

(Continued on following page)
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TABLE 2. Specific Targets and Associated Sarcoma Subtypes (Continued)
Target/Pathway Specific Sarcoma Evidence

Chemokine receptor type 4 Rhabdomyosarcoma58 P

Synovial sarcoma59 P

Ewing sarcoma60 P

HER2/neu Osteosarcoma61 C

Synovial sarcoma62 P

Sarcomas expressing HER2/neu63 P

Nerve growth factor receptor Neurogenic sarcoma64 P

Platelet-derived growth factor receptors All sarcomas in combination with chemotherapy5 C

Dermatofibrosarcoma protuberans65 C

Hemangiopericytoma66 C

GIST67 C

Ewing sarcoma68 P

Rhabdomyosarcoma69 P

Neurotrophin 3 receptor Congenital fibrosarcoma70 C

GIST31 C

BRAF GIST (refractory to imatinib)31 C

Clear-cell sarcoma71 C

Osteoclast/mevalonate Bone sarcomas72 P

Hedgehog Ewing sarcoma73 P

Bone sarcomas74 P

Undifferentiated pleomorphic sarcoma75 P

Embryonal rhabdomyosarcoma76 P

Notch/γ-secretase inhibition Ewing sarcoma77 P

Osteosarcoma78 P

Liposarcoma79 P

Desmoid tumors80 P

Anaplastic lymphoma kinase 1 Inflammatory myofibroblastic tumor81 C

SRC kinase All sarcoma subtypes in combination with cytotoxic agents82 P

Ewing sarcoma83 P

KIT GIST84 C

Proteosome Liposarcoma85 P

Ewing sarcoma86 P

Estrogen receptor Desmoid tumors87 C

Uterine sarcomas88 C

Neurofibromatosis 1 aberrations (glutaminase
inhibition)

MPNST89 P

KIAA1549: BRAF fusions Not well defined90 C

Immune checkpoint blockade (CTLA-4, PD-1, PD-
L1)

Alveolar soft-part sarcoma91 C

Undifferentiated pleomorphic sarcoma92 C

Angiosarcoma93 C

NY-ESO-1 Synovial sarcoma94 C

MPNST95 P

Myxoid liposarcoma95 P

(Continued on following page)
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limited to patients with liposarcoma.128 Trabectedin,
a synthetic alkaloid derived from the Caribbean tunicate
Ecteinascidia turbinata, was approved by the Food and
Drug Administration (FDA) for patients with advanced
liposarcoma and leiomyosarcoma who received prior
anthracycline-based regimens on the basis of a phase II
clinical trial that demonstrated its superiority to dacarba-
zine.129 Retrospective reports have shown particular benefit
of therapy with trabectedin for myxoid liposarcoma (ORR,
51%; disease control rate [DCR], 90%), which achieved an
mPFS of 14 months in patients who received multiple lines
of treatment.130 Pazopanib is a multitargeted, small-
molecule tyrosine kinase inhibitor (TKI). A randomized
phase III trial compared pazopanib with placebo in patients
with a variety of STS subtypes who had experienced dis-
ease progression after first-line anthracycline-containing

therapy; a significantly prolonged mPFS in the pazopa-
nib arm (4.6 v 1.6 months) was demonstrated, with benefit
consistent across subgroups.131,132

SARCOMA FRUIT BOWL THEORY: DIVIDE AND CONQUER

Clinical trial design and, thus, treatment strategies need to
expand as our capability of examining the genome, pro-
teome, transcriptome, and immunophenotype of tumors
continues to advance. With the increase in our un-
derstanding of the molecular underpinnings of sarcoma,
the time is right to divide and conquer. This will allow us to
move away from the one-size-fits-all or fruit bowl theory (the
current paradigm) in which most patients with sarcoma
receive conventional treatment that is not based on mo-
lecular testing to individual, customized therapy for specific
sarcoma subtypes on the basis of biology (the future

TABLE 2. Specific Targets and Associated Sarcoma Subtypes (Continued)
Target/Pathway Specific Sarcoma Evidence

PRAME Uterine carcinosarcoma96 P

Multifocal leiomyosarcoma96 P

Synovial sarcoma96 P

Myxoid liposarcoma97 P

DNA damage (radium 223) Bone-forming osteosarcoma97, 166 C

Ataxia telangiectasia and Rad3 related/ataxia
telangiectasia mutated inhibitors

Synovial sarcoma100 P

Ewing sarcoma101 P

Poly (ADP-ribose) polymerase inhibitors Ewing sarcoma102 P

Synovial sarcoma103 P

All STSs in combination with trabectedin104 P

Anti-AXL Dedifferentiated and pleomorphic liposarcoma105 P

Ewing sarcoma106 P

Osteosarcoma107 P

Bromodomain and extra-terminal motif inhibitors Ewing sarcoma108 P

Osteosarcoma109 P

EZH2 inhibitors Synovial sarcoma110 P

Embryonal rhabdomyosarcoma111 P

Ewing sarcoma112 P

MPNST113 P

Epithelioid sarcoma114 C

Arginine deiminase Osteosarcoma115 P

Myxofibrosarcoma115 P

IDO1 All STSs in combination with PD-1 inhibitors116 P

WNT/porcupine Synovial sarcoma117 P

Osteosarcoma118 P

Ewing sarcoma119 P

Rhabdomyosarcoma120 P

Leiomyosarcoma121 P

NOTE. Adapted and updated from Subbiah et al.122

Abbreviations: C, clinical evidence; CTLA-4, cytotoxic T-cell lymphocyte-4; GIST, GI stromal tumor; HER2, human epidermal growth factor
receptor 2; MPNST, malignant peripheral nerve sheath tumor; P, preclinical evidence; PD-1, programmed cell death 1; PD-LI, programmed cell
death ligand 1; PEComa, perivascular epithelioid cell tumor; STS, soft tissue sarcoma.
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paradigm; Fig 2).133 The challenge that could be posed
under this new model is performing studies in rare sub-
sets of an already rare disease. However, as has been
recently demonstrated in other rare tumor types that have
led to FDA-approved therapies, it is possible to estab-
lish efficacy with low patient numbers. For instance,
vemurafenib was approved recently in BRAFV600-positive
Erdheim-Chester disease on the basis of results in fewer
than 25 patients.134,135

STRATEGIES TO BUILD EVIDENCE

The evaluation of targeted therapies can be challenging
when the mutations are rare and present in different his-
tologies. Therefore, innovative clinical trial designs are
required to determine clinical benefit of new therapies in
patients with rare STS subtypes.

Basket trials are an emerging model of trial design centered
on the assumption that the existence of a specificmolecular
aberration or biomarker predicts the benefit of targeted
therapies, regardless of cancer tissue of origin.136 The
success of basket trials predominantly depends on the
strength of the evidence that demonstrates tumor de-
pendence on the targeted pathways and on reliable in-
hibition of the target by the drug.136

One example is the basket trial of vemurafenib for tumors
that harbor a BRAFV600 mutation.71 Vemurafenib is an orally
available TKI of BRAF, with higher selectivity for the
BRAFV600 mutant form, that had been approved previously
for patients with BRAFV600E mutation–positive metastatic
melanoma.137 In this trial with six prespecified cohorts,
there was one anecdotal response in a patient with clear-
cell sarcoma. The ongoing National Cancer Institute

Molecular Analysis for Therapy Choice trial is another
ambitious illustration of novel trial strategies for the de-
velopment of precision oncology; patients will be paired
with a targeted drug that has demonstrated activity against
their specific driver pathway abnormality, regardless of
tumor histology.18

NGS IN SARCOMAS AND TARGETED THERAPY

Massively parallel NGS technology is rapidly being adopted
by researchers around the world. In sarcomas, it is being
used predominantly as a shotgun-screening tool to seek out
novel, recurrent, and potentially actionable mutations. This
technology is proving useful in the study of rare tumors
because even a few patient samples can yield tremendous
understanding of the disease on a molecular level. Some
investigators are moving beyond searching for driver mu-
tations and instead asking whether NGS can predict re-
sponse or resistance to therapy; others are creating
expression profiles that go beyond individual genes. NGS
has the potential to become, in the coming years, an
established platform of choice for researchers who are
studying sarcomas.

To date, many investigators have attempted to identify
recurrent aberrations using NGS. On the basis of the large
variety of identified mutations in cancer-associated path-
ways, these are predominantly secondary mutations that
occur later in the course of tumorigenesis. They may be
responsible for accelerated growth in advanced disease but
are unlikely to be the sole cause of the malignancy.
Identification of these mutations is important, and with so
much diversity in involved pathways, an individualized
approach is necessary for proper sarcoma treatment.

Fruit Bowl Hypothesis 

One treatment for sarcoma

Current Paradigm Future Paradigm

Precision therapy on the basis of

molecular subtype

FIG 2. Fruit bowl theory for cus-
tomized therapy in sarcoma.
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The majority of mutations detected by NGS will not be
drivers and, as such, will not translate into clinical benefit
for patients. However, as a result of the decreasing costs of
NGS-based commercially available genomic profiling, cli-
nicians are identifying driver mutations and exploiting their
therapeutic benefit. For patients with few treatment options,
a rationally chosen clinical trial on the basis of NGS-derived
data is the best chance for prolonged survival.

To demonstrate the ability of NGS to detect gene fusions,
Qadir et al138 designed Child-Seq, a pilot platform that
rapidly screens cancer tissue for particular gene fusions
characteristic of specific sarcomas. Results demonstrated
that the technique could reliably identify gene fusions in
their corresponding tumor type without false positives.
Although this platform was limited to four particular
childhood sarcomas, it is legitimate to conceptualize amore
robust tool that could identify dozens or even hundreds of
fusions. In fact, currently there are commercially available
tools for molecular tissue testing that include detection of
fusions; identification of pathognomonic genetic alterations
could enable a clinical diagnosis that is based solely on
sequencing data. The potential to identify fusions by cell-
free DNA testing also is promising. Shukla et al139 dem-
onstrated the feasibility of detecting EWSR1 fusions in
plasma derived cell-free DNA from patients with Ewing
sarcoma and desmoplastic small round-cell tumor.

In general, NGS has proven to be a highly reliable tech-
nology. However, Varga et al140 reported a case of un-
differentiated sarcoma in which a 236-gene NGS panel
showed pathogenic mutations in BRCA2 and MLH1. The
patient was counseled about the implications for herself
and her family members. However, Sanger sequencing of
the patient’s tumor as well as her father’s germline testing
revealed that theMLH1mutation was a variant of unknown
significance rather than a pathogenic mutation. Additional
discussions with the NGS laboratory revealed that its al-
gorithms had flagged the mutation for review, but human
error led to the release of this erroneous finding. Although
this is a single case report, it highlights that even very robust
technologies are subject to error.

NGS for Prediction

NGS has the potential to identify specific molecular sub-
types with particular sensitivity or resistance to approved
treatments. To date, however, there have been few ex-
amples of NGS being used as a predictive tool in sarcomas,
and it important to recognize that the examples discussed
herein are preliminary and should be interpreted with
caution. Undoubtedly, as more patients undergo se-
quencing as part of their clinical care, patterns of response
to therapy will emerge.

Koehler et al141 retrospectively reviewed 19 patients treated
with pazopanib who also received NGS of their tumors. The
authors found that the mPFS was significantly longer in

patients with TP53 mutant advanced STS (208 days) than
in those with TP53 wild-type tumors (136 days).

Lim et al142 performed NGS-based comprehensive geno-
mic profiling on 39 paired samples from tumor and normal
tissue from patients treated with everolimus. The patients’
tumor histology varied, but seven patients with sarcomas
were included. The authors reported 22 patients with
clinical benefit after treatment with everolimus, and 10 of
these patients had aberrations in the mammalian target of
rapamycin signaling pathway. Conversely, patients with
mutations in chromatin remodeling genes and in receptor
tyrosine kinase signaling universally did not respond to
everolimus. These hypothesis-generating data reinforce the
possibility of using NGS as a predictive tool in response to
therapy.

Designing Clinical Trials on the Basis of NGS

Wang et al143 performed a retrospective study of 75 patients
with sarcomas who were referred to the Clinical Center for
Targeted Therapy at MD Anderson Cancer Center. Patients
underwent commercially available NGS of their tumors.
Only 54 patients enrolled in a trial, but 13 were treated in
multiple trials, with 93 total treatments given. Although few
responses were seen, patients who received a gene ab-
erration targeted therapy had a better DCR than those who
received other types of therapy, which translated into
significantly longer mPFS (5.8 v 1.9 months) and OS (15.
9 v 8.7 months).

Chang et al144 performed complete multiomics studies on
59 childhood tumors referred to the National Institutes of
Health. The majority of these tumors were sarcomas.
Multiomics studies included whole-exome sequencing;
germline, whole-transcriptome sequencing; and single-
nucleotide polymorphism array analysis of the tumor.
Germline cancer-associated gene mutations were reported
in seven patients. The authors found targeted therapy–
matched clinical trials for 44% of the patients on the basis
of their mutational status. One patient had an epithelioid
IMT that was identified to contain an RANBP2-anaplastic
lymphoma kinase (ALK) fusion; he experienced a complete
response to crizotinib for 8 months.

Harris et al13 applied the same approach as Chang et al144

to 89 pediatric tumors. As expected in a pediatric pop-
ulation, sarcomas were the most common malignancy.
Patients underwent targeted NGS, first of 41 and then of
275 cancer-related genes. Treatment recommendations
were made by multidisciplinary expert panel. The panel
was able to make a targeted therapy recommendation in
31% of patients. Only three patients received matched
targeted therapy, but none had an objective response. This
lack of response may have been due to the lower-quality
preclinical evidence on which two of the recommendations
were based.

Worst et al145 conducted the first true prospective NGS-
based trial with therapeutic intent. The Individualized
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Therapy for Relapsed Malignancies in Childhood study was
amulticenter German effort to identify therapeutic targets in
individual pediatric cancers. As with Harris et al,13 a mul-
tidisciplinary expert panel wrote a final recommended
target report. In this pilot study, 57 patients were enrolled
from 20 centers; approximately one half had sarcomas.
One half of the patients harbored a potentially druggable
alteration, and 10 patients went on to receive targeted
therapy. The estimated final cost was relatively modest at
approximately 7,000 euros. However, because this was
a pilot study designed to assess feasibility, there was no
follow-up of patients who were treated with personalized
targeted therapy and outcomes were not reported. The
authors described one example of an IMT that was found to
have a CARS-ALK fusion. The patient was treated with an
ALK inhibitor with at least a partial response and continued
with treatment 26 months later. We hope that future iter-
ations of this trial will follow patients longitudinally and
report on PFS and OS.

PRECISION IMMUNOTHERAPY FOR SARCOMAS

After more than a century since Coley’s report of complete
regression of sarcomas secondary to severe episodes of
erysipelas146, significant efforts have been made to in-
corporate immunotherapy in sarcoma treatment. Early
results with the use of immune checkpoint inhibitors,
however, have not been encouraging across all subtypes.
Therefore, the development of immunotherapy for sarco-
mas also benefits from a precision oncology approach both
in identifying predictive biomarkers and in developing
strategies targeted to specific antigens.

In the phase II SARC028 trial (ClinicalTrials.gov identifier:
NCT02301039) of pembrolizumab, an ORR of 18% was
seen in STSs, with a 12-week PFS of 55%.92,147 Of note, this
trial enrolled 40 patients with STS, including four tumor
types; subgroup analysis of the results identified encour-
aging activity in UPS and dedifferentiated liposarcoma but
not in other cohorts. The relevance of histology for im-
munotherapy efficacy in sarcomas has been highlighted by
other reports. Combination of nivolumab and ipilimumab
has provided promising efficacy in certain STS subtypes,
with ORR and mPFS in the range of those produced by
standard-of-care options; responses were observed in
patients with leiomyosarcoma, myxofibrosarcoma, UPS,
and angiosarcoma.148 Furthermore, activity in specific
subtypes has been suggested by retrospective studies. In
a case series, two patients with chordoma experienced
responses to single-agent anti–programmed cell death li-
gand 1 (PD-L1) antibodies,149 and a review of patients
enrolled in early-phase trials demonstrated that alveolar
soft-part sarcoma was the most responsive subgroup to
checkpoint blockade.91,150 The heterogeneity in the benefit
of checkpoint inhibitors across sarcoma subtypes observed
in these early-phase trials highlights the need for a pre-
cision approach to immunotherapy in these diverse tumors,
and research to identify predictive biomarkers is warranted.

One challenge is that at this time, the immune microen-
vironment of specific subtypes is not sufficiently charac-
terized, and detailed characterization of the immune
microenvironment in each subtype is a major task.

Examples of potential predictive biomarkers to allow for
selection of sarcomas sensitive to immune checkpoint
inhibition include microsatellite instability (MSI) status and
PD-L1 expression in the tumor and microenvironment. In
fact, one patient with sarcoma was included within the five
trials that led to FDA approval of pembrolizumab for MSI-
high tumors.151 A total of 149 patients were included in
these trials, the majority (n = 90) with colorectal cancer,
and results demonstrated an ORR of 39.6%, with 7.4% of
patients achieving a complete response. In addition, re-
sponses were long lasting, with 78% lasting for 6 months or
more.151 A recently published pan-cancer analysis identi-
fied that 5.7% of 785 STS cases analyzed were MSI high,
which highlights the relevance of this indication for STS.152

With regard to PD-L1 status, a recent meta-analysis with
data from 1,451 patients and 15 independent studies
identified PD-L1 expression to be independently associated
with poorer OS and event-free survival in bone and STSs.153

However, the predictive value of PD-L1 in selecting patients
with sarcoma for immune checkpoint inhibition is still under
evaluation, and clinical activity of checkpoint inhibitors in
these trials were seen even in the absence of PD-L1 ex-
pression.92

Furthermore, cancer/testis antigens have been explored as
potential targets for immunotherapy in STS and provide the
utmost example of precision immunotherapy by targeting
specific antigens. D’Angelo et al94 recently reported encour-
aging results with the adoptive transfer of NY-ESO-1
c259T cells in 12 patients with synovial sarcoma. The ORR
in this study was 50%, including one complete response,
and mPFS was 15 weeks. Moreover, treatment was safe,
and there were no fatal AEs. These results are promising
and relevant for a larger population because NY-ESO-1 is
expressed in 70% to 80% of synovial sarcomas and is
present in myxoid liposarcoma and malignant peripheral
nerve sheath tumors.95,154 Expanding on this concept,
adoptive cell therapy targeting MAGE-A3, MAGE-A4, and
MAGE-A10 also are under evaluation in clinical trials.

GI STROMAL TUMOR: AN EXAMPLE OF THE
PARADIGM SHIFT

Receptor tyrosine kinase activation in GI stromal tumor
(GIST) is an emblematic example in which molecular
characterization provides diagnostic, prognostic, and pre-
dictive information and enables improved outcomes.155

GISTs are intrinsically resistant to radiation and chemo-
therapy, being historically associated with poor prognosis
because of the lack of effective treatment.156 For illustra-
tion, before the 1990s, recurrence rates reached 50% after
resection, and median OS for metastatic GIST was ap-
proximately 9 months.157
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In the 1990s, the landmark description of gain-of-function
mutations in KIT in five patients with GIST inaugurated
a new era.158 Since then, many lines of evidence have also
supported the causative relationship between KIT and GIST
oncogenesis and have demonstrated that 70% to 85% of
GISTs carry a KIT mutation that renders constitutionally
activated kinase.159 The most common mutation occurs in
exon 11, which encodes the juxtamembrane domain that
physiologically inhibits the kinase activation loop.159 In
addition, mutations have been described in exons 8 and 9,
which encode the extracellular domains, and less fre-
quently in exons 13 and 17, which encode the kinase
domains.159 Approximately 30% of KIT wild-type GISTs
harbor activating mutations in platelet-derived growth
factor-α (PDGFRα).67 Themajority of thesemutations occur
in exon 18, although mutations in exons 12 and 14 also
have been described.67 Moreover, 10% to 15% of GISTs
are wild type for KIT, and PDGFRα-BRAF mutations have
been identified in 7% to 15% of these tumors, most
commonly the exon 15 V600Emutation, and a small subset
of these tumors are associated with loss of function of the
succinate dehydrogenase respiratory chain complex.31

Figure 3 illustrates the mutation landscape of patients
with GIST in the AACR Project GENIE database.

The development of molecular-targeted therapy has dra-
matically changed the prognosis for GIST; currently, me-
dian OS for metastatic disease is 5 years, and 26% to 35%
of patients survive for 9 years.160 Overall, trials of imatinib
have demonstrated a DCR of 70% to 85% for KIT-mutated
GIST, with an mPFS of 20 to 24 months.84 TKIs have
revolutionized the treatment of localized GIST as well.
Adjuvant therapy with imatinib for 3 years is the current
standard of care for patients at high risk of recurrence,

which is based on phase III data that demonstrated im-
proved 5-year recurrence-free survival and OS rates
compared with patients who received imatinib for 1 year
(recurrence-free survival, 65.6% v 47.9%; OS, 92.0% v
81.7%).161

Subanalyses of clinical trials also have been able to identify
predictive factors of imatinib resistance. Patients with KIT
exon 11 mutations have been identified as sensitive to
imatinib, whereas patients with a KIT exon 9 mutation,
identified in 10% to 20%, respond poorly to imatinib at
standard doses.155

Most patients, however, eventually will develop resistance
to treatment. In spite of the exceptional advances with first-
line imatinib, the results with targeted treatments for later
lines of therapy have been disappointing, emphasizing the
need for new therapeutic approaches. Imatinib dose es-
calation is one option for patients who have experienced
disease progression on imatinib, and approximately 20%
remain progression free for 1 year at the higher dose,
especially among those with exon 9 mutations.162 Fur-
thermore, additional TKIs are under development to opti-
mize the treatment of imatinib-resistant GIST. Demetri
et al163 demonstrated that sunitinib, an orally available
multitarget TKI, was active in patients with GIST who had
disease progression on imatinib, achieving an mPFS of
27.3 weeks compared with 6.4 weeks for placebo. In ad-
dition, regorafenib was recently approved by the FDA as a
third-line therapy and has shown promising activity in
patients with exon 17 mutations, which confer resistance to
imatinib and sunitinib. Avapritinib is currently under
evaluation after having demonstrated significant activity in
patients with PDGFRα D842V exon 18 mutation.164,165
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Available evidence indicates that KIT mutation is likely an
early event in the development of GIST as suggested by the
presence of activating KIT mutations in gastric precursor
lesions. However, additional genetic mutations are needed
for the progression of microscopic lesions to malignant
GIST, and further characterization of these alterations may
identify additional therapeutic targets. In a previous study,
74% of GISTs analyzed had at least one nondriver genetic
abnormality.164 In that report, the most frequently mutated
genes were TP53, RB1, SETD2, PTEN,MAX, PIK3CA, and
TSC1, and the most prevalent copy number alteration in
KIT-mutated GIST was CDKN2A deletion.164 In addition,
activation of alternate receptor tyrosine kinases has been
suggested as a mechanism of resistance to currently ap-
proved TKIs. For illustration, previous studies have iden-
tified that mutations that involve the RB1 gene are
associated with high-risk tumors and aggressive clinical
behavior and that activating mutations in the RAS and

phosphatidylinositol 3-kinase pathways contribute to TKI
resistance.166,167 Figure 4 illustrates co-occurring genetic
alterations in KIT-mutated GIST in the AACR Project GENIE
database.

In conclusion, sarcomas are a rare group of mesenchymal
tumors in which the integration of NGS for diagnosis and
management has provided informative evidence for pre-
cision medicine. In a significant percentage of STSs, which
represent up to 40% of all sarcomas, specific driver mo-
lecular abnormalities have been identified. The challenge
to evaluate these mutations across rare cancer subtypes
requires the careful characterization of these genetic al-
terations to further define compelling drivers with thera-
peutic implications as well as novel models of clinical trial
design. This shift would entail sustained efforts by the
sarcoma community to move from one-size-fits-all trials to
divide-and-conquer subtype-specific strategies.
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