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Reinforcement learning in complex natural environments is a challenging task because the 
agent should generalize from the outcomes of actions taken in one state of the world to future 
actions in different states of the world. The extent to which human experts find the proper 
level of generalization is unclear. Here we show, using the sequences of field goal attempts 
made by professional basketball players, that the outcome of even a single field goal attempt 
has a considerable effect on the rate of subsequent 3 point shot attempts, in line with standard 
models of reinforcement learning. However, this change in behaviour is associated with negative 
correlations between the outcomes of successive field goal attempts. These results indicate 
that despite years of experience and high motivation, professional players overgeneralize from 
the outcomes of their most recent actions, which leads to decreased performance. 
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According to rational choice theory, organisms make choices 
in order to maximize their well-being or utility. Reinforce-
ment learning (RL) provides a theoretical framework to 

study how this goal can be achieved using past experience of actions 
and rewards1. The RL methods utilized by humans and animals 
have been a topic of intense research over the last decade. In these 
studies, a subject repeatedly chooses between several alternatives 
and is repeatedly rewarded according to its choices. Conducted in 
controlled laboratory settings, these studies have demonstrated that 
RL methods can account for some aspects of observed behaviour2. 
Importantly, in some of these studies neural activity was recorded, 
providing insights into the neural basis of decision making and 
learning3–10.

Professional basketball provides a unique opportunity to  
characterize reinforcement learning in a repeated-choice setting by 
highly motivated human experts within their natural environment. 
In basketball, players are repeatedly required to make decisions in 
a complicated environment. The players are extremely motivated to 
make the right decisions and they undergo years of extensive train-
ing aimed at optimizing their decision-making processes. Field goal 
attempts (FGAs) are particularly instructive as the binary outcome 
of these decisions (made/missed) enables a quantitative analysis. 
Moreover, in basketball, made FGAs are rewarded by 2 or 3 points 
(pts), depending on the distance of the player from the basket. This 
allows us to separately study the timing of 2pt and 3pt shots, and 
examine how the ratio of 3pt to 2pt shots depends on the previ-
ous FGAs and their outcome. Finally, the decision to attempt a field 
goal seems fundamental to the success of the team and therefore the 
years of extensive training are expected to optimize this decision.

By analysing sequences of FGAs, we found that the outcome of 
even a single FGA significantly affects a player’s behaviour. In the 
framework of RL, this demonstrates that players update their policy 
on-line during the game, in accordance with their recent performance.  
However, such learning is not guaranteed to improve performance, 
unless it is derived from an accurate statistical model of the dynamics 
of the game. We show that in basketball this learning is associated 
with a decreased performance, manifested in decreased field goal 
percentage and decreased expected number of points. We hypoth-
esize that despite their high motivation and extensive training, 
professional basketball players may overgeneralize from their very 
recent experience to their expected future performance.

Results
The effect of the outcome of an FGA on behaviour. We examined 
the records of leading players from the National Basketball 
Association (NBA) and the Women’s National Basketball 
Association (WNBA) in two regular seasons (see Methods) in order 
to assess how successes and failures in 3pt attempts affect players’ 
choice behaviour. We compared the probability that a player’s next 
FGA is a 3pt given that his/her previous FGA was a made 3pt to 
that probability given that his/her previous FGA was a missed 3pt. 
For example, we considered these conditional probabilities for the 
Most Valuable Player (MVP) of the 2007–2008 NBA season. We 
found that the outcome of a single 3pt had a substantial effect on 
his behaviour: the probability that he would attempt a 3pt following 
a made 3pt was 53% (77/144). It was substantially lower, 14% 
(34/245), after a missed 3pt (P < 10 − 15, two-tailed Fisher’s exact test). 
A qualitatively similar effect was observed when analysing more 
than 200,000 FGAs of 291 leading NBA players: on average, the 
probability of attempting a 3pt after a made 3pt was significantly 
higher than that probability after a missed 3pt (0.41 ± 0.01 versus 
0.30 ± 0.01; P < 10 − 7, Monte Carlo permutation test, see Methods for 
details of population statistics). This is evident in Figure 1a where we 
plot the distribution over players of the probability of attempting a 
3pt immediately after a made 3pt (blue) and after a missed 3pt (red). 
Note that the blue distribution is to the right of the red distribution. 

Interestingly, the sensitivity to the outcome of the previous 3pt shot, 
measured as the difference between the conditional probabilities, 
increased with the average number of minutes played per game 
(r = 0.18; P < 0.01, t-test).

The outcome of a single 3pt also had a substantial effect on the 
behaviour of women basketball players. Analysing more than 15,000 
FGAs of 41 leading WNBA players, we found that the distribution of 
the probability of attempting a 3pt after a made 3pt (blue in Fig. 1b) 
is to the right of that distribution after a missed 3pt (red in Fig. 1b). 
On average, the probability of attempting a 3pt after a made/missed 
3pt is 0.41 ± 0.02/0.34 ± 0.02 (P < 10 − 6, Monte Carlo permutation 
test). Because of the similarity in this effect between of NBA and 
WNBA players, their data were pooled together in what follows.

In contrast to the significant effect of the outcome of 3pt shots 
on players’ behaviour, successes and failures in 2pt attempts did 
not have a significant effect on the probability of the subsequent 
3pt shot. The probability of attempting a 3pt after a made/missed 
2pt is 0.344 ± 0.007/0.340 ± 0.007 (P > 0.2, Monte Carlo permutation 
test). Therefore, we focused our analysis on the effect of 3pt shots 
on behaviour.

The dynamics of learning. In order to study the combined contri-
bution of several events to choice behaviour, we computed the aver-
age probability of attempting a 3pt, conditioned on streaks of made 
3pts (blue in Fig. 1c) and missed 3pts (red in Fig. 1c). These results 
indicate that the contribution of multiple successes and failures to 
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Figure 1 | The effect of the outcome of 3pt shots on players’ policy.  
(a) Histograms of NBA players’ probabilities of taking a 3pt shot following 
a made (blue)/missed (red) 3pt. (b) Histograms of WNBA players’ 
probabilities of a 3pt shot following a made (blue)/missed (red) 3pt.  
(c) Probabilities of taking a 3pt shot conditioned on streaks of made (blue)/
missed (red) 3pts. As some players did not have sufficiently long streaks 
of made/missed 3pts, this analysis was performed only on players who 
had streaks of three consecutive made 3pts and three consecutive missed 
3pts; a total of 164 players. The difference between the red and the blue 
curves is significant (P < 10 − 7, Monte Carlo permutation test) for all three 
points. The black dot at (0, 0.405) indicates that the average probability 
of attempting a 3pt across these players was 0.405. Error bars represent 
s.e.m. (d) Probabilities of a 3pt conditioned on a made (blue)/missed (red) 
3pt n-FGAs ago, n = 1,2, … ,7. Error bars represent s.e.m.
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behaviour is cumulative. Yet, players predominantly responded to 
the outcome of the last 3pt shot. To see this, we compared players’ 
probability of attempting a 3pt shot following two consecutive 3pts 
with opposite outcomes. Given that the last two FGAs were a missed 
3pt followed by a made 3pt, the probability of attempting a 3pt is 
0.41 ± 0.01. This number is significantly higher than that probability 
given that the previous two FGAs were a made 3pt followed by a 
missed 3pt, 0.33 ± 0.01 (P < 10 − 7, Monte Carlo permutation test, 326 
players). In order to find how long the outcome of a 3pt shot affects 
players’ choice behaviour, we computed the probability of a 3pt shot, 
conditioned on a made/missed 3pt, n-FGAs ago, where n = 1,2, … ,7 
(blue/red in Fig. 1d). The difference between the red and blue curves 
indicate that the effect of a 3pt on behaviour diminishes within sev-
eral FGAs (the difference between the two curves is significant for 
each of the first six points; P < 0.05, Monte Carlo permutation test).

In order to further quantify the dynamics of learning, we fitted 
the behaviour of the players to a RL model, in which the estimated 
values of the 2pt and 3pt shots are learned on-line (Methods). We 
allowed the model to have two different learning rates, η2 and η3 for 
the estimation of the values of the 2pt and 3pt shots, respectively, 
because the conditional-probability analysis indicated that the  
outcomes of 2pt and 3pt shots affect subsequent behavior differ-
ently. We used the method of maximum likelihood to fit the param-
eters of the model to the behaviour of each of the players (Methods). 
We found that despite substantial heterogeneity in the learning 
rates between the players, the sensitivity to the outcome of shots 
was predominant for the 3pt shots. This is reflected in the medians 
of the two learning rates in the population of players, η2 = 0.01 and 
η3 = 0.47. Moreover, qualitatively, the model captures the temporal 
dynamics of the 3pt probability of individual players (Fig. 2).

Learning and performance are negatively correlated. What is the 
effect of the change in behaviour on players’ performance? Intuitively, 
increasing the frequency of attempting a 3pt after made 3pts and 
decreasing it after missed 3pts makes sense if a made/missed 3pts 
predicted a higher/lower 3pt percentage on the next 3pt attempt 
(3pt percentage is defined as the ratio between the number of made 
3pts and the number of 3pts attempted). Surprizingly, our data show 
that the opposite is true. The 3pt percentage immediately after a 
made 3pt was 6% lower than after a missed 3pt (0.357 ± 0.006 versus 
0.378 ± 0.006, P < 0.01, Monte Carlo permutation test, 331 players). 

Moreover, the difference between 3pt percentages following a streak 
of made 3pts and a streak of missed 3pts increased with the length 
of the streak (Fig. 3a). These results indicate that the outcomes of 
consecutive 3pts are anticorrelated.

Increasing the frequency of attempting a 3pt after made 3pts and 
decreasing it after missed 3pts could also make sense if a made/
missed 3pts predicted a higher/lower number of points earned by 
the team. In principle, it is possible that the decrease in 3pt percent-
age after a made 3pt is offset by other factors, such as an increased 
likelihood of getting the offensive rebound. In order to address this 
possibility, we considered the 3pt return, defined here as the average 
number of points gained by the offensive team from the time of the 
3pt shot until the time that the opposing team got hold of the ball. 
Similar to the conditional 3pt percentage, the 3pt return immedi-
ately after a made 3pt was lower than after a missed 3pt (1.27 ± 0.02 
versus 1.34 ± 0.02, P < 0.01, Monte Carlo permutation test, 331 play-
ers). As was the case for 3pt percentage, the difference between 3pt 
returns following a streak of made 3pts and a streak of missed 3pts 
increased with the length of the streak (Fig. 3b).

A change in the frequency of attempting a 3pt could have been 
justified if the outcome of 3pt shot was anticorrelated with the  
outcome of the following 2pt shot. However, there is no such effect: 
the 2pt percentage, following a made/missed 3pt was 0.460 ± 0.00
5/0.468 ± 0.004 (P > 0.16, Monte Carlo permutation test) and the 
2pt return, following a made/missed 3pt was 1.20 ± 0.01/1.22 ± 0.01 
(P > 0.08, Monte Carlo permutation test).

Moreover, the changes in percentage and return that we observed 
were restricted to the shooting player: the 3pt percentage of other 
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Figure 2 | A model of the learning behaviour of the MVP in 24 games 
in the 2007–2008 season. In blue, the empirical probability for a 3pt, 
computed by smoothing the attempted shots (a vector in which ‘1’ 
indicated a 3pt attempt and ‘0’ indicated a 2pt attempt) with a Gaussian 
filter whose s.d. was 10 FGAs. In red, the model prediction of 3pt 
probability as a function of FGA number, where numbers are counted from 
the beginning of the season. Black vertical lines indicate the beginning of 
a game. The similarity between the red and blue lines illustrates that the 
model captures some of the variation in the 3pt probability over time.
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Figure 3 | Effect of learning on performance. (a) 3pt percentage following 
streaks of made (blue)/missed (red) 3pt shots. As some players did 
not have sufficiently long streaks of made/missed 3pts, the numbers of 
players considered were 331, 267 and 97 for 1,2 and 3 consecutive 3pt 
shots, respectively. Error bars represent s.e.m. (b) 3pt return conditioned 
on streaks of made (blue)/missed (red) 3pt shots. As in a, the numbers of 
players considered for the 1,2 and 3 consecutive 3pt were 331, 267 and 97 
players, respectively. Error bars represent s.e.m. (c) Players were sorted into 
nine equal size groups according to their susceptibility (equation 1). For each 
group, the 3pt percentage is plotted as a function of the mean susceptibility. 
Error bars represent s.e.m. (d) Same sorting of players as in c; the 3pt return 
as a function of the mean susceptibility. Error bars represent s.e.m.
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teammates immediately after a made/missed 3pt of a player was  
0.366 ± 0.009/0.349 ± 0.006 (P > 0.11, Monte Carlo permutation test); 
the 3pt return of other teammates immediately after a made/missed 
3pt of a player was 1.29 ± 0.03/1.25 ± 0.02 (P > 0.22, Monte Carlo per-
mutation test). These results suggest that players attempt too many 
3pt shots after a made 3pt, and too few after a missed 3pt.

In order to further explore this possibility, we made use of 
the heterogeneity between players. We characterized each player 
according to the extent to which the outcome of a single 3pt attempt 
affects his/her 3pt probability. Formally, we define the susceptibility 
of a player, χ, to be the difference between the probability of a 3pt 
attempt following a made 3pt, Pr[3pt|made 3pt], and the probability 
of a 3pt attempt following a missed 3pt, Pr[3pt|missed 3pt] divided 
by the sum of these two probabilities: 

c =
Pr[ Pr[
Pr[ Pr[

3 3
3 3

pt|made3pt]- pt|missed3pt]
pt|made3pt]+ pt|mmissed3pt]  

and characterize each player by his/her susceptibility. A positive 
susceptibility indicates that after a made 3pt, a player is more likely 
to attempt another 3pt, compared with after a missed 3pt. The larger 
the value of χ is, the stronger the effect of the outcome of a 3pt on 
a player’s policy. We sorted the players into nine equal sized groups 
according to their susceptibility and computed the average 3pt  
percentage and average 3pt return for each group. The 3pt percentage 
(Fig. 3c) as well as the 3pt return (Fig. 3d) are negatively correlated 
with susceptibility, supporting the hypothesis that large positive 
susceptibility is detrimental to a player’s performance.

Learning is done by the shooting player. We demonstrated that 
the probability at which players attempt 3pt shots depends on the 
outcome of their previous 3pt. We hypothesize that this results 
from a learning process taking place in the player’s brain. Yet, there 
are other sources that could contribute to the observed change in 
behaviour. The change in 3pt probability could, in principle, origi-
nate from changes in the behaviour of players on the opposing team, 
as a result of learning processes taking place in their brains. How-
ever, this is unlikely because the defense is likely to try to prevent 
another 3pt attempt after a made 3pt and allow it after a missed 3pt. 
Such defensive manoeuvres are expected to decrease the magni-
tude of the observed learning. A change in behaviour of the player’s 
coach or teammates could also contribute to the change in the rate 
of 3pts. For example, following a made 3pt, the coach may instruct 
the player to attempt more 3pts, or other teammates may pass more 
to the scoring player. While we cannot rule out these contributions, 
we found no evidence for this effect in the data. If the changes in 
a player’s probability of attempting a 3pt are attributed to actions 
taken by the player’s coach or teammates, we would expect the 
magnitude of the changes in different players on the same team 
to be correlated. For example, if the learning reflects the coach’s 
instructions, we would expect similarity in the magnitude of learn-
ing of players on the same team, compared with players from  
different teams who are associated with different coaches. To test 
this hypothesis, we made use of the heterogeneity in the suscep-
tibilities of the different players. We compared the within-team  
variance in susceptibility to the total variance by performing a one-
way analysis of variance. The results of this analysis showed that 
the within-team variance in susceptibility was not significantly dif-
ferent from the between-teams variance in susceptibility (P > 0.53, 
one-way analysis of variance).

Moreover, if changes in behaviour result from a learning process 
of the shooting player, susceptibility should be correlated over time. 
In order to test this prediction, we screened for players who passed 
our criteria in two seasons. For these players (n = 92), we compared 
susceptibility in the first season to the susceptibility in the second 
season. As predicted, susceptibility of players between seasons was 

(1)(1)

positively correlated (r = 0.43, P < 10 − 4, t-test). For comparison, the 
season-to-season 3pt percentage correlation coefficient for these 
players was 0.41.

Taken together, these analyses suggest that the change in behav-
iour is at least partially due to processes taking place in the brains of 
the shooting players.

The timing of FGAs is exponentially distributed. So far we con-
sidered players’ behaviour as a sequence of 2pt and 3pt attempts. 
In this framework, we quantified how past experience changes the 
probability that the next shot is a 3pt. This is reminiscent of standard 
two-alternative repeated-choice experiments, in which the course 
of the experiment is divided into discrete trials and a single binary 
decision is made on every trial4–10. However in basketball, the iden-
tity of the FGA, 2pt or 3pt is determined by the player’s physical 
location. Therefore, at any particular point in time, a player does not 
choose between taking a 2pt and a 3pt shot. Rather, the player hold-
ing the ball chooses between attempting a field goal or not attempt-
ing one (for example, the player can move or pass the ball). In that 
sense, the game of basketball is more similar to free-operant pro-
cedures, in which animals choose between freely available alterna-
tives11,12. To better understand the nature of decision making in bas-
ketball, we considered the timing of the FGAs of 204 NBA players 
for whom we could reliably determine this information (Methods). 
For each player, we computed the distribution of time durations 
between successive 2pt shots and between successive 3pt shots. We 
denote these durations as inter-2pt-intervals (I2Is) and inter-3pt-
intervals (I3Is), respectively. Histograms of MVP I2Is and I3Is in the  
2007–2008 season appear in Figure 4a. The coefficients of variation 
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Figure 4 | Inter-FGA-intervals. (a) I2I (left) and I3I (right) histograms for 
MVP in the 2007–2008 season. Both histograms are well approximated by 
an exponential function (red line). (b) Normalized I2I (left) and I3I (right), 
averaged over the population of players, as a function of the fraction of 
intervals longer than an interval length (‘survival plots’). Each player’s I2Is 
and I3Is were normalized by the player’s rates of 2pts and 3pts, defined 
as the number of 2pts/3pts attempts divided by the total duration of time 
played by the player. The normalized I2Is and I3Is were pooled together 
across all the players. The almost straight lines imply that the distributions 
of the I2Is and I3Is are well approximated by exponential functions  
(note the logarithmic scale of the ordinates).
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(CV) of the I2Is and I3Is distributions are CV2 = 0.94 and CV3 = 1.08, 
respectively. These values are suggestive of an exponential distribu-
tion (for which CV = 1). Indeed, both histograms are well approxi-
mated by an exponential function (red lines in Fig. 4a). To further 
study the shape of the inter-shot-interval distributions, we consid-
ered the histograms of I2Is and I3Is of all players in our dataset. As 
the rates of FGAs of different players vary, we scaled the histograms 
of individual players by multiplying them by the rates of 2pt and 
3pt shots, respectively, and averaged over all histograms (Methods). 
The normalized I2I and I3I distributions are depicted in Figure 4b 
(black lines) as ‘survival plots’: the fraction of intervals longer than 
an interval length, as a function of the length of the interval, for 
I2Is (left) and I3Is (right). In an exponential distribution, the frac-
tion of intervals longer than a given interval decreases exponentially 
with the interval. Hence, the logarithm of the surviving fraction is 
a linearly decreasing function of the interval. The almost straight 
black lines in Figure 4b imply that similar to MVP’s histograms,  
the distribution I2Is and I3Is in the population of players is also 
well approximated by an exponential function (note the logarithmic 
scale of the ordinates in 3B). Moreover, the CV for the population 
I2Is and I3Is distributions, CV2 = 0.93 and CV3 = 0.89, are also con-
sistent with our observation that the distributions of I2Is and I3Is 
are approximately exponential.

Exponential distributions of inter-event-intervals are widespread 
in the natural sciences because they are the outcome of a homo-
geneous Poisson process, in which the probability of an event to 
occur at any point in time is constant and independent of previous 
events13. Thus, we explored the possibility that the timing of 2pt and 
3pt shots can be approximated as resulting from two independent 
Poisson processes. In a Poisson process, the average time to the next 
event (waiting time) is independent of the initial time. Indeed, the 
average time from a 2pt to the next 3pt is comparable to the average 
I3I (351 ± 7 and 352 ± 6 s, respectively). Similarly, the average time 
from a 3pt to the next 2pt is comparable to the average I2I (211 ± 5 
and 209 ± 4 s, respectively), consistent with the two independent  
Poisson processes description. Note, however, that the Poisson 
model is only an approximation. For example, we expect devia-
tions from the Poisson model for very short and very long intervals: 
immediately following an FGA, the shooting player cannot attempt 
another shot. At the other extreme, the time until the next shot is 
bounded by the time to the end of the game.

How does this Poisson-like behaviour emerge from the complex 
dynamics of a basketball game? In probability theory, it is well 
known that a Poisson process is a continuous time limit of a Ber-
noulli process, in which at any discrete time interval, a binary event 
occurs with some probability P. A Bernoulli process becomes a 
Poisson process in the limit of P→0 (denoting by ∆t the time inter-
val, P = λ·∆t and taking the limit ∆t→0 while keeping λ constant). 
Basketball is a dynamic game in which the ball is passed from one 
player to another every few seconds such that the temporal correla-
tions in the state of the game are shorter than tens of seconds. If we 
partition the time line of the basketball game into contiguous slices 
that correspond to the correlation time of the game, we can consider 
each time slice as a Bernoulli trial in which the player takes an FGA 
with some probability P. Note that P <  < 1 because this correlation 
time is much shorter than the inter-FGA-interval, which is on the 
order of hundreds of seconds. Thus, Poisson-like behaviour emerges 
in basketball because the mixing time of the game is substantially 
shorter than the average inter-FGA-interval.

Learning manifests as a change in rates. If the timing of the 2pt 
and 3pt shots are generated by two Poisson processes, characterized 
by two rates λ2 and λ2, respectively, then the probability that an FGA 
is a 3pt, P3, is given by P3 3 3 2= +( /( ))l l l . Therefore, in this Poisson 
framework, the learning described in the previous sections mani-
fests as a change in the rates of the two processes. To study the effect 

of the outcome of a 3pt on λ3, we used the method of maximum 
likelihood to compute the average values of λ3 triggered on the out-
come of a 3pt. We found that on average, the value of λ3 following 
a made 3pt was 2.83·10 − 3 ± 8·10 − 5 sec − 1, 64% higher than its value 
after a missed 3pt, 1.73·10 − 3 ± 5·10 − 5 sec − 1. Similarly, we computed 
the average values of λ2 conditioned on the outcome of a 3pt. In 
comparison with the effect on λ3, the effect of the outcome of a 3pt 
on the value of λ2 was modest: the average value of λ2 triggered on a 
missed 3pt was 4.3·10 − 3 ± 1·10 − 4 sec − 1, only 7% higher than its value 
after a made 3pt, 4.0·10 − 3 ± 1·10 − 4 sec − 1.

Discussion
In this paper, we studied RL in professional basketball. We showed 
that players substantially change their behaviour, manifested as 
their rate of 3pt shots, in response to the outcome of a single 3pt. 
Moreover, this change is associated with decreased performance, as 
measured by 3pt percentage and 3pt return. These results provide 
insights into human RL in complex natural environments.

The study of players’ behaviour in professional basketball is not 
new. Previous studies, pioneered by Gilovich et al.,14 have already 
shown that players believe in the ‘hot hand effect’; that is, they believe 
that following a streak of made/missed shots a player is more likely 
to make/miss a shot. Our contribution beyond previous studies is 
threefold. First, in previous studies, players’ belief in the hot hand 
effect was revealed using questionnaires. In contrast, by consider-
ing the ratio of 3pt to 2pt shots and the distribution of inter-shot-
intervals, we have shown that players’ behaviour is consistent with 
such a belief. Second, we quantitatively characterized the dynamics 
of learning from experience in the game. Third, whether or not the 
outcome of successive FGAs is correlated has been debated for more 
than two decades15. We demonstrated that in the case of 3pt shots, in 
which players behaviour is substantially modified by their outcome, 
successive shots are negatively correlated.

Intuitively, the decision of whether or not to attempt a field goal 
strongly influences the outcome of the possession. This assertion 
seems to contradict our empirical findings: despite the fact that 
on average, the rate of 3pts after a made 3pt was 64% higher than 
that rate after a missed 3pt, the difference in 3pt percentage and 3pt 
return between the two conditions was only 6%.

This raises the question of why the outcome of a shot is so weakly 
dependent on the decision of when to make it. We hypothesize that 
this results from the strategic nature of the game. Consider a player 
holding the ball who contemplates taking an FGA or passing the 
ball. This decision can be made by estimating the expected payoffs 
from the two actions. For simplicity, we assume that the payoff is the 
return. At the same time, the players on the opposite team attempt to 
predict the player’s decision in order to obstruct it. As the expected 
returns of the two actions, attempting a field goal or passing the ball, 
depend on the defensive manoeuvres, the player holding the ball 
attempts to predict the defensive manoeuvres. Previous studies have 
demonstrated that such interactions can lead to behaviours that  
follow a mixed Nash Equilibrium policy16–18. In a mixed Nash Equi-
librium, the players choose their actions from a probability distribu-
tion, where the expected payoffs of all actions that are in the support 
of the Nash equilibrium is equal19. In this framework, the expected 
return from passing the ball and attempting the shot are equal. Let 
us now assume that as a result of a made 3pt, the player believes that 
attempting a shot is associated with a higher return than passing 
the ball. This would result in a significant change in his/her behav-
iour, shifting the policy from a random choice to attempting a shot. 
However, if the opposing team continues to play its Nash equilib-
rium policy (that is, they ignore the effect of the made shot on the 
shooting player’s policy), there will be no change in the return of 
the shooting player because at the Nash equilibrium, the returns 
from all chosen alternatives are equal. In other words, in general, 
the decision to attempt a field goal is fundamental to the success 
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of a player in the game. However, if all players choose their actions 
according to a mixed Nash equilibrium, the return in a shot will be 
independent of the chosen action (as long as it is in the support of 
the Nash equilibrium). We view the relatively weak dependence of 
the 3pt percentage on the rate of 3pts as indicative that the policies 
used by players in the game are near the Nash Equilibrium.

Standard models of RL assert that when deciding between alter-
native actions, agents prefer the action associated with the highest 
value. In the process of learning, the values of the different actions at 
different states of the world are modified according to the outcomes 
of past actions (Methods). Consider a player who is holding the ball 
in a particular state of the game. After making an action, for exam-
ple, attempting a field goal, and observing its outcome, which values 
should he/she update and by how much? Determining the proper 
level of generalization is a fundamental difficulty in this learning 
process. At one extreme, the player may conclude that he/she mises-
timated the value of attempting a 3pt from that particular configura-
tion of the game, for example, the particular locations, postures and 
velocities of all players at the time of the FGA. On the other extreme, 
a player may generalize and conclude that the he/she misestimated 
the values of all 3pt attempts in all configurations of the game. The 
advantage of the former approach of limited generalization is that 
in a stationary environment, such learning can lead to an accurate  
representation of the values of the different actions in all game con-
figurations1. However, the disadvantage is that learning is expected 
to be slow because of the large number of different configura-
tions and actions. In contrast, the latter approach that generalizes 
from one state of the game to many states allows for fast learning,  
enabling the player to adapt to a changing environment. However, 
the player risks the possibility of overgeneralization. Similar consid-
erations apply to the question of the optimal learning rate, which 
determines the tradeoff between the speed and accuracy of adaptation.

Theoretical considerations suggest that in stationary environ-
ments, the speed of adaptation should decrease with experience1. 
However, such change in speed of adaptation has not been reported 
even in relatively long (400 trials) two-alternative repeated-choice 
laboratory experiments using the stationary two-armed bandit 
reward schedule20. To test for a change in the speed of adaptation of 
the basketball players, we checked whether the average susceptibility 
changes over time. We found no statistically significant difference in 
the susceptibilities computed for the first and second halves of the 
season (on average, χ = 0.16 ± 0.01 versus χ = 0.15 ± 0.01, P = 0.19, 
Monte Carlo permutation test) or the susceptibilities between the 
first and second season for the 92 players who passed our criteria 
in two seasons (on average, χ = 0.17 ± 0.02 versus χ = 0.15 ± 0.02, 
P = 0.15, Monte Carlo permutation test).

Our analysis revealed that the outcome of a 3pt shot substantially 
affects the behaviour of the player in subsequent FGAs indicates that 
the player generalized from the state of the game associated with 
one shot to the state of the game associated with the subsequent 
shots. One way of implementing such a generalization is to scale 
up, by the same factor, the values of all 3pts from all states following 
a made 3pt, and scale down the values of these actions following a 
missed 3pts. However, applying algorithms that generalize from one 
state to other states are not guaranteed to improve performance21. 
Indeed, the decrease in 3pt percentage and return associated with 
an increase in 3pt probability and 3pt rate indicates that the change 
in players’ behaviour following made and missed 3pts is not justi-
fied by the statistics of the game. Thus, we hypothesize that despite 
their extensive training, players may overgeneralize by means of an 
oversimplified on-line learning processes.

Methods
The dataset. The sequences of FGAs were obtained from the full play-by-play 
accounts of games played in the 2007–08 and 2008–09 NBA regular seasons  
(Supplementary Data 1 and 2, respectively, downloaded November 17th 2009), 

as they appear on the official NBA webpage http://www.nba.com, and from the 
2008 and 2009 WNBA regular seasons (Supplementary Data 3 and 4, respectively, 
downloaded on March 22nd 2010), as they appear on the official WNBA webpage 
http://www.wnba.com. Sequences of FGAs for players with the same surname 
playing for the same team could not always be differentiated, and were therefore 
discarded. Moreover, we only considered players who made at least 100 2pt and 
100 3pt shots in the season. Our data set was comprised of 291 NBA players with 
an average of 805 FGAs per player (min = 219, max = 2003 and std = 380), 243 of 
these were 3pt shots (min = 101, max = 593 and std = 103), and 41 WNBA players 
with an average of 416 FGAs per player (min = 209, max = 647 and std = 110), 147 
of these were 3pt shots (min = 102, max = 244 and std = 36).

Handling shooting fouls. A shooting foul occurs when a player is fouled while  
attempting a shot. In NBA and WNBA statistics, these events are considered as FGAs 
only if the shot was made despite the foul. However, the shooting player typically 
cannot predict that the FGA will be associated with a shooting foul. Therefore, 
we considered all these events as FGAs and they constituted ~8.2% of the FGAs 
analysed. In contrast, when reporting field goal percentages, we used the NBA and 
WNBA standard definition of considering only made fouled shot attempts. This is 
because the return associated with fouled missed attempts is substantially higher 
than that of non-fouled missed attempts, due to the free throws awarded to the 
fouled player.

Computing returns. The return of an FGA was computed by considering all points 
gained by the team of the shooting player from the time of the FGA until the  
opposing team got hold of the ball. To compute this number, we took into consid-
eration FGAs, offensive fouls, turnovers and the end of quarters.

Statistical procedures. All statistical analyses were within-player: the numbers 
were computed separately for each player and then were averaged over the players, 
giving equal weight to each player in the average; averages reported are accompa-
nied by the s.e.m. In some cases, the number could not be computed for a player 
and the player was omitted from the analysis. In those cases we report the number 
of players analysed. For example, only 164 players had at least one streak of three 
made 3pt shots followed by another FGA and at least one streak of three missed 3pt 
shots followed by another FGA. Therefore, only those 164 players are reported in 
Figure 1c.

When computing the statistical significance of results averaged over a 
population of players, we performed the following Monte Carlo permutation test: 
independently for each player in each season, we computed the empirical distribu-
tion of FGAs and their outcome: number of made and missed 2pt and 3pt shots 
and the empirical distribution of 2pt and 3pt returns. When considering the effect 
of an FGA on subsequent behaviour, we replaced, for each player, the subsequent 
FGAs with FGAs drawn from the player’s empirical distribution and averaged over 
all players. Similarly, when considering the effect of an FGA on the subsequent 2pt 
and 3pt percentages and return, we replaced the outcome of the subsequent 2pt/3pt 
with surrogate outcomes drawn from the player’s 2pt/3pt percentages and return 
and averaged over all players. Each reported P-value indicates the number of times  
out of 107 repetitions of this procedure in which the difference in the averages 
obtained from surrogate data exceeded the difference in the averages for the 
original data.

For the analysis of players’ teammates, we considered all the teammates as  
if they were a single player and proceeded using the same procedure described 
above.

Timing of FGAs. The data set used for computing the I2Is, I3Is and the rates of 
2pt and 3pt shots consisted of sequences of FGAs together with the specific time 
for each FGA obtained from the full play-by-play accounts of games played in the 
2007–08 and 2008–09 NBA regular seasons, as they appear on the official NBA 
webpage http://www.nba.com. As before, sequences of FGAs for players with the 
same surname playing for the same team were discarded, and we only considered 
players who made at least 100 2pts and 100 3pts in the season. Moreover, games 
whose full play-by-play account contained mistakes were discarded from the data 
set. We detected several types of mistakes: misplaced entries, shot attempts by 
players who were supposed to be on the bench and inconsistencies between the 
time played by a player as derived from the full play-by-play and the time played 
as appears on the boxscore page that sums up the statistics of the game. A single 
mistake was sufficient to discard the whole game. The reduced data set, comprised 
of 101,458 FGAs made by 204 NBA players, still exhibits the effect of a single 3pt 
shot on behaviour: the probability of attempting a 3pt after made 3pt is much 
higher than after a missed 3pt (0.42 ± 0.01 versus 0.30 ± 0.01, P < 10 − 7, Monte Carlo 
permutation test).

When computing the times of FGAs of players we used the game time. Moreover, 
we only considered the times at which the player was actually playing (and did 
not take into account the time intervals during which the player was sitting on the 
bench).

The I2I and I3I normalized distributions were constructed by normalizing 
each players’ I2Is and I3Is by their rates of 2pts and 3pts, defined as the number of 
2pts/3pts attempts divided by the total duration of time played by the player.  
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These normalized I2Is and I3Is were pooled together to construct Figure 4b. 
Note that this analysis gives more weight to players that attempted more field 
goals. However, when computing the conditional rates, the rates were computed 
separately for each player and then averaged, giving equal weight to each player in 
the average.

The Q-learning model. In order to further quantify the dynamics of learning, we 
fitted the behaviour of the players using a one-state Q-learning model. According 
to this model, the player evaluates the values of 2pt and 3pt attempts, Q2 and Q3,  
by computing the exponentially weighted averages of the outcomes of past  
attempts: 

Q t Q t R t Q t ii i i i a t i( ) ( ) ( ( ) ( )) { , }, ( )+ = + − ∈1 2 3• ·
 

where t is an index of the shot attempt, η2 and η3 are the 2pt and 3pt learning rates, 
respectively, R(t) is the return, that is, the number of points earned from the time 
of the attempt until the end of the possession, a(t)∈{2,3} is the type of shot attempt 
t and δi,a(t) is the Kronecker delta such that δi,a(t) = 1 if attempt t was type i and 
δi,a(t) = 0 otherwise.

The probability that the next attempt is a 3pt attempt is a softmax function of 
the difference in values with a bias term: 

Pr[ ] ( )3 1
1 2 3

=
+ − −eb Q Q b

 
where β is a measure of the stochasticity of the algorithm and b is a parameter.  
This model is a modification of standard on-policy Q-learning, where we allow for 
different learning rates for the two alternatives and we add a bias term.

In order to fit the parameters of the model to the behaviour of each of the 
players, we assumed that the initial conditions of the model in each game, Q2(0) 
and Q3(0) are the average 2pt and 3pt returns in the season and the value of b was 
chosen such that at time t = 0, Pr[3] is equal to the empirical fraction of 3pt shots 
in the season. The learning rates and the measure of stochasticity were estimated 
using the method of maximum likelihood. We found substantial heterogeneity in 
the resultant parameters between the players. The medians of the fitted values of  
these parameters across the population were: η2 = 0.01, η3 = 0.47, β = 0.26 and 
b =  − 1.98.

In order to demonstrate the ability of the model to capture the learning  
behaviour, we considered MVPs behaviour in the 2007–2008 season. The para
meters that best characterize his behaviour in that season are η2 = 2.7·10 − 7, η3 = 0.27, 
β = 1.02 and b =  − 1.28. Using equation. (2), we computed the trajectories  
of the values of 2pt and 3pt attempts, and using equation (3), the predicted  
probability of 3pt attempts. These probabilities are plotted in Figure 2 for 24 games 
taken from the middle of the season (red). In order to compare this prediction 
to the actual choices, we estimated the instantaneous probability of a 3pt attempt 
by convolving a Gaussian filter with the sequence of FGAs (a vector in which ‘1’ 
indicated a 3pt attempt and ‘0’ indicated a 2pt attempt; blue line). 
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