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Osteoblasts secrete Cxcl9 to regulate angiogenesis
in bone
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Communication between osteoblasts and endothelial cells (ECs) is essential for bone turn-

over, but the molecular mechanisms of such communication are not well defined. Here we

identify Cxcl9 as an angiostatic factor secreted by osteoblasts in the bone marrow micro-

environment. We show that Cxcl9 produced by osteoblasts interacts with vascular endo-

thelial growth factor and prevents its binding to ECs and osteoblasts, thus abrogating

angiogenesis and osteogenesis both in mouse bone and in vitro. The mechanistic target of

rapamycin complex 1 activates Cxcl9 expression by transcriptional upregulation of STAT1 and

increases binding of STAT1 to the Cxcl9 promoter in osteoblasts. These findings reveal the

essential role of osteoblast-produced Cxcl9 in angiogenesis and osteogenesis in bone, and

Cxcl9 can be targeted to elevate bone angiogenesis and prevent bone loss-related diseases.
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D
uring development of the mammalian skeleton, the
formation of endochondral bone coincides with capillary
invasion1,2, suggesting a close connection between

osteogenesis and angiogenesis. Blood vessels supply osteoblast
precursors either by their flow3 or components in their walls4,5,
and guide the migration of osteoblast precursors from the
periosteum to the bone marrow4. Impairment of angiogenesis
decreased trabecular bone formation as well as expansion of the
hypertrophic zone into the growth plate6. Postnatal bone
remodelling also depends on vascular formation. Oxygen,
nutrients and a cornucopia of hormones and growth factors,
which are important for bone and bone marrow development and
homeostasis, are transported to bone by blood vessels7,8. Recent
studies have suggested a direct role of decreased angiogenesis
in senile and postmenopausal osteoporosis9, highlighting the
importance of the regulation of angiogenesis in bone.

Bone marrow is a highly heterogeneous and vascularized tissue.
The diverse cell types populating the bone marrow communicate
extensively with each other, and the cell-to-cell cross-talk is
vital for correct bone development and homeostasis10. The cross-
talk between bone-forming osteoblasts and vessel-forming
endothelial cells (ECs) is progressively gaining strong support
in the scientific community11. In particular, osteoblasts secrete
angiogenic factors, such as vascular endothelial growth factor
(VEGF)12 and erythropoietin13, to mediate the cross-talk between
osteoblasts and ECs. However, molecules that couple osteoblasts
and ECs to modulate bone remodelling and angiogenesis have not
been fully defined, and the signalling pathways that control the
production of these molecules in osteoblasts are unclear.

The mechanistic target of rapamycin complex 1 (mTORC1)
integrates diverse intracellular and extracellular signals14 and
plays a central role in the regulation of cell growth, proliferation

and metabolism15. Activation of mTORC1 enhances VEGF
synthesis to promote angiogenesis in tumours16. Although
recent studies have defined mTORC1 signalling as a critical
regulator of osteoblastogenesis and bone formation17,18, the role
of mTORC1 in bone vessel formation is unknown.

In this study, we found that mice with constitutive mTORC1
activation in osteoblasts demonstrated enhanced VEGF secretion,
but unexpectedly decreased phosphorylation of its receptor
(VEGFR2) and downstream signalling in ECs, and markedly
reduced vasculature formation in bone. We further identified a
CXC-chemokine, chemokine (C-X-C motif) ligand 9 (Cxcl9) as a
direct counter-regulatory molecule of VEGF signalling constitu-
tively produced by osteoblasts to suppress angiogenesis and
osteogenesis in bone. Mechanistically, the mTORC1 activated
Cxcl9 expression by transcriptional upregulation of STAT1 and
increased binding of STAT1 to the Cxcl9 promoter in osteoblasts.
Thus, our study identified Cxcl9 as an angiostatic factor secreted
by osteoblasts, supporting Cxcl9 as a novel target for stimulating
angiogenesis and osteogenesis in bone.

Results
Osteoblastic mTORC1 regulates bone angiogenesis. Riddle et al.
and our group reported that activation of mTORC1 in osteoblast
lineage cells prevented osteoblast maturation and bone forma-
tion17,18. As osteogenesis and angiogenesis are tightly coupled
in bone, we determined whether bone angiogenesis was affected in
mice with constitutive mTORC1 activation in osteoblasts. Osx-cre19

has previously been reported to target other cell types besides
osteoblast lineage cells20. To achieve specific activation of mTORC1
in osteoblasts, we crossed floxed Tsc1 (mTORC1 negative
regulator) mice21 with mice expressing the Cre recombinase
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Figure 1 | Alteration of mTORC1 activity in osteoblasts affects angiogenesis in mouse bone. (a) Representative images of immunostaining

of pS6 (Ser235/236) and osteocalcin (Ocn) in 12-week-old male mice bone. Scale bar, 50 mm. (b) Photograph of hindlimbs of 6-week-old male

DTsc1 (DT) and DRaptor (DR) mice and their littermate controls (Ctrl). Scale bar, 1 cm. (c) Representative images of CD31þEMCNþ micro-

vessels and quantitative analysis of type H microvessel density in femur sections of 12-week-old male mice. Scale bar, 100 mm. n¼9 per group.

(d) Consistent numbers of CD31þ vessels in surrounding muscle of mouse bone. Scale bar, 100 mm. Data are shown as mean±s.d. n¼ 9 per group.

Data are shown as mean±s.d. *Po0.05, **Po0.01 (Student’s t-test). For all panels in this figure, data are representative for three independent

experiments.
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driven by an osteocalcin (OC) promoter (OC-Cre)22 to produce
mice with Tsc1 deletion in mature osteoblasts (hereafter referred to
as DTsc1 mice). Six-week-old DTsc1 mice clearly showed enhanced
phosphorylation of S6 (Ser235/236) in osteoblasts (positively
stained by osteocalcin) (Fig. 1a), indicating that mTORC1 was
activated by this genetic manipulation. Micro-computed
tomography (micro-CT) analysis revealed the same high volume
of immature woven bone in DTsc1 mice as reported previously17,
that is, the high bone mass in DTsc1 mice was the result of
increased areas of hypomineralization (Supplementary Fig. 1). At
necropsy, we noted pale long bones in DTsc1 mice (Fig. 1b),
indicating reduced blood perfusion in the bone of these mice. We
observed a decreased number of CD31þEndomucinþ vessels,
which has been reported to couple angiogenesis and osteogenesis in
bone, in tibia sections in DTsc1 mice when compared with their
littermate controls (Fig. 1c). However, number of vessels in
surrounding muscle was not affected in DTsc1 mice (Fig. 1d),
suggesting that osteoblasts with hyperactive mTORC1 specifically
suppressed vasculature formation in bone.

To test these observations in vitro, we cultured immortalized
human umbilical vein ECs (HUVECs) with conditional medium
(CM) collected from primary calvarial osteoblasts. HUVECs
cultured in CM from DTsc1 osteoblasts exhibited a lower
proliferation and migration rate than those in control CM
(Fig. 2a,b). HUVECs seeded on Matrigel in the presence of
control medium formed branching, anastomosing tubes, resulting
a meshwork of capillary-like structures (Fig. 2c). In contrast,
HUVECs remained spherical and isolated when maintained in
CM from DTsc1 osteoblasts, with small cellular nests and short
tubes rarely observed (Fig. 2c). These findings suggested that
osteoblasts with hyperactive mTORC1 inhibited angiogenesis in
mouse bone and in vitro.

To definitively establish the role of osteoblastic mTORC1
in regulating angiogenesis in bone, we created mice with
mTORC1 inactivation in osteoblasts by crossing the OC-Cre
mouse with a mouse carrying a floxed Raptor (mTORC1-specific
component) allele23 (control). Immunohistochemical staining of
S6 phosphorylation (Ser235/236) confirmed inactivation of
mTORC1 in osteoblasts of DRaptor mice (Fig. 1a). Micro-CT
analysis revealed the same lower bone volume in DRaptor mice as
that previously reported24 (Supplementary Fig. 2). In contrast to
DTsc1 mice, the long bones from the Raptor mutants were more
richly perfused with blood compared with control bones (Fig. 1b).
Immunohistochemical staining (Fig. 1c) confirmed increased
CD31þEndomucinþ vessel numbers in the bone of DRaptor
mice. However, vessel number in surrounding muscle remained
unchanged (Fig. 1d). Consistent with the in vivo results, CM from
primary DRaptor osteoblasts induced proliferation (Fig. 2a),
migration (Fig. 2b) and network formation (Fig. 2c) of HUVECs
in vitro. On the basis of these results, we conclude that osteoblasts
with impaired mTORC1 promote angiogenesis in bone and
in vitro.

Osteoblasts produce angiostatic factors. The results described
above suggested that mTORC1 regulated the expression of
angiogenic and (or) angiostatic factors in osteoblasts to
modulate the formation of vasculature in bone. Consistent with
this notion, enhanced VEGF expression (Fig. 3a) and secretion
(Supplementary Fig. 3a) by osteoblasts was observed in DTsc1
mice, indicating that mTORC1 stimulated VEGF expression in
osteoblasts. Nonetheless, the enhanced VEGF expression in
osteoblasts, which would be expected to produce more vessels in
bone, could not theoretically be responsible for the impaired
angiogenesis of bone seen in DTsc1 mice. VEGFR2 (Kinase insert
domain receptor (KDR)), a major receptor transducing VEGF

signalling in ECs25, exhibited consistent expression, but decreased
phosphorylation in ECs when exposed to the overall
elevated secretion of VEGF by DTsc1 osteoblasts (Fig. 3b).
In addition, primary DTsc1 osteoblasts exhibited elevated
expression (Fig. 3c) and secretion (Supplementary Fig. 3b) of
VEGF in vitro, and CM collected from these cells repressed
transduction of the VEGF signalling cascade in HUVECs, as
revealed by the decreased phosphorylation of KDR and its
downstream mediators PLCg1 and ERK1/2 (Fig. 3d).

The disjoint between VEGF secretion by osteoblasts and
VEGF signalling cascade transduction in ECs was copied in
DRaptor mice. Inconsistent with the overall decrease in VEGF
expression (Fig. 3a) and secretion (Supplementary Fig. 3a) by
DRaptor osteoblasts, phosphorylation of KDR was enhanced in
ECs in the bone marrow of DRaptor mice (Fig. 3b). Moreover,
while DRaptor osteoblasts expressed (Fig. 3c) and secreted
(Supplementary Fig. 3b) reduced VEGF in vitro, HUVECs
showed enhanced VEGF signal transduction when cultured in
CM from DRaptor osteoblasts (Fig. 3d). Together, these data
suggested that mTORC1 positively regulates VEGF expression
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Figure 2 | Alteration of mTORC1 activity in osteoblasts affects

angiogenesis in vitro. (a) Representative confocal images of

immunostaining of BrdU (green) in HUVECs and quantitative analysis of

BrdUþ cells over total cells. Scale bar, 50mm. n¼ 9 per group.

(b) Representative photomicrographs of wounds in HUVECs at 0 h and

after 18 h; dotted lines highlight the linear scratch/wound for each group of

cells. The bar graph shows the mean percentage of wound closure. Scale

bar, 200mm. n¼9 per group. (c) Representative photomicrographs of tube

formation of HUVECs incubated with Matrigel and quantitative analysis of

tube area. Scale bar, 200mm. n¼ 9 per group. Data are shown as

mean±s.d. *Po0.05, **Po0.01 (Student’s t-test). For all panels in this

figure, data are representative for three independent experiments. Ctrl,

control.
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and secretion in osteoblasts, which did not account for the
corresponding angiogenesis alterations in mutant mouse bone
and in vitro, suggesting that osteoblasts may produce angiostatic
factor(s) to block VEGF signalling in bone.

Cxcl9 is constitutively produced by osteoblasts. To screen for
the angiostatic factor(s), we developed a global mRNA expression
profile in DTsc1 or control calvarial osteoblasts using microarray.
Among the upregulated mRNAs, Cxcl9 has been reported as a
direct counter-regulatory molecule of VEGF signalling within
the liver26. Importantly, Cxcl9 was found to be expressed
constitutively in osteoblasts in cells residing in the bone
(Fig. 4a), and its receptor, CXCR3, was revealed to be expressed
by ECs in bone marrow and by cultured HUVECs (Fig. 4b,c).
CXCR3 presented consistent expression in the two transgenic
mouse models and their respective controls (Fig. 4b), but Cxcl9
was expressed and secreted into bone marrow and serum at
significantly greater levels by DTsc1 osteoblasts (Fig. 4a,d).
Furthermore, Cxcl9 mRNA expression showed a sevenfold
increase in primary DTsc1 osteoblasts versus control cells
(Fig. 4e). A similar increased pattern was further confirmed at
the protein expression (Fig. 4f) and secretion level (Fig. 4g).

In contrast to DTsc1 mice, DRaptor osteoblasts had
significantly lower levels of Cxcl9 expression (Fig. 4a) and
secretion (Fig. 4d). Cxcl9 mRNA (Fig. 4e), protein expression
(Fig. 4f) and secretion (Fig. 4g) were all decreased in DRaptor
calvarial osteoblasts cultured in vitro. On the basis of these
observations, we conclude that mTORC1 positively regulates
Cxcl9 expression and secretion in osteoblasts, indicating a
possible explanation for the angiogenesis phenotypes of mutant
mice described above.

Cxcl9 inhibits angiogenesis in bone. We next sought to deter-
mine whether Cxcl9 is responsible for the vasculature alterations
seen in the two mouse models. DTsc1 mice were treated with anti-
Cxcl9 antibody to neutralize endogenous Cxcl9. Interestingly,
antibody against Cxcl9 significantly increased the number of bone
CD31þEndomucinþ vessels in DTsc1 mice to more than that in
control mice (Fig. 5a). As depicted above, HUVECs maintained
in DTsc1 CM exhibited impaired proliferation and migration.
When the cells were grown in the same medium supplemented
with anti-Cxcl9, proliferation (Supplementary Fig. 4a) and
migration rates (Supplementary Fig. 4b) of the cells were
significantly elevated to levels higher than cells treated with the
control medium. Moreover, an endothelial network was formed
when HUVECs were grown in DTsc1 CM with supplementary
anti-Cxcl9, compared with those cultured in CM from DTsc1
osteoblasts and control osteoblasts (Fig. 5b). Importantly, reduced
phosphorylation of KDR and its downstream mediator in
HUVECs were both increased to above basal level (Fig. 5c). In
addition, Cxcl9 was downregulated in DTsc1 osteoblasts by
siRNA, CM from which also promoted the proliferation, migra-
tion and tube formation of HUVECs (Supplementary Fig. 5).
These data suggested that elevated Cxcl9 in osteoblasts is
responsible for the reduced vasculature in bone of DTsc1 mice. As
the angiostatic effect of Cxcl9 was eliminated, transduction of
VEGF signalling recovered and the abundant VEGF expressed in
DTsc1 osteoblasts exerted their potential effect on promoting
angiogenesis in bone and in vitro.

To test whether reduced Cxcl9 in DRaptor osteoblasts
contributed to increased vasculature in bone, we treated DRaptor
mice with Cxcl9. DRaptor mice receiving Cxcl9 had significantly
fewer vessels than those treated with phosphate-buffered saline
(PBS) and control mice (Fig. 5a). Cxcl9 also significantly reversed
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the promotion of proliferation and migration by DRaptor CM in
HUVECs and further reduced proliferation (Supplementary
Fig. 6a) and migration (Supplementary Fig. 6b) to rates lower
than those in cells maintained in control medium. In the Matrigel

assay, the network in HUVECs maintained in DRaptor medium
supplemented with Cxcl9 was less formed than that grown in
control medium (Fig. 5b). Immunoblotting analysis of lysates of
the cell sets revealed the underlying mechanism. As transduction
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of VEGF signalling was improved in HUVECs maintained
in DRaptor CM, signal transduction in cells was blocked
by supplementation of Cxcl9 in the same medium (Fig. 5c).
These observations indicated that decreased Cxcl9 expression
in osteoblasts was responsible for the increased vasculature
in bone of DRaptor mice. As Cxcl9 was downregulated in

DRaptor osteoblasts, blocking VEGF signal transduction by
Cxcl9 was alleviated in ECs, and VEGF released by DRaptor
osteoblasts was able to exert its pro-angiogenic role more
effectively and led to the formation of more vessels in the bone.
Together, these findings indicate that Cxcl9 antagonizes VEGF
signalling to prevent angiogenesis in bone. We next determined
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the mechanisms by which Cxcl9 antagonizes VEGF signalling
transduction in ECs. We first examined whether CXCR3
(Cxcl9 receptor) mediated the antiangiogenic effects of Cxcl9 in
our model. As CXCR3 was abrogated by its antagonist NBI-74330
supplemented in DTsc1 CM, HUVECs cultured in the CM
retained a low rate of proliferation (Fig. 6a) and migration
(Fig. 6b), and a poor capacity to form tube (Fig. 6c). Furthermore,
NBI-74330 blocked CXCR3 activity but failed to alleviate the
inhibition of VEGF signalling transduction in ECs by Cxcl9 in
DTsc1 CM (Fig. 6d), indicating that CXCR3 is not required for
Cxcl9 to suppress angiogenesis in this model. On the other hand,

supplementation with VEGF markedly reversed the inhibition of
angiogenesis by DTsc1 CM (Fig. 6a–d). In light of these
observations, we hypothesized that Cxcl9 could interact
with VEGF and attenuate its binding to ECs. We further mixed
recombinant mouse Cxcl9 and VEGF164 in vitro and immuno-
precipitated VEGF using an anti-Cxcl9 antibody. As shown
in Fig. 6e, the anti-Cxcl9 antibody successfully precipitated
VEGF164 from the mixture of VEGF164 and Cxcl9, but failed to
precipitate VEGF164 from the solution containing VEGF164 alone.
These results suggest that Cxcl9 interacts with VEGF164 in vitro.
To investigate the effect of Cxcl9 on the binding of VEGF to
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Figure 6 | Cxcl9 antagonizes VEGF signalling transduction in ECs by interacting with VEGF and preventing its binding to ECs. (a) Representative

confocal images of immunostaining of BrdU (green) in HUVECs and quantitative analysis of BrdUþ cells over total cells. Scale bar, 100mm. n¼ 9 per group.

(b) Representative photomicrographs of wounds in HUVECs at 0 h and after 18 h; dotted lines highlight the linear scratch/wound for each group of cells.

The bar graph shows the mean percentage of wound closure. Scale bar, 200 mm. n¼9 per group. (c) Representative photomicrographs of tube formation of

HUVECs incubated with Matrigel and quantitative analysis of tube area. Scale bar, 200mm. n¼9 per group. (d) Western blot of phosphorylation of Akt

(S473), Src (Y416), KDR, PLCg1 and ERK1/2 in HUVECs treated with DTsc1 CM with or without addition of NBI-74330 (CXCR3 antagonist) or VEGF as

indicated for 10 min. (e) Recombinant mouse Cxcl9 and VEGF164 were mixed and immunoprecipitated with anti-Cxcl9 antibody and examined by

immunoblotting with an anti-VEGF antibody. (f) Binding of 125I–VEGF164 to ECs in the presence of increasing concentrations of Cxcl9. Shown is the specific

binding, which was calculated by subtracting the nonspecific binding from the total binding. Data are shown as mean±s.d. **Po0.01 (Student’s t-test).
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ECs, HUVECs were incubated with 10 ng ml� 1 125I–VEGF164

and increasing concentrations of Cxcl9. As expected, Cxcl9 was
able to inhibit the specific binding of 125I–VEGF164 to ECs
(Fig. 6f). Together, these findings revealed that Cxcl9 interacts
with VEGF and prevents VEGF from binding to ECs, and thus
antagonizes VEGF signal transduction in ECs.

Cxcl9 suppresses osteogenesis. Given that angiogenesis
and osteogenesis are coupled in bone, we next investigated
whether Cxcl9 has any direct role in bone formation. After
treatment with the Cxcl9 antibody depicted above, DTsc1
mice exhibited partial recovery of osteoblastic differentiation,
mineralization of bone matrix and normalization of bone struc-
ture (Supplementary Fig. 1). In contrast, DRaptor mice receiving
Cxcl9 showed impairment of osteoblastic differentiation
and more severe loss of bone mass (Supplementary Fig. 2). As
CXCR3 expression in osteoblasts is consistent between the two
knockout mice and their controls (Supplementary Fig. 7a), we
suspected that Cxcl9 may exert inhibitory effect on the function
of osteoblasts. To better characterize the role of Cxcl9 in osteo-
blasts, we added recombinant Cxcl9 to cultured MC3T3-E1
cells, had CXCR3 expression (Supplementary Fig. 7b). Cxcl9
demonstrated a marked inhibitory effect on proliferation
(Fig. 7a), differentiation (Fig. 7b) and mineralization of
MC3T3-E1 cells (Fig. 7c). Since inhibition of CXCR3 by NBI-
74330 failed to reverse the abrogation of osteogenesis by Cxcl9
(Fig. 7a–c), we suspected that Cxcl9 may inhibit osteogenesis
through a CXCR3-independent mechanism. Interestingly,
supplementation with VEGF significantly reversed the inhibitory
effect of Cxcl9 on the osteogenesis of MC3T3-E1 cells (Fig. 7a–c),
indicating that Cxcl9 may prevent osteogenesis by interacting
with VEGF. Indeed, Cxcl9 was able to abrogate the binding
of VEGF to MC3T3-E1 cells in vitro (Fig. 7d). Furthermore,
Cxcl9 inhibited proliferation, differentiation and mineralization
of rat bone marrow stem cells (BMSCs) and prevented
binding of VEGF to these cells as well (Supplementary Fig. 8).
Taken together, these observations indicate that Cxcl9 may
suppress osteogenesis in bone and in vitro by interacting with
VEGF and abrogating binding of VEGF to osteoblasts.

mTORC1 regulates Cxcl9 in osteoblasts via STAT1. We next
investigated the mechanism by which mTORC1 regulates Cxcl9
in osteoblasts. The transcription factor, signal transducer and
activator of transcription 1 (STAT1), is known to be regulated by
mTOR27,28 and is involved in the regulation of Cxcl9 gene
transcription29 in many cell types. We thus examined the
potential regulation of STAT1 by mTORC1 in osteoblasts and
found that RNA transcripts for STAT1 were upregulated in DTsc1
calvarial osteoblasts and were significantly reduced in DRaptor
cells (Fig. 8a). Accordingly, STAT1 protein production and
phosphorylation was revealed to be increased in DTsc1 and
decreased in DRaptor osteoblasts (Fig. 8b). The function of many
transcription factors is associated with changes in their
intracellular localization between the cytoplasm and the
nucleus. We then found that STAT1 was more concentrated in
the nucleus of DTsc1 osteoblasts (Fig. 8c). In contrast, DRaptor
osteoblasts showed STAT1 accumulation in the cytoplasm
(Fig. 8c). These findings suggested that mTORC1 promoted
STAT1 expression and translocation into the nucleus in
osteoblasts.

We next investigated the mechanisms by which mTORC1
drives STAT1 expression and activation. To assess the involve-
ment of S6K1 in the regulation of STAT1 expression by
mTORC1, we downregulated S6K1 in primary calvarial osteo-
blasts using siRNA. S6K1 reduction led to decreased STAT1 in
control osteoblasts and reversed the upregulation of STAT1
expression in DTsc1 osteoblasts (Fig. 8d), suggesting that S6K1
mediated the positive regulation of STAT1 expression by
mTORC1 in osteoblasts. STAT1 phosphorylated on serine 727
enhances its transcriptional activity30. As shown in Fig. 8e,
mTOR immunoprecipitates phosphorylate STAT1 at Ser727
in vitro and constitutive activated mTORC1 from DTsc1
calvarial cells enhanced phosphorylation, suggesting that mTOR
directly phosphorylates STAT1 at Ser727 and promotes its
transcriptional activity.

We also performed electrophoretic mobility shift assay (EMSA)
to delineate STAT1 binding to the Cxcl9 gene promoter. Nuclear
protein of osteoblasts bound specifically to an oligonucleotide
probe containing a consensus STAT1-specific binding sequence
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Figure 7 | Cxcl9 suppresses osteogenesis by interacting with VEGF and abrogating binding of VEGF to osteoblasts. (a) BrdU staining of MC3T3-E1 cells

and quantitative analysis of BrdUþ cells out of total cells. Scale bar, 100 mm. (b) Western blot analysis of osteoblastic marker Ocn and Runx2 expression in
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(d) Binding of 125I–VEGF164 to MC3T3-E1 cells in the presence of increasing concentrations of Cxcl9. Shown is the specific binding, which was calculated by

subtracting the nonspecific binding from the total binding. Data are shown as mean±s.d. *Po0.05, **Po0.01 (Student’s t-test).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13885

8 NATURE COMMUNICATIONS | 7:13885 | DOI: 10.1038/ncomms13885 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


kDa
42

14

84

β-actin

Cxcl9

STAT1

ΔTCtrlΔTCtrl

si-STAT1NC

++++– – – – – – – – –Anti-STAT1
––++––––++–––Unlabled probe
RCRCRCTCC TTC–Nuclear extract

Free probe
STAT1 complex

STAT1  supershift

kDa
289

84

91

mTOR

STAT1
GST-STAT1

pSTAT1(S727)
GST-pSTAT1(S727)

ΔTCtrlΔTCtrlΔTCtrl

IP:mTOR
kinase

IgG
kinaseInput

70

70

84

42
kDa

β-actin

STAT1

pS6K1

S6K1

ΔTCtrlΔTCtrl

si-S6K1NC

S
T

A
T

1/
D

A
P

I
S

T
A

T
1

ΔRCtrlΔTCtrl

kDa
42

84

91

91

β-actin

STAT1

pSTAT1(S727)

pSTAT1(Y701)

ΔRCtrlΔT

ΔT

Ctrl

30

40

*

*
m

R
N

A
 le

ve
l b

y 
qP

C
R

 
(S

T
A

T
1/

G
A

P
D

H
 ×

10
3 )

20

10

0

C
tr

l

C
tr

l
ΔR

a b c

d e

f g

Figure 8 | mTORC1 regulates CXCL9 in osteoblasts via STAT1. (a) Quantitative PCR (qPCR) analysis of STAT1 mRNA in primary osteoblasts. n¼ 3 per

group. Data are shown as mean±s.d. *Po0.05 (Student’s t-test). (b) Western blot of total STAT1 protein and phosphorylation (Y701 and S727)

of STAT1 in primary osteoblasts. (c) Representative confocal images show subcellular location of STAT1 (red) in primary osteoblasts. (d) Control and

DTsc1 (DT) primary osteoblasts were treated with S6K1 siRNA and negative control (NC) for 48 h and then immunoblotting was carried out to detect

STAT1 expression. (e) Cultured primary calvarial cells were immunoprecipitated with anti-mTOR antibody and the precipitated mTOR was assayed

for kinase activity against recombinant glutathione S-transferase (GST)-tagged full-length STAT1. (f) Nuclear extracts from primary DTsc1 (T),

DRaptor (R) and control (C) osteoblasts were analysed for binding of STAT1 to Cxcl9 promoter using EMSA. Binding of STAT1 to biotin-labelled

DNA probes is shown as ‘STAT1 complex’. To compete with the binding, an unlabelled STAT1-binding-site DNA probe was added to the reaction

in 200 times molar excess. Adding anti-STAT1 antibody to the reactions caused a reduction of STAT1-DNA binding and bands of supershift.

(g) Control and DTsc1 primary osteoblasts were treated with STAT1 siRNA and NC for 48 h and then immunoblotting was carried out to detect Cxcl9

expression. Ctrl, control.

Bone
regenerationBone formation

Osteoblast

Cxcl9 gene
expressionGAS

STAT1

STAT1

STAT1 mTORC1 VEGF VEGF

VEGF

VEGF

VEGF
VEGF

VEGF

VEGF

VEGFR

Cxcl9

C
xc

l9

C
xcl9

Cxcl9

P P

Angiogenesis

VEGFR

E
nd

ot
he

lia
l c

el
l

VEGFR

IFN-γ

VEGFR

Figure 9 | Model of Cxcl9 secreted by osteoblasts in regulating angiogenesis and osteogenesis in bone. Cxcl9 expression is positively regulated by

mTORC1 and downstream STAT1 in osteoblasts. Cxcl9 binds with VEGF, prevents VEGF from binding to its receptors, blocks VEGF signalling transduction

in ECs and thus inhibits angiogenesis in bone. In addition, Cxcl9 suppresses osteogenesis by interacting with VEGF and abrogating its binding to

osteoblasts. IFN-g, interferon-gamma.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13885 ARTICLE

NATURE COMMUNICATIONS | 7:13885 | DOI: 10.1038/ncomms13885 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


in the promoter region of Cxcl9 (Fig. 8f). The addition
of antibody to STAT1 in the nuclear extract displaced the
binding band (Fig. 8f), indicating that this binding complex
contained STAT1. Importantly, nuclear protein from DTsc1
osteoblasts showed elevated binding of STAT1 to the probe, while
DRaptor nuclear protein showed decreased binding (Fig. 8f).
These observations indicated that STAT1 was bound to the
Cxcl9 gene promoter in osteoblasts, and mTORC1 promoted
this binding.

The role of STAT1 in mediating mTORC1-regulated expres-
sion of Cxcl9 was finally determined by siRNA knockdown
of STAT1 mRNA in osteoblasts. In control cells, the basal level
of Cxcl9 was decreased significantly by STAT1 siRNA (Fig. 8g).
Moreover, si-STAT1 markedly reversed the upregulation of
Cxcl9 by mTORC1 activation in DTsc1 cells (Fig. 8g). These
results confirmed that STAT1 is involved in the regulation of
Cxcl9 gene transcription by mTORC1 in osteoblasts.

Discussion
Using mouse models with mTORC1 activation or inhibition
in osteoblasts, we identified Cxcl9 as an essential factor secreted
by osteoblasts, which modulate angiogenesis and osteogenesis
in bone. We found that Cxcl9 was expressed constituently
in osteoblasts in cells residing in the bone, and its expression
was positively regulated by mTORC1 upstream of STAT1.
Cxcl9 inhibited blood vessel formation by interacting with VEGF
and preventing its binding to ECs, which was sufficient to reverse
the angiogenic effect of VEGF. Cxcl9 suppressed osteogenesis in
bone and in vitro by antagonizing VEGF as well. Thus, Cxcl9 is a
novel angiostatic factor that mediates the communication
between osteoblasts and ECs during bone regeneration (Fig. 9).

Bone regeneration occurs in close spatial and temporal
association with angiogenesis, thus the rate of bone formation
and blood flow in the animal are usually coupled31. However, our
transgenic mouse models showed the contrary. The DTsc1 mice
exhibited increased bone volume but low vascularization, while
the DRaptor mice had low bone mass but increased
vascularization. These inconsistencies might reveal a protective
mechanism in these mice to maintain appropriate bone mass.
Hyperactive mTORC1 in osteoblasts resulted in excess bone mass
in DTsc1 mice (Supplementary Fig. 1). In this extreme situation,
reduction of vascularization was beneficial for deceasing bone
mass. In contrast, as Raptor deficiency in osteoblasts induced low
bone volume (Supplementary Fig. 2), regaining bone mass
requires abundant blood flow in DRaptor mice. Despite no
coupling between angiogenesis and osteogenesis was observed,
cross-talk between bone-forming osteoblasts and ECs mediated
by Cxcl9 was witnessed in these genetic models. Moreover, as
Cxcl9 exerts dual inhibitory role in angiogenesis and osteogenesis,
both of which are essential for maintaining bone mass, Cxcl9
inhibition is a promising therapeutic strategy for bone loss
diseases.

Activation of Cxcl9 expression has been reported in several
stress-related situations, including malignancies32, chemo-
therapy33, graft-versus-host diseases34 and infections35,36. For
the first time, we demonstrated that Cxcl9 is expressed
constitutively in osteoblasts. In contrast, Lisignoli et al.37 found
that Cxcl9 was undetectable in cultured human osteoblasts37.
We speculate that these different results may have arisen due to
different cell types and sensibility of the detection methods for
Cxcl9. We failed to detect Cxcl9 protein in osteoblasts in bone
when performing an antibody-dependent immunohistochemical
assay. However, in situ hybridization revealed marked Cxcl9
mRNA expression in osteoblasts. As a secretory protein,
the majority of Cxcl9 is secreted in extracellular fluid after

synthesis from mRNA, leaving a small quantity in the cell
below detection. High-level secretion provides preconditions
for Cxcl9 to exert its role in the microenvironment of bone
marrow.

Cxcl9 generally exerts its effect by binding with its receptor
CXCR3 (refs 38,39); however, our data showed that
Cxcl9 abrogate angiogenesis and osteogenesis independent of
CXCR3. Instead, Cxcl9 interacts with VEGF and prevents
its binding to ECs and osteoblasts. Analogously, PF4, another
CXC-chemokine as well as CXCR3 ligand, has also been reported
to be able to bind VEGF and inhibit its receptor-binding ability40.
On the other hand, as immunohistochemical staining of CXCR3
revealed its expression in other cells besides ECs and osteoblasts
residing in bone marrow, we could not rule out that an indirect
effect of Cxcl9 on these cells would contribute to the vascular and
bone phenotypes observed in our mouse model. However, ECs
and osteoblasts cultured in vitro were subjected to the same
effects as those in bone marrow when exposed directly to Cxcl9,
which consolidated our conclusion that Cxcl9 is responsible for
the vascular and bone phenotypes in mouse bone. Moreover,
Cxcl9 may exert its other biological effects in addition to
inhibiting angiogenesis and osteogenesis on other cell types.
Thus, other potential alterations in bone in our mouse model may
have occurred, which are outside the scope of this study.

Our additional data showed that the number of osteoblasts per
bone perimeter was increased in DTsc1mice but decreased
in DRaptor mice (Supplementary Fig. 9), which may have
partially contributed to the respective alteration in Cxcl9
secretion in bone marrow and sera in these two mouse models.
However, as Cxcl9 mRNA expression, calibrated by GAPDH, was
revealed to be elevated in the primary DTsc1 osteoblasts and
decreased in DRaptor osteoblasts, Cxcl9 expression in single cells
should be increased in DTsc1 osteoblasts and reduced in DRaptor
osteoblasts. This evidence shows that mTORC1 positively
regulates Cxcl9 expression in osteoblasts. Mechanistically, we
show that mTORC1 regulates Cxcl9 in osteoblasts by modulating
STAT1 expression and activity. Cxcl9 expression is determined
largely by the control of STAT1 nuclear content and binding of
STAT1 to Cxcl9 gene promoters29. A considerable quantity of
STAT1 was shown to be present in the nucleus of control
osteoblasts (Fig. 8c), explaining the constituent expression of
Cxcl9 in osteoblasts. Moreover, STAT1 mRNA and protein were
increased in osteoblasts with activated mTORC1 and were
decreased in those with impaired mTORC1, which
demonstrated positive transcriptional regulation of STAT1
by mTORC1 in osteoblasts. In support of these observations,
EI-Hashemite et al.27 demonstrated a marked increase in STAT1
expression in tumours and mouse embryo fibroblast cell lines
that lacked either Tsc1 or Tsc2 (ref. 27).

In summary, our study identified Cxcl9 as an angiostatic factor
secreted by osteoblasts to regulate angiogenesis and osteogenesis
in bone and revealed mTORC1 signalling and STAT1 as critical
upstream mediators. Pharmaceutical coordination of the path-
ways and agents may be beneficial in bone formation.

Methods
Mice. We purchased the Tsc1flox/flox, Raptorflox/flox and OC-Cre mouse strains from
Jackson Laboratory. The background of Tsc1flox/flox mice is 129S4/SvJae, and these
mice were backcrossed to mice with a C57BL/6 background for eight generations
before use. We performed genotyping using genomic DNA isolated from
tail biopsies, and the primers used were as follows: loxP Tsc1 allele forward,
50-GTCACGACCGTAGGAGAAGC-30 and reverse, 50-GAATCAACCCCAC
AGAGCAT-30 ; loxP Raptor allele forward, 50-CTCAGTAGTGGTATGTGCTCA
G-30 and reverse, 50-GGGTACAGTATGTCAGCACAG-30 ; OC-Cre forward,
50-CAAATAGCCCTGGCAGATTC-30 and reverse, 50-TGATACAAGGGACA
TCTTCC-30 .

The mice (male, 4-week-old, three mice per each group) were subcutaneously
administered mouse CXCL9 antibody (R&D System, #AF-492-NA, 1 mg per 50 ml)
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or rMuMig/CXCL9 (PrimeGene Bio-Tech, #221-09, 100 ng per 50 ml) every other
day for 2 months.

Mice importation, transportation, housing and breeding were conducted
according to the recommendations of ‘The use of non-human primates in
research.’ The mice were killed by cervical dislocation to prevent suffering. The
Southern Medical University Animal Care and Use Committee approved all
procedures involving the mice.

Micro-CT analysis. Femora were dissected from 12-week-old male mice
(five mice per each group), fixed for 48 h in 4% paraformaldehyde and analysed at
12mm resolution on a micro-CT Scanner (Viva CT40; Scanco Medical AG,
Bassersdorf, Switzerland). In brief, we scanned the lower growth plate in the femora
and extended proximally for 300 slices. We started morphometric analysis with the
first slice in which the femoral condyles were fully merged and extended for
100 slices proximally. Using a contouring tool, we segmented the trabecular bone
from the cortical shell manually on key slices, and morphed the contours auto-
matically to segment the trabecular bone on all slices. The three-dimensional
structure and morphometry were constructed and analysed for trabecular bone
volume fraction (BV/TV), trabecular thickness (Tb. Th), trabecular number
(Tb. N) and trabecular separation (Tb. Sp). We also performed micro-CT imaging
in the mid-diaphysis of the femur and performed midshaft evaluation of 100
slices to quantify the cortical thickness (Ct. Th) and periosteal perimeter (Ps. Pm).

Immunostaining of slices and cells and histomorphometric analyses.
Hindlimb tissues from the mice were fixed using 4% paraformaldehyde in PBS at
4 �C for 48 h and then decalcified in 15% ethylenediaminetetraacetic acid
(EDTA; pH 7.4) at 4 �C for 14 days. The tissues were embedded in paraffin or
optimal cutting temperature compound (Sakura Finetek), and 2–5mm sagittal-
oriented sections were prepared for histological analyses. For immunohistochem-
istry, we incubated primary antibodies that recognized mouse phospho-S6
(Ser235/236) (Cell Signaling, #2211, 1:100), osteocalcin (Abcam, #ab93876, 1:500),
CD31 (Abcam, #ab28364, 1:50), VEGF (Proteintech Group, #19003-1-AP,
1:200),phospho-VEGFR2 (Y1175) (Cell Signaling, #2478, 1:100) and CXCR3
(Santa Cruz Biotechnology, #sc-13951,1:50) overnight at 4 �C. Subsequently, we
used secondary antibodies conjugated with fluorescence at room temperature for
1 h. We counted the numbers of positively stained cells or vessels (CD31þ ) in the
whole diaphyseal periosteum or four random visual fields of metaphysis per femur
or tibia in three sequential sections per mouse in each group. We calculated
VEGFþ osteoblasts/total osteoblasts (%) as the numbers of cells double-stained
with VEGF and osteocalcin compared with osteocalcin-positive cells, and deter-
mined microvessel density as the number of CD31 (and endomucin (EMCN))-
positive vessels per area of bone marrow. In situ hybridization with digoxin-
labelled probes was performed using a Cxcl9 mRNA in situ hybridization kit
(Boster, #MK3237). We used FluoView FV1000 confocal microscopy (Olympus) or
an Olympus BX51 microscope for imaging samples.

For immunocytochemical staining, we incubated cultured cells with primary
antibody to mouse STAT1 (Proteintech, #10144-2-AP, 1:100) overnight at 4 �C.
Subsequently, we used secondary antibodies conjugated with fluorescence at room
temperature for 1 h while avoiding light. FluoView FV1000 confocal microscopy
(Olympus) was used for imaging.

Cells. Primary osteoblastic cells were prepared from the calvaria of newborn mice.
In brief, calvariae were dissected from the mice (24 h after birth), rinsed with
PBS and digested in freshly made 0.1 mg ml� 1 collagenase type II (Thermo Fisher
Scientific, #17101015) in a-minimal essential Eagle’s medium at 37 �C for 20 min;
the digestion was repeated five times. After digestion, supernatants were combined
and centrifuged to pellet cells41,42. Cells were then maintained in a-MEM
(Gibco) supplemented with 10% fetal bovine serum (Gibco), 100 U ml� 1 penicillin
and 100 mg ml� 1 streptomycin sulfate, at 37 �C with 5% CO2. After reaching
confluence in 60 mm culture dishes, the medium was replaced with a-MEM
(Gibco) supplemented with 1% bovine serum albumin, and the cells were
cultured for 16 h before collecting the CM. Mouse CXCL9 antibody (R&D System,
#AF-492-NA, 2 mg ml� 1), rMuMig/CXCL9 (PrimeGene Bio-Tech, #221-09,
250 ng ml� 1), CXCR3 antagonist NBI-7433(R&D System, #4528, 1 mM) or mouse
recombinant VEGF164 (R&D System, #493-MV-025, 10 ng ml� 1) was added to the
CM as indicated.

HUVECs were purchased from the American Type Culture Collection and were
cultured in EC basal medium 2 (EBM2) containing low serum (2% fetal calf serum)
and EC growth supplement (Promo Cell). Cells were serum-deprived for
16 h before CM was added.

Cell proliferation assay. HUVECs were serum-starved in EBM2 medium
(0.1% fetal bovine serum without growth factor; Lonza, USA) for 16 h, and then
seeded (200 ml containing 8,000 cells per well) into the hole of a confocal dish
(Bioimager, #100350) and incubated for 4 h. The cells were then treated with BrdU
labelling reagent (Invitrogen) for 2 h according to the manufacturer’s instructions
and washed with PBS. The cells were fixed with 70% ethanol for 25 min at room
temperature, and then stained for immunocytochemical analysis. Nine areas in
each group were counted by two independent observers blinded to the groups.

We scored BrdU-positive cells over total cells visually and with Image Pro Plus
software.

In vitro migration assays. HUVECs were seeded (1� 105 cells per well) in
1% gelatin-coated 24-well plates (Corning, Schiphol, Netherlands). Confluent cells
were serum-deprived for 16 h, and a linear wound was created in monolayers by
scratching with a sterile pipette tip (200 ml yellow tip). Monolayers were washed
with PBS to remove floating cells and the CM was added. After an additional
18 h, cell migration into the wound was assessed by microscopy using a digital
inverted microscope. The degree of wound closure was measured as the percentage
of the area covered by migrating cells in the initial wound in nine wounds per
test condition, using Image Pro Plus software.

In vitro tube formation assay. HUVECs were serum-starved for 16 h and
then seeded at a density of 10,000 per well on growth factor-depleted Matrigel
(BD Biosciences, NSW, Australia) in 24-well plates. CM was added, and the results
were quantified 6 h later. Microscopic fields containing the tube structures formed
in the gel were photographed at low magnification (� 10). Nine fields per test
condition were examined. Before they were photographed, the cells were fixed with
4% paraformaldehyde. Tube area was quantified using Image Pro Plus software.

Collection of bone marrow supernatant. Two-month-old male mice (five per
each group) were killed and the bone marrow was exposed by cutting two ends
of the tibia. Samples were then centrifuged for 15 min at 3,000 r.p.m. and 4 �C to
obtain bone marrow supernatants, which were then stored at � 80 �C until ELISA
analysis.

ELISA analysis. We used the Mouse VEGF ELISA Kit (Elabscience Biotechnology,
#E-EL-M0050) and Mouse CXCL9/MIG (Monokine induced by interferon-
gamma) ELISA Kit (Elabscience, # E-EL-M0020) to analyse VEGF and Cxcl9 in
serum, bone marrow supernatant and CM, respectively. We performed the ELISA
analysis according to the manufacturers’ instructions.

Western blot. We lysed cells with 2% SDS, 2 M urea, 10% glycerol, 10 mM
Tris-HCl (pH 6.8), 10 mM dithiothreitol and 1 mM phenylmethylsulfonyl
fluoride. The lysates were centrifuged and the supernatants were separated by
SDS–polyacrylamide gel electrophoresis and blotted onto a nitrocellulose mem-
brane (Bio-Rad Laboratories). The membrane was then incubated with specific
antibodies to phospho-S6K (T389) (Cell Signaling Technology, #9234, 1:1,000),
S6K (Santa Cruz Biotechnology, #sc-8418, 1:2,000), phospho-S6 (S235/236)
(Cell Signaling Technology, #2211, 1:1,000), S6 (Santa Cruz Biotechnology,
#sc-74459, 1:2,000), VEGF (Proteintech Group, #19003-1-AP, 1:1,000),
phospho-VEGFR2 (Y1,175) (Abclonal Technology, #AP0382, 1:1,000),
VEGFR2 (Abclonal Technology, #A7695, 1:1,000), phospho-PLCg1(S1,248)
(Cell Signaling Technology, #8713, 1:1,000), PLCg1 (Abclonal Technology,
#A7711, 1:1,000), phospho-ERK1/2 (Thr202/Tyr204) (Cell Signaling Technology,
#4370, 1:1,000), ERK1/2 (Abclonal Technology, #A0229, 1:1,000), phospho-Akt
(Ser473) (Cell Signaling Technology, #4060, 1:1,000), phospho-Src (Tyr416)
(Cell Signaling Technology, #2101, 1:1,000), Cxcl9 (R&D System, #AF-492-NA,
1:2,000), Runx2 (Bioworld Technology, #BS8734, 1:1,000), osteocalcin (Santa Cruz
Biotechnology, #sc-23790, 1:2,000), phospho-STAT1(Y701) (Abclonal Technology,
#AP0135, 1:1,000), phospho-STAT1(S727) (Abclonal Technology, #AP0453,
1:1,000), mTOR ((Cell Signaling Technology, #2983, 1:1,000) and STAT1
(Proteintech Group, #10144-2-AP, 1:1,000). The membrane was then visualized by
enhanced chemiluminescence (ECL Kit, Amersham Biosciences). Uncropped
western blots scans are provided in the Supplementary Fig. 10a–k.

Real-time quantitative PCR and microarray analysis. Total RNA was isolated
from cell pellets with TRIzol Reagent (Life Technologies, #15596-018) and reverse
transcribed (2.5 mg per sample in a 50 ml reaction volume) using PrimeScript
Reverse Transcriptase according to the manufacturer’s protocol (Takara, #2680B).
A volume of 2ml of cDNA (corresponding to 100 ng of total RNA) was used for
real-time PCR using SYBR Premix Ex Taq (Takara, #RR420A). Primers for VEGF,
Cxcl9 and STAT1 were as follows: VEGF forward, 50-CCACGTCAGAGAGCAA-
CATCA-30 and reverse, 50-TCATTCTCTCTATGTGCTGGCTTT-30 ; Cxcl9
forward, 50-GGAGTTCGAGGAACCCTAGTG-30 and reverse 50-GGGATTTG-
TAGTGGATCGTGC-30 ; STAT1 forward, 50-TCACAGTGGTTCGAGCTTCAG-30

and reverse, 50-GCAAACGAGACATCATAGGCA-30 .
For mRNA array assay, samples were submitted to Shanghai Biotechnology

Corporation for hybridization on an Agilent-014868 Whole Mouse Genome
Microarray 4x44K G4122F (Probe Name version). Each microarray chip was
hybridized to a single sample labelled with Cy3. Background subtraction and
normalization were performed. Finally, mRNAs with expression levels differing
by at least threefold between control and DTsc1 osteoblasts were selected (Po0.05).
Microarray data have been deposited in GEO database under accession code
GSE74781.
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Co-immunoprecipitation assay. Recombinant mouse Cxcl9 (PrimeGene
Bio-Tech, #221-09, 50 ng ml� 1) and VEGF164 (R&D System, #493-MV-025,
30 ng ml� 1) were mixed in ice-cold lysis buffer (40 mM HEPES (pH 7.4),
2 mM EDTA, 10 mM pyrophosphate, 10 mM glycerophosphate, 0.3% CHAPS and
one tablet of EDTA-free protease inhibitors (Roche, Basel, Switzerland) per 25 ml).
The mixture were then incubated with anti-Cxcl9 antibody (R&D System,
#AF-492-NA, 1:500) for 2 h at 4 �C, followed by addition of 30 ml of 50% slurry of
protein G Sepharose beads for another 1 h. Beads were then washed four times
with lysis buffer, transferred into 2� SDS sample buffer, boiled for 5 min at
100 �C and subjected to western blot assay for VEGF.

In vitro kinase assay for mTORC1. Primary calvarial cells were lysed in ice-cold
buffer (40 mM HEPES (pH 7.4), 2 mM EDTA,10 mM pyrophosphate, 10 mM
glycerophosphate, 0.3% CHAPS and one tablet of EDTA-free protease inhibitors
(Roche, Basel, Switzerland) per 25 ml). Supernatants were incubated with anti-
mTOR antibody for 2 h at 4 �C, followed by addition of 30 ml of 50% slurry of
protein G Sepharose beads for another 1 h. Beads were then washed four times
with lysis buffer and once with kinase buffer (25 mM HEPES (pH7.4), 50 mM KCl,
10 mM MgCl2 and 250 mM ATP). A unit of 0.4 mg of recombinant glutathione
S-transferase-tagged full-length STAT1 peptide was added to 30 ml kinase buffer.
Kinase assays were performed for 30 min at 30 �C, and terminated by the addition
of the 2� SDS sample buffer followed by boiling for 5 min.

Binding assay. Iodination of mouse recombinant VEGF164 was performed
using iodogen (Pierce, Rockford, IL) according to the manufacturer’s indications.
The specific activities of the 125I–VEGF164 were about 105 c.p.m. ng� 1. Confluent
HUVECs grown in 24-well dishes were washed twice with ice-cold PBS before
binding and incubated with the indicated concentrations of 125I–VEGF164 and
Cxcl9 in DMEM containing 20 mmol l� 1 HEPES (pH 7.4) and 0.15% gelatin for
2 h at 4 �C. Nonspecific binding of 125I–VEGF164 was determined in the presence
of 1 mg ml� 1 VEGF164. At the end of the binding the cells were washed with and
lysed using 0.5 M NaOH. Samples were counted in a g-counter (Saint-Quentin-
Yvelines, France). Specific binding was determined by substracting nonspecific
binding from total binding.

Electrophoretic mobility shift assay. A total of 2 mg of nuclear protein extracted
from primary calvarial cells was incubated with a biotin-labelled STAT1-binding-
site DNA probe in binding buffer (EMSA kit; Thermo Scientific) for 30 min at
room temperature. The probe used for the reaction contained the STAT1-binding
site of the Cxcl9 promoter (g-RE1 site) with a sequence of 50-CCTTACTA-
TAAACTCC-30 . After incubation, the samples were separated on a 6% poly-
acrylamide gel in trisborate EDTA, transferred onto a nylon membrane and
fixed on the membrane by ultraviolet crosslinking. The biotin-labelled probe was
detected with streptavidin-horseradish peroxidase (EMSA kit; Thermo Scientific).
A probe lacking nuclear extracts was used as a negative control. The specificity of
the identified STAT3-DNA binding activity was confirmed using a 200-fold excess
of unlabelled probe containing the same sequence. For supershift analysis,
1 mg STAT1 antibody (Proteintech) was incubated with nuclear extracts for 30 min
before the addition of the biotin-labelled DNA probe.

siRNA knockdown. We transiently transfected cells with STAT1 siRNA using
Lipofectamine RNAi MAX (Invitrogen, Carlsbad, CA, USA) in Opti-MEM medium
(Invitrogen), according to the manufacturer’s instructions. The efficiency of trans-
fection was measured by western blot. The sequence of STAT1 siRNA was as follows:
50-AAGGAAAAGCAAGCGTAATCT-30 (GenePharma, Shanghai, China)43.

Statistics. All results are presented as the mean±s.d. Curve analysis was deter-
mined using Prism (GraphPad). The data in each group were analysed using the
unpaired, two-tailed Student’s t-test. The level of significance was set at Po0.05.

Data availability. All data generated or analysed during this study are included in
this published article and its Supplementary Information files and available from
the corresponding author on request.
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