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ABSTRACT Bacteria that cause life-threatening infections in humans are becoming
increasingly difficult to treat. In some instances, this is due to intrinsic and acquired
antibiotic resistance, indicating that new therapeutic approaches are needed to
combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria
known as bacteriophages (phages) as potential antibacterial therapeutics. However,
critics suggest that similar to antibiotics, the development of phage-resistant bacte-
ria will halt clinical phage therapy. Although the emergence of phage-resistant bac-
teria is likely inevitable, there is a growing body of literature showing that phage se-
lective pressure promotes mutations in bacteria that allow them to subvert phage
infection, but with a cost to their fitness. Such fitness trade-offs include reduced vir-
ulence, resensitization to antibiotics, and colonization defects. Resistance to phage
nucleic acid entry, primarily via cell surface modifications, compromises bacterial fit-
ness during antibiotic and host immune system pressure. In this minireview, we ex-
plore the mechanisms behind phage resistance in bacterial pathogens and the phys-
iological consequences of acquiring phage resistance phenotypes. With this
knowledge, it may be possible to use phages to alter bacterial populations, making
them more tractable to current therapeutic strategies.
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Bacteriophages (phages) contribute to the evolution of bacterial communities,
populations, and genomes by maintaining microbial diversity through coevolu-

tionary mechanisms (1–3). While arms race dynamics have been classically observed in
laboratory phage-bacterium experiments (4), renewed interest in the fitness costs
associated with phage resistance has identified fluctuating selection dynamics as a
competing concept for host-parasite dynamics over longer evolutionary periods (2, 5).
Lytic phages must first recognize and adsorb to receptors on the bacterial surface,
structures in which mutations may prove costly, thereby promoting frequency-
dependent selection (5). The lysis of host bacteria following the production of viral
progeny can significantly alter bacterial population densities impacting microbial eco-
systems. This may not be surprising considering that phages are predicted to outnum-
ber bacteria in the environment (6) and in host-associated microbiotas (7–9), although
these phage and bacterial counts are estimates that require further characterization.
Phage selection can maintain steady-state bacterial community composition via classic
predator-prey dynamics, yet bacteria evolve phage resistance that as a consequence
introduces fitness costs and trade-offs in return (10). Evolved and intrinsic bacterial
phage resistance drives antagonistic coevolution that can shape phage and bacterial
host genomes (11). Bacterium-phage coevolution produces consecutive rounds of
mutations whereby bacteria evolve resistance to initial adsorption or infection, fol-
lowed by phage host range mutations to overcome resistance. In many instances,
bacterial resistance to lytic phages comes with fitness costs in heterogeneous popu-
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lations (12), as well as host colonization defects (13) and dampening of virulence (14).
The fitness costs incurred by resistance to one or more phages are grounded in
genotypic mutations that produce a spectrum of resistance phenotypes with varyingly
poor pleiotropic effects (15). Fixed mutations and transient cell surface modifications
promote phage resistance in bacteria during exposure to lytic phages. Phage resistance
phenotypes with associated fitness defects could possibly be exploited during phage
therapy against overt and opportunistic bacterial pathogens.

The model system for the study of bacterium-phage coevolution is largely based on
interactions between Escherichia coli and T-type lytic phages (10, 11, 15, 16). These
studies show that phage-resistant E. coli strains are often at a fitness disadvantage to
their phage-sensitive relatives, and the magnitude of this trade-off is dependent on the
genetic basis of resistance and on the environmental context (17, 18). In complex
environments such as soil, the evolution of resistance to phages is more costly than that
in vitro, and phage selective pressure is a stronger driver of mutation than is compe-
tition with bacterial community members (3). Given that evolved phage resistance
often involves mutations in bacterial cell surface receptors that are important for
cellular stability and function, it is clear why such mutations can be detrimental.

Recently, there has been renewed interest in phage therapies for recalcitrant
bacterial infections. Phage therapy in combination with antibiotics is hypothesized to
be a potent synergistic attack on target bacteria that impedes the evolution of
resistance due to fitness constraints (19). During infection, when colonization and host
pressures drive virulence factor production in bacteria, the added pressure of phage
predation can reduce virulence as a trade-off for resistance (12). By taking advantage of
bacterial resistance, phage therapy can steer pathogenic bacteria toward deleterious
surface mutations that allow for more favorable treatment outcomes (20). Combination
therapies with phage and antibiotics are clinically promising (21), and phage-antibiotic
synergy (22) has been proposed as an innovative therapeutic option for antimicrobial-
resistant bacteria (23). Predatory phages can utilize critical bacterial surface molecules
that provide either defense from antibiotics via efflux, uptake of nutrients in resource-
limited host environments, or general cell wall maintenance. The association between
phage receptor molecules and the bacterial response to antibiotic stress is therefore an
important consideration for phage therapy.

Understanding the fitness costs associated with bacteriophage resistance is para-
mount for developing targeted therapies for bacterial infections. Bacterial resistance to
lytic phage infection can lead to decreased fitness, and reduced virulence can be a
trade-off in biologically relevant situations such as in planta colonization (24). Since
bacterial resistance to phages may be inescapable, we should consider that phage
resistance could be exploited and used against bacteria during antibacterial therapies.
In this minireview, we explore this idea through a discussion of phage infection
mechanisms, how bacteria subvert phage attack through resistance, and the physio-
logical outcomes of bacterial immunity to phages. Understanding the extent of bac-
terial fitness defects as a result of phage resistance will be valuable for translational
research aimed at developing phages as therapeutics for difficult-to-treat bacterial
infections.

CELL SURFACE-ASSOCIATED MOLECULES AND MACROMOLECULAR STRUCTURES
AT THE INTERFACE OF PHAGE-BACTERIUM INTERACTIONS

Polysaccharides. To infect bacterial cells, phages must bind to the surface of their
susceptible host by accessing cell wall-associated molecules that serve as receptors
(25). Polysaccharides, the most abundant extracellular biopolymers produced by bac-
teria, provide important structural and functional benefits to bacterial cells (26, 27).
Exopolysaccharide antigens, covalently attached capsular polysaccharides, and lipo-
polysaccharides have been described as phage receptors in both Gram-negative and
Gram-positive bacteria (28). Early phage-bacterium interaction studies in Escherichia coli
revealed the bacterial capsule as a primary receptor for viral spike tip proteins (29).
Conversely, the capsule of Staphylococcus aureus can block phage access to cell wall
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receptors (30). Given the dynamic complexity of bacterial glycan synthesis and phe-
notypic switching, polysaccharide profiles can determine phage resistance (31, 32) and
host ranges (33, 34). The lytic phage strategy of initial reversible recognition via
adsorption and irreversible binding to cell surface receptors (35) implicates the glycan
cell wall profile as a key determinant of phage infection and resistance.

Interactions with bacterial polysaccharides can be dictated by phage-borne poly-
saccharide depolymerase enzymes that degrade polysaccharides during phage adsorp-
tion, facilitating phage binding to primary receptors on the cell surface (33). Phage tail
spike proteins such as glycoside hydrolases and endosialidases that digest bacterial
polysaccharides are important for initial binding and subsequent infection (36). E. coli
K1-specific phages have capsule-specific tail spike proteins with endosialidase activity
that drill through the polysialic acid capsule (36–39). Host specificity for K1 phages is
determined by these endosialidases and can specify phage host range (40, 41). For
example, the similarity of cell wall polysialic acid linkages of E. coli K1 and Salmonella
spp. allows for indiscriminant infection by the enteric phages phi92 (34) and SP6 (41)
due to polysaccharide-degrading tail spike proteins. Additionally, exopolysaccharides
produced by Acinetobacter baumannii are receptors for phages that encode strain-
specific tail spike polysaccharide depolymerase enzymes (42). For detailed examination
of phage-encoded polysaccharide depolymerases that bind and degrade bacterial
glycans, see the study by Latka et al. (43). Given the potential for broad-host-range
depolymerases uncoupled from phages, these enzymes are being explored as thera-
peutic antibacterials against encapsulated bacterial pathogens (44–47).

LPS. Lipopolysaccharide (LPS), a primary component of the Gram-negative bacterial
cell wall, is another extracellular glycan linked to phage adsorption. The E. coli phage
T4 uses LPS as a primary receptor, whereby saccharide distribution and arrangement at
the cell surface determine infectivity on a strain-specific basis (48, 49). Recent research
on T4-E. coli interactions describes divergent adsorption strategies to bind directly to
LPS with or without help from the outer membrane protein OmpC (50). Similarly,
Salmonella phages specifically recognize the O-antigen portion of LPS via carbo-
hydrate-binding domains on tail spike proteins (51). Given the stratification of LPS into
distinct oligosaccharide and core components, it may be necessary for phages to bind
to the primary O antigen before accessing secondary receptors (52). Indeed, E. coli
phage G7C was recently shown to deacetylate O-antigen polysaccharide during ad-
sorption, and E. coli requires this glycan substrate for successful infection (53). LPS and
O-antigen binding kinetics can vary due to different interaction strategies employed by
phages that infect LPS-producing bacteria, and the use of LPS-modified phage-resistant
mutants has been useful for characterizing new phage isolates (54). Phage-driven
selection of O-antigen serotypes has undoubtedly led to diverse LPS varieties.

Teichoic acids. In Gram-positive bacteria, teichoic acids amid a peptidoglycan layer
can serve as phage receptors (55–57). Lipoteichoic acids of Lactobacillus delbrueckii
have been proposed to function as primary phage receptors (58). Additionally, wall
teichoic acids, which are highly abundant in the cell wall of S. aureus, are proposed to
be directly bound of the phi11 baseplate protein through carbohydrate binding (59).
Recent structural and bioinformatic analyses have revealed a highly conserved carbo-
hydrate binding module in lactococcal tail proteins that underscores the importance of
glycan binding by phages prior to infection (60). Thus, it is clear that the available sugar
moieties of the bacterial cell wall play important roles in phage-bacterium interactions.
This is evident considering that wall teichoic acids are often decorated with glycosyl
groups that promote phage adsorption (61, 62). For a more detailed description of cell
wall receptors targeted by Gram-positive phages, readers are directed to a recent
review of this topic (63).

Cell wall polysaccharides. In lactic acid bacteria, cell wall polysaccharides (CWPS)
are involved in important physiological fermentative processes (64). Recognition of
specific saccharide motifs on Lactococcus lactis pellicles is required for adsorption of
lactococcal phages to their hosts in a strain-dependent manner (65). Diversity among
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lactococcal cell wall polysaccharides has led to the development of narrow-host-range
phages based on pellicle genotype (66, 67). The complexity of glycan cell surface phage
receptors is important for subtype categorization of lactococcal strains based on phage
sensitivity profiling (33). The host ranges of Streptococcus thermophilus phages have
also been linked to host exopolysaccharide gene operon content (68, 69). In Strepto-
coccus mutans, a rhamnose-glucose polysaccharide produced by the rgp biosynthetic
operon is important for phage adsorption (70).

Enterococcal polysaccharide antigen. In enterococci, the enterococcal polysac-
charide antigen (Epa) has been proposed as a phage receptor necessary for adsorption
(71). The epa cluster, consisting of 18 core genes and strain-specific variable genes,
encodes enzymes that produce a rhamnopolysaccharide that is highly conserved in
Enterococcus faecalis and Enterococcus faecium (72). The modification of the Epa poly-
saccharide by glycosyltransferases is required for successful phage adsorption, and
recent work indicates that Epa may function as an initial attachment factor for the
localization of phages to a secondary receptor (9, 71, 73). Mutations in either core or
variable epa genes in E. faecalis reduce phage adsorption and significantly alter phage
infectivity (9, 73, 74). Thus, much in the same way that CWPS production in lactococci
mediates phage host ranges, Epa is an important extracellular mediator of enterococcal
phage adsorption and a host range determinant.

Outer membrane proteins. Beyond the complexity of phages having to adapt to
rapidly changing bacterial surface glycans, a variety of outer membrane proteins also
mediate phage-bacterium interactions. A disparity exists between phages that prefer
protein and those that prefer polysaccharide receptors, with some overlap, although
pathogens that produce multiple LPS moieties, such as Pseudomonas aeruginosa,
attract sugar-binding phages (28). Alongside LPS, early studies of coliphage adsorption
to E. coli K-12 identified the maltose transporter LamB (75), as well as OmpC (49), an
outer membrane porin, as the primary receptors during phage infection. OmpC rec-
ognition by phages appears to be conserved in other enteric bacteria, such as the
nosocomial pathogen Klebsiella pneumoniae (76). In addition, the outer membrane
protein OmpF is also an important phage receptor of enteric bacteria (77). Interestingly,
some phages can adapt to use any of the three above-mentioned surface proteins for
their adsorption (78), which is further specified by host-specific LPS modifications (50,
79). Given the relevance of OmpF and OmpC as membrane porins for the incorporation
of �-lactam antibiotics (80), their moonlighting as phage receptors becomes an impor-
tant consideration for the selection of therapeutic phages that target enteric bacteria
and the potential consequence of phage resistance curtailing antibiotic efficacy.

The iron-siderophore transport protein FhuA (formerly TonA) has been identified as
a receptor for several enteric phages (81). TonB, required for the energy-dependent
uptake of low-concentration substrates like siderophore transport by FhuA, is also a
phage receptor in various enteric bacteria (82). Additionally, the vitamin B12/cobalamin
outer membrane porin BtuB is a receptor for multiple T5-like phages (83, 84). TolC, the
outer membrane component of the multidrug resistance efflux pump AcrAB-TolC, is a
receptor that does not constrain the phage host range to serovar specificity in Salmo-
nella enterica (85). Likewise, TolA, part of the Tol system of membrane proteins that
imports macromolecules and links the inner and outer membranes of E. coli, acts as a
filamentous phage receptor (86, 87). It is notable that the majority of outer membrane
proteins described as phage receptors in Gram-negative bacteria are also important for
pathogen survival in hosts.

Phage infection protein. Much of what is currently known about membrane
proteins that function as phage receptors in Gram-positive bacteria stems from the
identification of the lactococcal phage infection protein (PIP) (88). In conjunction with
CWPS, PIP facilitates irreversible adsorption to the membrane by lactococcal phages
(89). Similar PIP-like proteins have been characterized as phage receptors in pathogenic
and nonpathogenic Bacillus species, with GamR in B. anthracis (90) and YueB in B.
subtilis (91). Like the interaction between CWPS and PIP in L. lactis, the B. subtilis-specific
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phage SPP1 first binds reversibly to glucosylated wall teichoic acids before irreversibly
binding to YueB (92). In E. faecalis, an orthologous protein, PIPEF, promotes infection of
enterococcal phages and dictates phage tropism through a variable region extracellular
domain (93). PIPEF is predicted to function in small-molecule or protein transport based
on homology to the type VIIb secretion system protein EsaA in S. aureus (93), a
membrane protein with six transmembrane helix domains conserved in Staphylococcus
and Listeria spp. (94). The use of conserved bacterial outer membrane proteins that are
functionally important to their host’s survival ensures consistent and accessible options
for phage adsorption.

Flagella. Flagella enable bacterial motility through a variety of environmental and
host-associated substrates. Perhaps also due to their functional ubiquity, these bacterial
appendages serve as receptors to a variety of phages. Phages can attach to the flagellar
filaments of E. coli and adsorb to the base of the flagella during infection (95). More
recently, a phage targeting Salmonella enterica serovar Typhimurium was shown to be
flagellotropic but only infectious when flagella rotate counterclockwise (CCW) (96).
Flagellotropic phage � also depends on CCW flagellar rotation in addition to flagellar
filament surface groove structure for successful infection of E. coli and S. enterica
serovar Typhimurium, termed the “nut-and-bolt” strategy (97). Phages using S. enterica
serovar Typhimurium flagella as a receptor can be further differentiated into subgroups
that target single or multiple flagellar proteins and subunits (98). The �-like phage of S.
enterica serovar Typhi uses flagella as the primary receptor for infection (99); however,
ΔfliC and ΔfljB mutants that lack the flagellar filament can still be infected with reduced
efficiency. This observation is consistent with a model of flagellotropic infection of
Agrobacterium spp. (100), whereby infection with lytic phages requires contact with LPS
and is facilitated by flagellar rotation. Flagella are also important for initial phage
adhesion to Caulobacter crescentus (101), in which attachment is also dependent on
CCW rotation that enables phage contact with pilus portals as final receptors at the
bacterial pole.

Pili. Pilus structures are commonly utilized as receptors for a variety of phages
targeting bacterial pathogens. Phages recognize and infect using type IV pili (T4P) in P.
aeruginosa (102, 103), as well as the tip of the F conjugative pilus (104) in conjunction
with the TolQRA complex in E. coli (105). T4P are on par with flagella regarding their
functional ubiquity among bacteria; the pilus molecular machine that contributes to
motility and adherence is a key virulence factor for opportunistic human pathogens like
P. aeruginosa (106). Studies of pilus-specific phages recently identified two lytic phages
that can infect both P. aeruginosa and Stenotrophomonas maltophilia via T4P as the
surface receptors (107). The utility of T4P as phage receptors therefore provides
broad-host-range specificity (108), an advantage in phage therapy applications. In
Vibrio cholerae, the toxin-coregulated pilus, a T4P family structure that mediates host
colonization, is the primary receptor for the filamentous phage CTX� (109). Targeting
virulence factors such as T4P via phage therapy has been proposed as an effective
antivirulence method that could clear multiple-species infections while also selecting
for less-virulent resistant bacteria (107). Thus, understanding phage-pilus interactions in
the context of bacterial fitness and virulence in the host is an important consideration
for many bacterial pathogens.

Summarizing thoughts. The bacterial cell surface is a rich landscape of receptor
molecules for phage adsorption and infection. Because phages are nonmotile and
depend on localized chance interactions with their hosts, their range and specificity are
dictated by their adaptation to host cell surfaces. The first line of bacterial defense
against phage infection lies in bacterial surface molecules. Surface polysaccharides,
integral membrane proteins, and appendages that are externally exposed on bacterial
cells are also antigens, virulence factors, and essential transporters of nutrient cofactors
and efflux. Modification and/or mutation of these cellular components is likely to incur
fitness costs, including decreased resistance to environmental pressures and virulence
reduction (Fig. 1).
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BACTERIAL SURFACE-BASED MUTATIONS MEDIATE PHAGE RESISTANCE

The omnipresent threat of phage infection has led to the evolution of several
intrinsic bacterial defense systems, including CRISPR-Cas proteins and restriction-
modification systems that protect bacteria from invasive foreign DNA (110). Abortive
infection systems (111) facilitate the self-destruction of infected bacterial cells to reduce
the phage infection burden within a population. These resistance mechanisms are
effective but are not infallible and can be overcome by phage infectious dose and host
range mutations that allow phages to subvert bacterial immunity after their genomes
are inside cells (112). Mechanisms that block initial phage adsorption to the cell and
prohibit infection are selected during evolution of bacterial resistance, in spite of fitness
defects resulting in bacterial competitive disadvantages (113). Much in the same way
antibiotic resistance can evolve in bacteria, resistance to phages can develop via
individual mutations to phage receptors, the presence of competitive inhibitors of
phage receptors, or restriction of receptor access with polysaccharides. In this section,

FIG 1 Bacterial cell surface mutations and modifications produce fitness trade-offs between bacteriophage resistance, antimicrobial
susceptibility, and host colonization. (A and B) Model illustrations of prototypical Gram-negative (A) and Gram-positive (B) cell walls and
outer membrane (OM) structures that serve as phage receptors. (A) Top, a flagellated and piliated Gram-negative rod is depicted with
functional efflux (blue), siderophore (orange), and porin (green) complexes, amid a diverse array of lipopolysaccharide, capsular
polysaccharide, and extracellular polysaccharide structures. Bottom, the Gram-negative rod is without functional OM protein complexes,
increased exopolysaccharide production, and a truncated and mutated lipopolysaccharide profile. (B) Top, a Gram-positive bacterium is
depicted with extracellular polysaccharide antigen, the PIP membrane protein (gray), and glucosylated wall teichoic acids. Bottom, the
same Gram-positive bacterium displays modified glycans in the extracellular polysaccharide antigen, mutated PIP variable region, and
undecorated wall teichoic acids. Sugar moiety modifications are depicted with red ovals, and genetic mutations affecting proteins are also
depicted in red. (A and B) The adjacent gradient illustrates the fitness trade-offs associated with sensitivity (top) and resistance (bottom)
to phages, traits which can be inversely correlated with antimicrobial sensitivity and host colonization potential.
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we describe these bacterial self-defense methods in the context of lytic phage coevo-
lution.

Outer membrane protein mutations. Spontaneous mutations can arise in outer
membrane proteins that are required for initial phage adsorption to bacteria. This is
especially true for phages with narrow host ranges that attach to specific bacterial
proteins. An example is phage � and the protein LamB in E. coli (114). In a formative
coevolution experiment analyzing this relationship, �-sensitive E. coli repeatedly devel-
oped mutations in the malT gene that regulates lamB expression, resulting in �

becoming fixed in the bacterial population after 8 days (115). The induction of LamB in
a subpopulation of E. coli ΔmalT mutants could maintain � at low levels before
successive mutations allowed the use of OmpF as an alternate receptor (115). The
evolution of phage � when cultured with E. coli presenting either LamB or OmpF, but
not both proteins, shows that divergent phage populations arise with unambiguous
receptor preferences (116). Thus, mutations that affect bacterial surface proteins ulti-
mately drive phage identification and host ranges, although surface polysaccharide
composition further complicates this paradigm. In Yersinia pestis, mutations in the outer
membrane proteins OmpF and Ail result in defective phage receptors but do not confer
complete resistance to infection due to the involvement of LPS as an additional host
factor for adsorption (117). Although mutations in surface proteins can be sufficient for
bacterial resistance, as measured by zero phage adsorption potential (118), multiple
linked mutations may also be necessary for full phage resistance (119). Indeed, phage
resistance in Y. pestis is dependent on one or multiple mutations in genes encoding
core LPS components or glycosyl modifications to the LPS core (Fig. 1) (120).

Surface glycome modifications. In addition to mutations in phage receptors that
either reduce their abundance or alter specificity, an effective phage evasion strategy
lies in non-mutation-derived modification. Given that cell wall polysaccharides such as
LPS often mediate phage infection in conjunction with membrane-associated proteins
(77), their modification can confer transient resistance to phages without mutations in
protein-encoding genes. One example of this strategy is evident in S. enterica serovar
Typhimurium, in which phase-variable O-antigen glucosylation confers transient phage
resistance (121) without modifying the primary receptor protein BtuB (84). In support
of this finding, a recent report shows significant downregulation of LPS synthesis in
Salmonella spp. upon contact with lytic phages, resulting in up to a 90% reduction in
total LPS content (122). Phage-resistant P. aeruginosa mutants also produce truncated
LPS structures, which determine full or partial phage resistance profiles (123). Glycome
modifications therefore provide further fine-tuning of the bacterial surface as it is
presented to their predatory phage that complements the more deterministic ap-
proach of fixing mutations within a population to overcome phage infection (Fig. 1).

Phase-variable expression of surface polysaccharides is a bacterial resistance strat-
egy to phage infection that generates population heterogeneity without the burden of
mutation. Several examples of this strategy have recently been described in host-
associated bacterial pathogens that rely on polysaccharide antigens for colonization
but are also under phage-driven selective pressure to modify those antigens. The O1
polysaccharide antigen of the intestinal pathogen Vibrio cholerae undergoes phase
variation that hinges on two biosynthetic genes, manA and wbeL, and determines
resistance to the O1 antigen-dependent lytic phage ICP1 (124). Given that V. cholerae
O1 is a dominant antigen important for host colonization, it is unsurprising that this key
virulence factor is a phage target that must be maintained in a host-associated context
(124). A similar observation has been described for the foodborne pathogen Campy-
lobacter jejuni, in which phase variable O-methylation modifications to the capsular
polysaccharide mitigate phage infectivity in the chicken intestine without affecting
colonization (125). It is striking that the predicted number of possible capsule variants
in C. jejuni can produce over 700 structures based on phase-variable modifications,
implying deep complexity in phage-host coevolution (125). Methylation-driven phase-
variable resistance to phage has also been described in the opportunistic pathogen
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Haemophilus influenzae, whereby the lack of Dam methylation at the lic2A locus
necessary for lipooligosaccharide (LOS) production drives phase variation and phage
resistance (126). Dam methylation also drives phage resistance in S. enterica via the
phase-variable opvAB operon, which prevents normal LPS O-antigen production re-
quired for phage infectivity (127). Variation of pathogenic bacterial cell surface profiles
under selective pressure from phage is not limited to polysaccharides. The cell wall
protein of the opportunistic pathogen Clostridioides difficile, CwpV, undergoes phase-
variable production that protects against phage DNA ejection (128). These phase-
variable antiphage systems allow pathogens to establish a strategic middle ground for
balancing the demands imposed by both phage predation pressures and host coloni-
zation requirements.

Mucoidy. A mechanism offering partial resistance from phage predation involves

phenotypic mucoid variants that arise via augmented exopolysaccharide produc-
tion. Mucoidy has classically been described in Pseudomonas spp. that produce
alginate in response to environmental pressures (129). Coculture with lytic phages
promotes a mucoid phenotype conversion in Pseudomonas fluorescens, although P.
fluorescens remains partly sensitive to phi2 infection (130). This transient protection
from phage predation is considered a partial resistance mechanism to subvert
infection by phages that target multiple receptors, and it contrasts the deterministic
nature of envelope resistance whereby mutations that modify a single receptor
preclude infection by phages (131). In E. coli, mutations in the rsc gene cluster
involved in exopolysaccharide production were shown to provide phage resistance
via mucoidy; however, these mutations were unstable, and bacteria reverted to a
nonmucoid phenotype in phage-free cultures, suggesting a fitness cost associated
with mucoidy in the context of bacterial competition (132). The instability of
mucoidy in environments with fluctuating phage populations can help support
phages within a population of bacteria that can revert back to a nonmucoid
phenotype (133). Regardless, phage-bacterium evolution models show that mu-
coidy is a more likely outcome than are fixed cell wall mutations that promote
resistance in E. coli (132, 133), suggesting that fixed mutations are more costly.

Considering that natural communities of bacteria are more often in a biofilm
rather than a planktonic state, reversible mutations in biofilm-determining loci may
be more favorable than all-or-nothing surface receptor modification/mutation. In
support of this theory, a recent analysis of phage-biofilm simulations revealed that
biofilm heterogeneity supports the coexistence of both phage-resistant and
-susceptible bacterial populations (134). In complex environments where multiple
phages would be targeting composite bacterial communities, the cost of phage
resistance is higher than infection of a single-target population (135); thus, con-
vergent selective pressures can produce multiple mutant phenotypes that arise
from equally diverse resistance and immunity strategies. It is important to empha-
size that fitness costs to phage resistance are context dependent, as illustrated in
a study of plant-associated Pseudomonas syringae that does not incur the same
fitness costs in vitro (24). This context-dependent disparity is further illustrated by
recent work exploring phage resistance evolution, which demonstrates P. syringae
phage resistance in vitro but not in planta (136).

Summarizing thoughts. Through spontaneous mutations in outer membrane pro-

teins, modifications to surface polysaccharides, and the conversion to mucoidy phe-
notypes, bacteria can become resistant to phage predation. Bacterial resistance, result-
ing in cell surface modifications that preclude phage nucleic acid entry, can lead to
fitness defects in host-associated contexts. In addition to single mutations, bacterial
resistance to phages can arise through phase-variable glycome modifications that may
affect bacterial competitive fitness. Phage-mediated selection of resistant mutants in
natural environments has important implications for bacterial pathogenicity reduction
and antibiotic intervention strategies.
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PHAGE RESISTANCE FACILITATES ANTIBIOTIC AND HOST IMMUNE SYNERGIES
AGAINST BACTERIAL INFECTIONS

The mechanisms of phage resistance discussed so far describe an array of bacterial
modifications that impact physiology and consequently lead to fitness defects (Fig. 1).
These fitness defects provide opportunities for exploiting bacterial resistance to phages
during antimicrobial therapy. Descriptions of reduced virulence and defects in host
colonization in response to phage predation have championed the idea of using
phages to resensitize bacteria to antibiotics and increase their clearance from host
tissues via immune cell targeting.

Phage-antibiotic combination therapy. For bacteria with actual or anticipated
antibiotic resistance, phage therapy is attractive due to selective pressures and resis-
tance costs that resensitize bacteria to drug treatments (137). One example is E. faecalis,
an opportunistic pathogen with emerging resistance to last-resort antibiotics such as
vancomycin and daptomycin. Spontaneous mutations in the Epa exopolysaccharide
biosynthesis genes provide resistance to lytic phage infection while incurring sensitivity
to cell wall- and cell membrane-targeting antibiotics (9, 73). Point mutations in epaR, a
putative glycosyltransferase and part of the core Epa synthesis gene cluster, prevent
phage adsorption and increase susceptibility to daptomycin (73), presumably by alter-
ing cell membrane physiology. Likewise, spontaneous mutations in epaX, a predicted
glycosyltransferase gene in the variable region of the Epa cluster, also provide resis-
tance to phage adsorption (74) but disrupt the ability of E. faecalis to translocate
epithelial cell layers or semisolid surfaces (138). Furthermore, our group has shown that
additional epa variable genes, epaS and epaAC, are frequently mutated during phage
exposure at the cost of enhanced antibiotic sensitivity (9). E. faecalis cells lacking epaS
are also deficient in intestinal colonization and are more susceptible to vancomycin
treatment in vivo, indicating that the Epa polysaccharide is important for opportunistic
overgrowth in the intestine. Together, these recent discoveries of phage-induced Epa
mutations in E. faecalis exemplify key fitness trade-offs for phage resistance and provide
support for the idea of synergistic phage-antibiotic combination therapy.

Phages that bind O-antigen chains of LPS structures select for resistant bacteria with
distinct surface structures and attenuated virulence. Lytic phages targeting Y. pestis
core LPS receptors produced spontaneous phage-resistant LPS mutants whose atten-
uated virulence in mice reflected truncated LPS lengths (120). Importantly, a majority of
these spontaneous LPS mutants developed sensitivity to polymyxin B (120), which
indicates that a destabilized outer membrane is a trade-off for phage resistance in these
organisms. Listeria monocytogenes was also shown to mutate teichoic acid glycosylation
genes in response to phage predation, which led to an attenuation of virulence in an
in vivo mouse model as well as invasion defects in Caco-2 epithelial and HepG2
hepatocyte cell lines (139). Virulence attenuation as a cost of phage resistance also
manifests epigenetically. The phase-variable control of O-antigen chain length in S.
enterica triggers transient phage resistance via truncated LPS structures that reduce
virulence in vitro and in vivo (127). Taking into account fitness trade-offs that balance
virulence with phage resistance, the use of prophylactic phage cocktails to prevent V.
cholerae colonization and infection showed that while phage-resistant V. cholerae
isolates are recovered following phage therapy, mutations arise in LPS synthesis genes
rendering V. cholerae avirulent in different animal models (140). The use of phages in
combination, as cocktails, is also an effective strategy for reducing C. difficile levels in
several models (141–143). Multiple-phage combinations targeting C. difficile were
effective at reducing the bacterial burden in a hamster model while also mitigating the
emergence of resistant bacterial outgrowth (141). C. difficile-specific phages have also
been shown to be a useful prophylactic supplement to vancomycin treatment in a wax
moth model of infection (142).

Investigation of phage-selected antibiotic resensitization of multidrug-resistant P.
aeruginosa revealed that a phage targeting MexAB and MexXY-OprM efflux systems
significantly increased sensitivity to clinically relevant antibiotics (144). Phage OMKO1
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was efficacious in the treatment of a P. aeruginosa aortic graft infection in conjunction
with ceftazidime (145). By exploiting the biological trade-off whereby phage resistance
leads to decreased efflux, Chan and colleagues demonstrated the clinical success of
OMKO1-ceftazidime therapy based on initial in vitro observations (145). Phage-
mediated mutation of conserved efflux genes in P. aeruginosa could be a clinically
advantageous benefit of phage resistance that may allow for the reintroduction of
clinically approved antibiotics for the treatment of multidrug-resistant infections (144).
A multidrug-resistant A. baumannii infection has been treated with a personalized
phage cocktail in synergy with minocycline, where emergent phage-resistant mutants
lacked capsular polysaccharide and became more susceptible to drug treatment (146).
This type of molecular synergy has been investigated for in vitro biofilms of P.
aeruginosa (147) and S. aureus (148). Although the mechanisms that heighten antibiotic
sensitivity during phage-biofilm association remain to be described, initial results
indicate that phage predation leads to the sensitivity of biofilms to multiple antibiotics
(147, 148).

Phage-immune system synergy. Similar to phage-antibiotic synergy, increased
susceptibility to the host innate immune system is a synergistic feature of phage
therapy with great clinical potential. The term “immunophage synergy” has emerged to
describe interactions between lytic phages and innate immune defenses (149). Using in
vivo and in silico models of multidrug-resistant Pseudomonas aeruginosa infection,
Roach et al. (149) showed that neutrophil activation, and to a lesser extent, MyD88
immune activation, is required for a positive phage therapeutic outcome. The authors
suggest that successful phage therapies might depend on the immunocompetency of
the host to counter the emergence of phage-resistant bacteria. A previous study of a
P. aeruginosa monophage treatment showed a defect in effective phage therapy in
neutropenic mice lacking neutrophils (150). These experimental observations are fur-
ther reinforced by a mathematical model that predicts immunophage synergy in
scenarios where neither phages nor the immune system alone is effective at resolving
bacterial infections (151). In conjunction with the immunophage synergy theory, a
recent study demonstrated that phage-resistant K. pneumoniae mutants were more
susceptible to phagocytosis (152). Mutations in glycosyltransferase-encoding genes
promoted phage resistance amid deficient capsule synthesis and, subsequently, en-
hanced in vivo predation by macrophages (152). Thus, in addition to phage-antibiotic
combination therapies, immunophage synergy is another mechanism by which lytic
phages could be used to enhance antibacterial therapies.

The reported synergies between phage therapy and antibiotics or the innate
immune system offer promising research avenues to develop combination therapies for
clearing bacterial infections. Using phages as a selective pressure to force bacterial
mutations that are more susceptible to currently implemented treatment methods,
while reducing virulence and colonization fitness, is a strategy that has recently been
described as “phage steering” (20). By exploiting the fitness trade-offs experienced by
bacteria that evolve resistance to lytic phages through surface modifications, it may be
possible to simultaneously reduce bacterial virulence as well as resensitize bacteria to
antibiotic or immune killing. In their recent opinion article, Gurney et al. (20) describe
the bacterial virulence-associated surface molecules and structures that could be
targeted to steer infections toward manageable clinical outcomes. By taking advantage
of phage-bacterium coevolutionary biology, it may be possible to reclaim existing
clinical strategies for the treatment of bacterial infections, although several important
mechanistic questions regarding phage-antibiotic combination therapies remain. No-
tably, Torres-Barceló and Hochberg (19) point to the importance of discerning precise
antibiotic concentrations during combination therapies such that bacterial virulence
responses, including quorum sensing and hormesis, are mitigated.

It is also important to consider the polymicrobial nature and host-associated context
of bacterial infections that differ dramatically from laboratory conditions. A new study
in this domain has shown that although surface modification mutations predominate
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in bacterial monoculture, the associated fitness trade-offs are exaggerated in a poly-
microbial community, leading to CRISPR-mediated adaptation (153). This is an impor-
tant consideration given that the CRISPR-resistant P. aeruginosa PA14 strain maintained
virulence in an in vivo infection model (153), suggesting that the mechanism of phage
resistance is important for determining infection severity and treatment options. This
study highlights the need for relevant infection models that explore phage-bacterium
coevolution in the context of polymicrobial interactions that are more representative of
real-world scenarios.

CONCLUDING REMARKS

The fitness trade-offs incurred by phage resistance in pathogenic bacteria offer
opportunities for novel intervention strategies for treating recalcitrant infections. By
modifying cell surface molecules that serve as phage receptors, bacteria are able to
subvert phage infection. Modifications to surface polysaccharides, membrane porins,
siderophores, efflux pumps, pili, and flagella can come with substantial fitness defects.
Taking advantage of this physiology, phage therapy might be tailored to antibiotic
therapy to generate synergy with antibiotics or host innate immune defenses to aid in
the clearance of bacterial infections. In addition to these phage-antibiotic and immu-
nophage synergies, there is renewed interest in phage prophylaxis in immunotolerant
individuals (149, 154). While phages, antibiotics, or innate immunity may not be
singlehandedly sufficient for clearing difficult to treat bacterial infections, it may be
possible to push bacterial evolution toward less-fit phenotypes using phage therapy. As
a consequence, this phage steering of bacteria may lead to the renewed utility of
ineffective antibiotics or aid in immunomodulation (20). Bacterial resistance to phages
may therefore provide translational benefits to clinically relevant bacterial infections
that no longer respond to conventional therapeutics.
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