
Chemical
Science

EDGE ARTICLE
Automatic discov
aDepartment of Chemistry and Chemical Bio

02115, USA. E-mail: s.lopez@northeastern.e
bInstitute of Nanotechnology, Karlsruhe Inst

E-mail: pascal.friederich@kit.edu
cInstitute of Theoretical Informatics, Karls

Germany
dDepartment of Chemistry, Stanford Univers

stanford.edu

† Electronic supplementary information (E
the initial training set generation, NAC
adaptive sampling, the computational
availability, the QC calculations of
cyclohexadiene systems, the Cartesian coo
the experimental details for the norbo
10.1039/d0sc05610c

Cite this: Chem. Sci., 2021, 12, 5302

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 9th October 2020
Accepted 24th February 2021

DOI: 10.1039/d0sc05610c

rsc.li/chemical-science

5302 | Chem. Sci., 2021, 12, 5302–53
ery of photoisomerization
mechanisms with nanosecond machine learning
photodynamics simulations†

Jingbai Li,a Patrick Reiser,b Benjamin R. Boswell,d André Eberhard,c

Noah Z. Burns, *d Pascal Friederich*bc and Steven A. Lopez *a

Photochemical reactions are widely used by academic and industrial researchers to construct complex

molecular architectures via mechanisms that often require harsh reaction conditions. Photodynamics

simulations provide time-resolved snapshots of molecular excited-state structures required to

understand and predict reactivities and chemoselectivities. Molecular excited-states are often nearly

degenerate and require computationally intensive multiconfigurational quantum mechanical methods,

especially at conical intersections. Non-adiabatic molecular dynamics require thousands of these

computations per trajectory, which limits simulations to �1 picosecond for most organic photochemical

reactions. Westermayr et al. recently introduced a neural-network-based method to accelerate the

predictions of electronic properties and pushed the simulation limit to 1 ns for the model system,

methylenimmonium cation (CH2NH2
+). We have adapted this methodology to develop the Python-

based, Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics (PyRAI2MD) software for the cis–

trans isomerization of trans-hexafluoro-2-butene and the 4p-electrocyclic ring-closing of a norbornyl

hexacyclodiene. We performed a 10 ns simulation for trans-hexafluoro-2-butene in just 2 days. The

same simulation would take approximately 58 years with traditional multiconfigurational photodynamics

simulations. We generated training data by combining Wigner sampling, geometrical interpolations, and

short-time quantum chemical trajectories to adaptively sample sparse data regions along reaction

coordinates. The final data set of the cis–trans isomerization and the 4p-electrocyclic ring-closing

model has 6207 and 6267 data points, respectively. The training errors in energy using feedforward

neural networks achieved chemical accuracy (0.023–0.032 eV). The neural network photodynamics

simulations of trans-hexafluoro-2-butene agree with the quantum chemical calculations showing the

formation of the cis-product and reactive carbene intermediate. The neural network trajectories of the

norbornyl cyclohexadiene corroborate the low-yielding syn-product, which was absent in the quantum

chemical trajectories, and revealed subsequent thermal reactions in 1 ns.
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1. Introduction

Photochemistry provides access to highly strained molecular
architectures,1 photoswitches,2 organic photovoltaics,3 and
solar fuel materials,4,5 which are characterized by mild condi-
tions and high atom economy. Photochemical reactions typi-
cally consist of a series of molecular transformations that occur
in excited molecules aer light absorption. Unlike ground state
processes, where spectroscopy and crystallography reveal
structural information, light-promoted excited-state reactions
involve short-lived femto-to picosecond (10�15 to 10�12 s)
molecular excited states and reactive intermediates. This
ultrafast processes involve relaxation to the excited-state
minima for uorescence or non-radiative transition to the
ground-state through a state crossing point or seam, which
plays essential roles in the chemoselectivity of a photochemical
reaction.6,7
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Unravelling the origin of chemoselectivity and stereo-
selectivity in organic photochemical reactions is challenging
because of the short-lived molecular excited states. Quantum
chemical calculations offer insight into the bonding changes
that occur along a reaction coordinate and non-adiabatic
molecular dynamics (NAMD) simulations to gain mechanistic
insights and develop structure–reactivity relationships in
complex photochemical reactions. The nuclei-electron coupling
and time-dependent terms increase the complexity of Hamil-
tonian in NAMD and, thus, computation time. Multiple
methods developed in the last two decades simplied the time-
dependent molecular wave functions, e.g. ab initio multiple
spawning (AIMS),8,9 and fewest switches surface hopping
(FSSH).10–12 However, computing high dimensional PESs with
the requisite multicongurational methods is extremely
resource-intensive. For example, most quantum chemical so-
ware packages encode an upper limit to active space of 16
electrons and 16 orbitals for complete active space self-
consistent eld (CASSCF) calculations. A typical NAMD experi-
ment requires thousands of such calculations, resulting in
a maximum simulation time on the order of 1 picosecond, at
a computational cost of approximately 101–104 wall-clock hours.
Unfortunately, many direct excitation photochemical reactions
have low quantum yields and long excited-state lifetimes. This
results in prohibitively expensive NAMD simulations, thus
limiting broad understanding of excited-state structure–reac-
tivity relationships in photochemistry.

An increasing number of studies reported that tting
machine learning (ML) potentials could substantially accelerate
the NAMD simulation.13–15 Aleotti et al. have parameterized ad
hoc force elds for a 10 ps dynamic simulation of azobenzene.16

Westermeyr et al. have trained multilayer feedforward neural
networks (NNs) to enable 1 ns simulation of methyl-
enimmonium cation (CH2NH2

+) in 59 days.17 Later, they have
extended the application of the NNmodel in predicting excited-
states electronic properties for other small molecules, such as
SO2 and CSH2 employing a deep continuous-lter
convolutional-layer neural network, SchNet, combined with
SHARC.18 Recently, Ha et al. have trained the SchNet model to
study the excited-state dynamics of penta-2,4-dieniminium
cation.19 Applying ML-based NAMD on complex molecules
continues to challenge theorists because of additional confor-
mational exibility and increase in available degrees of
freedom. Training ML models becomes increasingly difficult
with the rapidly growing required size of training datasets,
especially when based on atom-wise molecular representations.

Here, we address the need for our combined ML and NAMD
approach (ML-NAMD) that expands the scope of organic
photochemical reactions. We demonstrate the high accuracy in
the trained NN and low computational cost in the ML-NAMD
simulations. Our trajectory statistics support that the ML-
NAMD predicted photochemical product distribution is in
good agreement with quantum chemical results. Our initial ML-
NAMD simulations focused on the rst such photodynamics of
hexauoro-2-butene (1), which is mechanistically well under-
stood due to its characteristic vertical pp* excitation from
HOMO to LUMO (the p and p*-orbital). Hexauoro-2-butene is
© 2021 The Author(s). Published by the Royal Society of Chemistry
a nontoxic and not ammable industrial working uid used as
a refrigerant and a foam-blowing agent.20 We also applied the
ML-NAMD simulations to the 4p-electrocyclic ring-closing of
norbornyl cyclohexadiene (3), a previously unknown and
complex photochemical system.

2. Computational methods
2.1 Quantum chemical calculations

We performed quantum chemical calculations with Open-
Molcas 19.11 21 to generate reference and training data. We
chose the less resource-intensive CASSCF method because it
produced consistent potential energy surfaces with CASPT2
calculations, tested by the interpolated reaction coordinate
diagrams of the model reactions (Fig. S11 and S17†). The
converged orbitals and optimized geometries are available in
the ESI.†

In the cis–trans isomerization of trans-1, we selected an
active space of 2 p-electrons and 2 p-type orbitals (i.e. (2,2)) for
the C]C bond. The geometries of trans-1 and cis-1 were opti-
mized with the cc-pVDZ basis set.22 A vibrational analysis
conrmed only positive frequencies. We located two minimum
energy crossing points (MECPs) corresponding to the trans /
cis (MECP-trans-1) and the reverse reaction (MECP-cis-1). The
NAMD simulations with CASSCF(2,2)/cc-pVDZ used the fewest
switches surface hopping algorithm (FSSH)10–12 in Hammes-
Schiffer/Tully (HST) scheme10 with decoherence correction of
0.1 Hartree23 implemented in OpenMolcas 19.11.21 We gener-
ated 1500 initial geometries and associated velocities near the
equilibrium geometry of trans-1 withWigner sampling at 300 K.
The NAMD trajectories were propagated at 300 K (Nosé–Hoover
thermostat24) from the S1 Franck–Condon region for �500 fs
with 0.5 fs timesteps. It is important to note that applying
a thermostat can bias the excited-state dynamics because the
excited-state lifetime of a few hundred femtoseconds oen does
not suffice for thermalization. We used a thermostat to reduce
the kinetic energy gained from surface hopping, which
compensates for the overestimated excitation energy of CASSCF
calculation. We collected 1371 of the 1500 trajectories that
reached the ground-state within 500 fs, whereas the others
remained in the excited-state or showed molecular structures
with unexpected broken bonds resulting from incorrectly
converged CASSCF calculations.

The 4p-electrocyclic ring-closing of 3 used 4 p-electrons and
3 p-type orbitals active space (i.e., (4,3)) for the conjugated
bonds. As Martinez and co-workers suggested in a previous
study on cyclohexadiene,25 we removed the p*-orbital in A2
symmetry to ensure consistent CASSCF state ordering with
CASPT2 calculations. The geometries of 3 and possible ladder-
ene products were optimized with the ANO-S-VDZP basis
set.26–29 Frequency calculations showed all positive values. We
set up the same NAMD simulations for 3 with CASSCF(4,3)/
ANO-S-VDZP while the simulations are done in 1000 fs. We
only propagated 250 trajectories at 300 K because the NAMD
simulation time increased signicantly to 17 days. 240 of the
250 trajectories were completed at the ground-state and were
used for analysis.
Chem. Sci., 2021, 12, 5302–5314 | 5303



Fig. 1 Three initial training set generation approaches in PyRAI2MD.
Wigner sampling explores the conformational space near the equi-
librium geometries. Geometry interpolation collects the data along
with reaction coordinates from reactant to product. Trajectories
samples the data from quantum chemical trajectories. The 2D PES data
can also supplement the data sampling. Detailed information about
the initial training set generation is available in the ESI.†
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2.2 Machine learning model

We have implemented multilayer feedforward NN as the
primary ML model in our ML-NAMD approach. Our NN was
inspired by those used in SchNarc;18 energies and forces are
trained together with a combined loss function. Non-adiabatic
couplings (NACs) are computed by the difference between NN
predicted state energies and interstate couplings, which has
shown to be more suitable for NN training.30,31 The forces and
interstate couplings are trained as the derivatives of the ener-
gies and a virtual potential, respectively.18 We used an atom-
specic virtual potential for more accurate NACs predictions.
The phase of NACs is internally corrected with a phase-less loss
function.18 We include a detailed discussion on force and NAC
prediction in ESI.† The NN receives an inverse distance-
based17,18 feature representation. 1 has 12 atoms (N¼ 12), which
leads to 66 unique entries in the inverse distance matrix. The
NN predicts two energy values (ground- and excited-state; k ¼ 2)
and use their derivatives with respect to the input coordinates to
compute the k � 3N ¼ 72 force components. 3N ¼ 36 NAC
components are simultaneously predicted. For 3 (N ¼ 25), the
input feature size is 300, with 2 energies, 150 force, and 75 NAC
components. We chose a leaky so plus activation function for
hidden layers. We have optimized the hyperparameters to
predict energies, forces, and NACs with a grid-search over 864
NNs. The training was done using the Adam optimizer32 with
a stepwise decrease of the initial learning rate from 10�3 to 10�5

on validation error plateaus (energies and forces: 2700 epochs;
NACs: 1600 epochs). To evaluate the prediction uncertainty in
ML-NAMD simulation, we used the standard deviation of an
ensemble of NNs. We picked two sets of the most accurate and
efficient NNs (each set has one NN for energies and forces
together, and another one for NACs) with distinct architectures.
We implemented all NNs using the TensorFlow/Keras (v2.3)
packages33 for Python. Information about grid search and NN
training are available in ESI.†
2.3 Initial training set generation

Accurate NN predictions require robust training data; thus, the
training data must include a broad sampling of essential and
relevant conformations of the target molecule. Westermayr
et al. recently reported a comprehensive review including the
initial training set generation techniques that sample the
conformations of small molecules from cost-efficient ground-
and excited-state molecular dynamics, Wigner sampling,
normal mode scan, and optimized critical geometries.34,35 None
of these individual techniques can adequately sample the rele-
vant potential energy surfaces of a photochemical reaction as
the molecular structure become more complex and the degrees
of freedom increase. For example, Wigner sampling is limited
to the congurations immediately related to equilibrium
geometries. Conversely, a series of multicongurational NAMD
is prohibitively expensive for training. In this work, we invoke
a composite scheme that generates compact yet relevant
training data for ML-accelerated excited-state dynamics (Fig. 1).

Our initial training set generation scheme combines Wigner
sampling, geometrical interpolation, and trajectories. The Wigner
5304 | Chem. Sci., 2021, 12, 5302–5314
sampling approach generates training data by sampling reactant
and product structures. The geometry interpolation approach
accesses the reaction coordinate diagram with the optimized
reactant, product, and minimum energy crossing point (MECP)
geometries. It systematically varies the reactant geometry to that
of the minimum energy crossing point and then to that of the
product in equal increments of Z-matrix coordinate parameters.
We expanded the range of sampled structures in the training
data by applying the Wigner sampled geometrical perturbations
to the interpolated reaction coordinate diagram. The trajectories
approach samples conformations from short-time quantum
chemical NAMD trajectories (50–100 fs). For instance, we
included every 10th snapshot of the rst 50 fs of 132 CASSCF
NAMD trajectories of 1 corresponding to the trans / cis
isomerization.
2.4 Adaptive sampling

The initial training set represents a chemically intuitive
conformational space to t the NN potential for the investigated
photochemical reactions. The NN potential becomes less reli-
able when trajectories frequently encounter the structures
outside the data set. We efficiently expanded the initial training
set to cover important structures on the PESs using an active
learning approach, adaptive sampling. It was rst introduced by
Behler et al.36 then adapted to ground- and excited-state
dynamics by Marquetand and co-workers.17,37 The adaptive
sampling propagates ML-NAMD trajectories to explore the
conformational space and sample the uncertain geometries
based on the standard deviation between two sets of NNs. The
collected geometries are recomputed with quantum chemical
calculations and then join the initial training set to improve the
NN potentials iteratively. In the cis–trans isomerization of trans-
1, the adaptive sampling included 250 ML-NAMD trajectories in
500 fs with a 0.5 fs timestep at 300 K. The adaptive sampling
© 2021 The Author(s). Published by the Royal Society of Chemistry
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stopped at 28 iterations with 6207 data points (98% of the
trajectories completed without nding new geometries). In the
4p-electrocyclic ring-closing of 3, the adaptive sampling ran 250
ML-NAMD trajectories in 1000 fs with a 0.5 fs timestep. We
increased the temperature to 1200 K to access high energy non-
equilibrium geometries along the reaction coordinates. The
temperature was reset to 300 K in the production ML-NAMD
simulations. We obtained a nal set of 6272 data points aer
100 iterations (96% of the trajectories completed normally).
Detailed information about the adaptive sampling is available
in the ESI.†
3. PyRAI2MD

We developed the Python Rapid Articial Intelligence Ab Initio
Molecular Dynamics program (PyRAI2MD) to integrate ML
models and the NAMD algorithms. It is an open-source code to
enable ML-NAMD simulations for unprecedented molecular
complexity and timescales. Fig. 2 illustrates the computational
architecture of PyRAI2MD, which requires ML and NAMD
kernels.

The workow in the NAMD kernel starts with the Wigner
sampled initial conditions. The following procedures, red
arrows in Fig. 2, iteratively compute the energies, forces, NACs,
and surface hopping probability, propagating the NAMD
trajectory. We generalized the input and output format of
computing energies, forces, and NACs in the NAMD kernel. This
feature enables efficient communication between theML kernel
and our chosen external quantum chemical program, Open-
Molcas 19.11.21 The workow in ML kernel reads a training set
or an existing model. It provides a convenient interface to train
models and make predictions marked by blue arrows in Fig. 2.
Fig. 2 The computational architecture of PyRAI2MD. The bold boxes
are the initial stage in NAMD and ML kernel.

© 2021 The Author(s). Published by the Royal Society of Chemistry
The green arrows in Fig. 2 illustrate the adaptive sampling
workow incorporating the NAMD andML kernels. It rst loads
two trainedMLmodels to runmultiple trajectories in the NAMD
kernel. The trajectories explore the unsampled conformational
space while the two ML models evaluate the prediction uncer-
tainty on-the-y, as described in Section 2.4 and ESI.† The
sampled data were added into the initial set to train a new
model.

4. Results and discussion
4.1 Cis–trans isomerization model for trans-hexauoro-2-
butene

As the rst demonstration of our ML-NAMD approach, we chose
an emblematic photochemical reaction, an isomerization of
trans-hexauoro-2-butene, trans-1. We have characterized the
photodynamics of trans-1 with 1371 CASSCF(2,2)/cc-pVDZ
trajectories. 946 trajectories correspond to the cis–trans isom-
erization, whereas 425 trajectories undergo an intramolecular
hydrogen abstraction to form hexauoro-2-butene carbene, 2
shown in Scheme 1.

This pathway is consistent with prior theoretical studies on
ethylene intramolecular hydrogen migration reactions.38–40 To
test whether the NN-driven adaptive sampling method can
discover the missing data for the alternative carbene pathway
without prior knowledge or human bias, the initial training set
only included the information about the trans / cis isomeri-
zation of trans-1.

4.2 ML potential for the cis–trans isomerization of trans-
hexauoro-2-butene

We trained four NNs for the cis–trans isomerization of trans-1
with PyRAI2MD. On a single CPU, the predictions of the ener-
gies, forces, and NACs take 0.00991 seconds, whereas the
equivalent computations at CASSCF(2,2)/cc-pVDZ require 336
seconds. These results represent an NN acceleration of 3.4 �
104-fold relative to ground-truth CASSCF calculations. We
summarized the NN architecture, mean absolute error (MAE),
and coefficient of determination (R2) of the predicted energies,
forces, and NACs in Table 1.

The MAE of predicted energies is 0.023–0.025 that meets the
‘chemical accuracy’ threshold (1 kcal mol�1 ¼ 0.043 eV). The R2

values are 0.9984–0.9989 in NN1 and NN2, suggesting an almost
linear correlation between the NN prediction and QC reference.
The MAE and R2 in force calculation are 0.14–0.15 eV �A�1 and
0.9357–0.9536. These values are consistent with previous
reports on SO2 and CH2NH2

+ photochemistry.18 TheMAE and R2

in the interstate coupling term of the NACs are 0.170–0.182 eV
Scheme 1 Cis–trans isomerization and hydrogen abstraction of
hexafluoro-2-butene.

Chem. Sci., 2021, 12, 5302–5314 | 5305



Table 1 Selected NN hyperparameters and the mean absolute errors
with R2 of predicted energies (eV), forces (eV �A�1), and interstate
coupling term of NACs (eV �A�1) trained on 6207 data points of 1.
Additional details on hyperparameters and training statistics are
available in ESI

Hyperparameters

Energies, forces NACsa

NN1 NN2 NN1 NN2

Hidden layers 3 5 5 3
Neurons/layer 400 300 300 600
Batch size 64 128 128 128
MAE 0.023(0.14)b 0.025(0.15)b 0.182 0.170
R2 0.9989(0.9357)b 0.9984(0.9536)b 0.7137 0.7423

a Here the NAC only represents the interstate coupling term. b The MAE
and R2 of forces are shown in the parenthesis.

Chemical Science Edge Article
�A�1 and 0.7137–0.7423, respectively. The low R2 relative to
energies and forces suggests possible overtting of NACs (the
training MAE are 0.014–0.015 eV �A�1 and the training R2 are
0.9969–0.9970) due to the indenite term of the antiderivative
of NACs and unavailable training data for it.
4.3 ML-NAMD simulations for the cis–trans isomerization of
trans-hexauoro-2-butene

Because the predicted interstate terms of NACs have relatively
larger errors than energies and forces, the behavior of NN
surface hopping events can be very different from them in QC
trajectories. We compared the FSSH and Zhu–Nakamura theory
of surface hopping (ZNSH)41–45 to determine the NACs inuence
on the NN trajectories. The ZNSH method is independent on
NACs that has been successfully applied to excited-state
dynamics of other systems46,47 and used to train machine
learning trajectories.13,14 Propagating a 500 fs NN FSSH trajec-
tory only needs 23 seconds in contrast to 33 hours of running an
equivalent trajectory with CASSCF(2,2)/cc-pVDZ. The ZNSH
method can further reduce the cost of NN trajectory to 13
seconds because it only computes surface hopping probability
near crossing regions (S1/S0 gap < 0.5 eV). We have collected
5573 and 5820 NN trajectories with FSSH and ZNSH methods,
Fig. 3 (a) The QC vs. NN state populations for trans-1 at 300 K. The QC
average 5573 FSSH trajectories and 5820 ZNSH trajectories. (b) The NN

5306 | Chem. Sci., 2021, 12, 5302–5314
respectively. Fig. 3a shows the state population dynamics of
trans-1 in 500 fs.

The state populations of QC trajectories (Fig. 3a) suggest the
S1 half-life is 33.5 fs. The NN FSSH trajectories depending on
predicted NACs show rather slower decay of the S1 state. The S1
half-life is 71.0 fs and the MAE in population between the NN
FSSH and QC trajectories is 0.105. The NN ZNSH trajectories
using NN energies and forces predict that the S1 half-life is 29.0
fs with the MAE in population of 2.5%. The good agreement
between the NN ZNSH and QC trajectories indicates the NN
energies and forces are sufficiently accurate to detect surface
hopping events. The overestimated S1 lifetime in NN FSSH
trajectories is attributed to the errors in the NAC model. It
seems to underestimate the surface hopping probability, which
keeps trajectories at S1 in a longer time until it nds a smaller
energy gap for a hop to S0. The S1/S0 gap is similar for QC FSSH
and the NNs ZNSH (0.51 eV and 0.46 eV, respectively) while the
NN FSSH is 0.12 eV. Due to the closer match, we focused on the
ZNSH trajectories in the subsequent discussions.

We tested the limits of our newly established ML-NAMD
model by running unprecedented 10 ns simulations with a 0.5
fs time step. We obtained 89 NN ZNSH trajectories and the
average state populations are shown in Fig. 3b. The state pop-
ulations in the rst 500 fs also include the 5820 trajectories
mentioned above. The non-radiative S1/S0 relaxation completes
within 1 ps. The at population curve aer 103 fs indicates all
trajectories stayed in S0 up to 10 ns, without surface hopping up
to the S1 state. The total 2� 107 iterations were accomplished in
an average of 50 hours on a single CPU. The 10 ns simulation
with CASSCF(2,2)/cc-pVDZ would otherwise require approxi-
mately 58 years of wall time. We have included the ML-NAMD
trajectory video in ESI.†

To quantify the difference between the photochemical reac-
tion pathways enumerated by the QC and NN trajectories, we
plot the trajectories corresponding to the trans / cis isomeri-
zation of trans-1 and their energies with respect to the :H–C–
C–H and :C–C–C–C dihedral angles in Fig. 4.

Fig. 4a illustrates the trace of the QC trajectories that bifur-
cates toward cis-1 and trans-1. All trajectories started with
a narrow spreading in the range of :C–C–C–C ¼ 150–180� and
:H–C–C–H ¼ 0–60� (upper right corner). 248 surface hopping
state populations average 1371 trajectories. The NN state populations
state population of 89 ZNSH trajectories in 10 ns.

© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 The NAMD trajectories of trans/ cis isomerization of 1, computed with (a) CASSCF(2,2)/cc-pVDZ and (b) NN in 500 fs simulations at 300
K. The black dots represent the last surface hopping point in each trajectory.
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events turned the trajectories along the direction of the:H–C–
C–H axis toward cis-1. 698 trajectories took the same path
returning to trans-1. The trans : cis ratio is 2.8 : 1 in the QC
trajectories. The NN predicted trajectories in Fig. 3b recreated
the topology of the reference. The NN predicted 772 trajectories
transformed to cis-1 and 2680 trajectories back to trans-1,
resulting in a corresponding ratio of 3.5 : 1. The NN and QC
trajectories show virtually identical evolution of the average
:C–C–C–C and :H–C–C–H angles during the 500 fs simula-
tion (Fig. S14†).

The QC and NN trajectories undergoing the trans/ carbene
pathway are shown in Fig. 5a and b with 5 snapshots from a QC
trajectory in Fig. 5c, including the surface hopping point.
Fig. 5 The NAMD trajectories of trans/ carbene isomerization of 1 com
300 K. The black dots represent the last surface hopping point in each t
trajectories. The :H–C–C–H and :C–C–C–C angles are in blue and

© 2021 The Author(s). Published by the Royal Society of Chemistry
425 QC trajectories formed 2 in a trans : carbene ratio of
1.6 : 1. The trajectories in Fig. 5a display that the trans-
formation shared the path with trans / cis isomerization from
the Franck–Condon region to the S1/S0 crossing region. The S1/
S0 surface hopping happened in the area of :C–C–C–C ¼ 150–
180� and :H–C–C–H ¼ 0–60�. In Fig. 5c, the hydrogen
migrated to the other carbon atom from 58 to 70 fs. The:H–C–
C–H angle, 50� at 58 fs, increased to 86� at 70 fs. The C]C p-
bond broke resulting in a nonplanar geometry (:C–C–C–C ¼
164� and:H–C–C–H ¼ 113� at 75 fs). We intentionally omitted
the trans / carbene pathway data in the initial training set, yet
the adaptive sampling located 347 structures with signicantly
broken C–H bonds (>1.40 �A) resembling 2 (5.6% in the nal
putedwith (a) CASSCF(2,2)/cc-pVDZ and (b) NN in 500 fs simulations at
rajectory. (c) Snapshots of the formation of 2 in CASSCF(2,2)/cc-pVDZ
red, respectively.

Chem. Sci., 2021, 12, 5302–5314 | 5307
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training set). Fig. 5b shows the 2368 NN trajectories toward 2.
The predicted trans : carbene ratio is 1.1 : 1.

We analyzed the crossing region and surface hopping points
for the QC and NN trajectories. Fig. 6 shows the spatial distri-
bution of the latest S1/S0 surface hopping point in each trajec-
tory and examples of surface hopping geometries along the S1/
S0 crossing seam.

Fig. 6a projects the latest S1/S0 surface hopping points from
the CASSCF(2,2)/cc-pVDZ trajectories into the 2D conforma-
tional space of 1. The dense areas represent the S1/S0 crossing
region as dened by the two reaction coordinates. In the density
map (Fig. 6a, right panel), the surface hopping points accu-
mulated at two regions, :C–C–C–C ¼ 170�; :H–C–C–H ¼ 60�

and :C–C–C–C ¼ 180�; :H–C–C–H ¼ 40�, which have larger
:C–C–C–C angels than MECP-trans-1. Beside the hopping
points near MECP-trans-1, Fig. 6c shows two pyramidalized
surface hopping geometries at A (:C–C–C–C ¼ 180� and :H–

C–C–H ¼ 80�) and B (:C–C–C–C ¼ 180� and :H–C–C–H ¼
20�). We noted C–H stretching surface hopping points at D
(:C–C–C–C ¼ 180� and :H–C–C–H ¼ 180�); the C–H distance
is 2.24 �A. The surface hopping geometries at E (:C–C–C–C ¼
110� and :H–C–C–H ¼ 140�) have shown the formation of 2,
which suggests that excited-state hydrogen abstraction is theo-
retically possible. Fig. 6b depicts the distribution and density of
NN predicted S1/S0 surface hopping points. These surface
hopping events occurred closely at :C–C–C–C ¼ 180�; :H–C–
C–H ¼ 40� agreeing with those observed in QC trajectories. The
signicant increase in the number of NN trajectories provided
an increased statistical signicance of our crossing region
analysis. The NNs located a twisting surface hopping geometry
Fig. 6 Scatter plots of the latest S1/S0 surface hopping point geometries
simulation at 300 K. The left and right panel illustrate the position and t
geometries in an interval of 10�. The magnitude ranges from 0.00 to 0.1
trans-1. (c) Examples of five surface hopping point structures defining th

5308 | Chem. Sci., 2021, 12, 5302–5314
at C (:C–C–C–C ¼ 120� and :H–C–C–H ¼ 90�). The density
map (Fig. 6b, right panel) suggests it is a relatively rare surface
hopping event as few points were located at C. The NN could
detect the rare event because of the substantially increased
number of trajectories (5820) with a nearly negible increase in
computational cost.

4.4 4p electrocyclic ring-closing model of norbornyl
cyclohexadiene

To demonstrate our ML-NAMD method on a more complex
reaction, we studied the photochemical behavior of norbornyl
cyclohexadiene 3 (Scheme 2). Burns and Lopez hypothesized
that irradiation of 3 would initiate 4p-electrocyclic ring-closing
to produce diastereoisomeric ladderene products anti-4 and
syn-4, in line with known cyclohexadiene photochemistry.48

Irradiation of 3 with 254 nm light was performed for 0.5, 1, 2, or
4 hours and provided several hydrocarbon products. The
anticipated major reaction pathway produced ladderene dia-
stereomers anti-4 (28%) and syn-4 (4%). Under these conditions
we also observed an alternative reaction pathway to anti-40 (8%)
via intermediate diene 30 (see ESI† for more details). We then
decided to study the major reaction pathway of 3 to form
products anti-4 and syn-4 using our ML-NAMD method.

4.5 ML potential for the 4p-electrocyclic ring-closing of
norbornyl cyclohexadiene

We trained NNs for 3 as described in Sections 2.3 and 2.4. The
NN predict energies, forces, and NACs of 3 with comparable
efficiency (0.0118 seconds) to 1 (0.00991 seconds). However, the
marked increase in electrons and active space size of 3 results in
in (a) CASSCF(2,2)/cc-pVDZ and (b) NN predicted trajectories in 500 fs
he density of the geometries. The density is defined as the fraction of
2 and is colored from light pink to dark red. The red star marks MECP-
e S1/S0 crossing seam.

© 2021 The Author(s). Published by the Royal Society of Chemistry



Scheme 2 Photochemical reaction of norbornyl cyclohexadiene.
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considerably longer wall time of a single point CASSCF(4,3)/
ANO-S-VDZP calculation (2480 seconds) than 1 (336 seconds).
Note the ANO-S-VDZP and cc-pVDZ basis sets are the same size.
The NN benet from a 2.1 � 105-fold acceleration compared to
the CASSCF calculations. We summarized the NN architecture,
MAE, and R2 of predicted energies, forces, and NACs in Table 2.

The MAE of the energy predictions for compound 3 are
0.027–0.031 eV, which approaches chemical accuracy
(1 kcal mol�1 or 0.043 eV). The R2 values are 0.9991–0.9996 and
demonstrate a good correlation between the predicted and the
target energies. The MAE of the forces ranges from 0.12–0.13 eV
�A�1, with R2 values ranging from 0.9991–0.9996. They are
0.02 eV �A�1 smaller than in case of compound 1, suggesting
improved tting of forces. The MAE of the S1/S0-coupling are
0.078–0.081 eV �A�1, which are smaller than 50% of that of 1.
Nevertheless, possible overtting of the S1/S0-coupling still
occurs as the R2 values (0.5723–0.7956) are relatively low in the
validation set (the MAE and R2 are 0.036–0.040 eV and 0.9217–
0.9452 in the training set).
4.6 ML-NAMD simulations for the 4p-electrocyclic ring-
closing of norbornyl cyclohexadiene

The photodynamics study on 3 requires computationally
intensive NAMD simulations. We have obtained 240
CASSCF(4,3)/ANO-S-VDZP trajectories of the 4p-electrocyclic
ring-closing of 3. The single trajectory of 1000 fs simulations
required an average of 17 days of computation time. With our
ML-NAMD method, we propagated 3910 NN FSSH trajectories
and 3954 NN ZNSH trajectories, requiring just 56 and 38
seconds, respectively.
Table 2 Selected NN hyperparameters and the mean absolute errors
and R2 of predicted energies (eV), forces (eV �A�1), and interstate
coupling term of NACs (eV �A�1) trained on 6267 data points of 3.
Additional details on hyperparameters and training statistics are
available in ESI

Hyperparameters

Energies, forces NACsa

NN1 NN2 NN1 NN2

Hidden layers 3 4 3 4
Neurons/layer 400 300 500 300
Batch size 128 128 128 128
MAE 0.027(0.12)b 0.031(0.13)b 0.078 0.081
R2 0.9996(0.9934)b 0.9991(0.9858)b 0.7956 0.5732

a Here the NAC only represents the interstate coupling term. b The MAE
and R2 of forces are shown in the parenthesis.

© 2021 The Author(s). Published by the Royal Society of Chemistry
We compared the QC and NN state populations to assess the
errors of our trained NN in predicting excited-state dynamics of
3 (Fig. 7).

Fig. 7 shows that the S1 half-life of the QC trajectories is 108
fs. The NN FSSH trajectories overestimated it to be 175 fs. The
resulting MAE in population between NN FSSH and QC trajec-
tories is 14.8% in the rst 500 fs. In contrast, the NN ZNSH
trajectories agree better with the QC trajectories. The predicted
S1 half-is 105 fs and the MAE in population is 4.5%. The delayed
surface hopping events in the NN FSSH trajectories resulted
from the underestimation of NACs as discussed in Section 4.3.
This causes the NN FSSH trajectories to spend longer times on
approaching regions with smaller energy gaps. The average
surface hopping S1/S0 energy gap is 0.22, which is notably
smaller than 0.45 eV in the QC trajectories (0.26 eV in the NN
ZNSH trajectories). Thus, the following discussion of the ML-
NAMD simulations of 3 will focus on the NN ZNSH trajectories.

The QC and NN trajectories are characterized with the
distance R between the two carbon atoms closing the cyclo-
hexadiene ring and the bending angle q of the cyclohexadiene
plane, shown in Fig. 8a and b. The optimized geometries of
observed products and intermediates are shown in Fig. 8c.

The QC and NN trajectories show two types of pathways. We
distinguished the syn- and anti-pathways with the bending
angle of the cyclohexadiene plane, q ¼ 120–150� and q ¼ 210–
240�, respectively. 2 of 240 QC trajectories formed anti-4 in 1 ps
corresponding to a low yield of 0.8%, while a pathway to syn-4 is
Fig. 7 The QC vs. NN state populations of 3 at 300 K. The QC state
populations average is based on 240 trajectories. The NN state pop-
ulation is computed from 3910 FSSH trajectories and 3954 ZNSH
trajectories, respectively.
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Fig. 8 The NAMD trajectories of 4p-electrocyclic ring-closing of 3 computed with (a) CASSCF(4,3)/ANO-S-VDZP and (b) NNs in 1000 fs
simulations at 300 K. The black dots represent the last surface hopping point in each trajectory. R is defined as the distance between the two
carbon atoms closing the cyclohexadiene ring. q is defined as the bending angle of the cyclohexadiene plane. q ¼ 0–180� represents a syn-
configuration and q¼ 180–360� represents an anti-configuration. (c) The CASSCF(4,3)/ANO-S-VDZP optimized geometries of 3a, 3b, syn-4 and
syn-4. The red dotted lines highlight the angle q in 3a and syn-4; the blue dotted lines highlight the angle q in 3b and anti-4. The black dotted lines
show the distance R in all compounds.
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absent due to the insufficient number of trajectories. Our
calculations suggest that the major outcome of the photoreac-
tion of 3 return to the reactant (Fig. S19†). The higher experi-
mental yield of anti-4 (28%) and syn-4 (4%) is because the
reactant can be re-excited to have another chance of ring-closing
during the 4 hours of irradiation. Our QC-NAMD simulations
also suggest a less direct pathway involving reactive interme-
diates, 3a and 3b (Fig. 8a and c). The QC trajectories suggest
a yield of 3a and 3b are 13% and 7% (Fig. 8a). Among those non-
productive trajectories (Fig. S19†), 44% of the trajectories
involved syn-congurations, and 35% formed anti-conguration
before they reverted to 3. Collectively, from the S1-FC regions,
57% of the trajectories followed the syn-pathway, and 43% of
the trajectories pursued the anti-pathway. The preferential syn-
pathway in the QC-NAMD simulations agree with the minimum
energy path (MEP) calculations of 3 (Fig. S17†) where the syn-
pathway is steeper descent than the anti-pathway.

The increase in NN trajectories in Fig. 8b identied
a pathway to syn-4, with a 0.2% yield. The yield of anti-4, 3a, and
3b are 0.7%, 11%, and 5%, respectively, resulting in 84% non-
productive trajectories reverting to 3. The formations of syn-4
and anti-4 start near 100 fs and complete near 200 fs (Fig. S20†).
We compare the yield of syn-4 and anti-4 in the NN trajectories
and the experiment by zooming in the 100–200 fs region and
normalizing the yield and time scale. The predicted yield curves
show excellent agreement with the experiment data (Fig. S21†).
Among the non-productive trajectories, 53% preferred the syn-
pathway, and 31% went through the anti-pathway (Fig. S19†).
Overall, the NN trajectories are consistent with QC trajectories
5310 | Chem. Sci., 2021, 12, 5302–5314
and MEP calculations that the syn-pathway (64%) is preferred
over the anti-pathway (36%). It is also worth mentioning that we
had not provided any information about the intermediates 3a
and 3b in the initial training set since we did not recognize
them until running QC-NAMD. The NN effectively collected the
necessary training data through adaptive sampling.

We then analyzed the QC and NN surface hopping geome-
tries to understand the behavior of NN trajectories in the
crossing regions. Fig. 9a and b plot the distributions and
density of the last S1/S0 surface hopping geometries in the QC
and NN trajectories. Fig. 9c illustrates examples of three surface
hopping geometries.

The 2D projection of surface hopping geometries from the
QC trajectories shows three distinct regions (Fig. 9a). The
crossing region around F and H resemble the MECP geometries
along the syn- and anti-pathway, MECP-syn-3 and MECP-anti-3
(Fig. S16†). These geometries show shortened C–C distances (R
¼ 2.2–2.6�A) and bent cyclohexadiene plane (q ¼ 140–160� near
F and q ¼ 210–230� near H) that are distorted toward the 4p-
electrocyclic ring-closing. The region F is denser than H indi-
cating the syn-pathway is preferred. Another crossing region G
corresponds to cyclohexadiene-like surface hopping geometries
(R ¼ 2.8–3.2 �A, q ¼ 150–210�). These surface hopping events
occur via the stretching of the cyclohexadiene plane. Fig. 9b
plots surface hopping geometries in the NN trajectories. The
distributions are similar in the three crossing regions. Accord-
ing to the density map, the NN tend to predict more surface
hopping at the ring-closing regions (F and H) than the
stretching region (G).
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 9 Scatter plots of the surface hopping geometries in (a) CASSCF(4,3)/ANO-S-VDZP and (b) NN trajectories. The left and right panel show the
distribution and the density of the geometries. The density is defined as the fraction of geometries in intervals of 10�. The magnitude ranges from
0.00 to 0.12 and is colored from light pink to dark red. The red stars mark the CASSCF(4,3)/ANO-S-VDZP optimized minimum energy crossing
points geometries. (c) Examples of three surface hopping geometries. The dotted lines highlight the distance R (black) between the two carbon
atoms closing the cyclohexadiene ring and the bending angle q of the cyclohexadiene plane: q ¼ 0–180� (red) represents a syn-configuration
and q ¼ 180–360� (blue) represents an anti-configuration (pink for q ¼ 180�).
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In the non-productive trajectories, we observed thermal
conversions from 3a and 3b to 3. Fig. 10 depicts the QC
trajectories snapshots showing the conversion from 3a to 3 aer
it hops to the ground-state.

The snapshot in Fig. 10 shows a rst appearance of 3a is at
122.5 fs. It completely transformed to 3 at 331.5 fs suggesting
a lifetime of 209 fs. The trajectory statistics concludes that 0.8%
of the QC trajectories undergo 3a / 3 conversion and 0.8% go
for 3b/ 3. The NN trajectories conrm the 3a/ 3 and 3b/ 3
thermal conversions in 5% and 3% of the trajectories, respec-
tively. The remaining 3a and 3b at the end of the NAMD
simulations suggest the lifetime of 3a and 3b can be longer than
1 ps. That encourages us to explore subsequent thermal reac-
tions of the photodynamics of 3 in nanosecond scale.

We continued to propagate 984 NN trajectories from 1 ps to 1
ns, which completes in just 4.8 hours per trajectory. We moni-
tored the interconversion from 3a and 3b to 3 with the :H–C–
C–H dihedral angles a, as shown in Fig. 11.

The top panel in Fig. 11 illustrates trajectories that formed
the aforementioned short-lived 3a and 3b, which convert to 3
within 1 ps. The dihedral angle a is below 60� in the initial 100
Fig. 10 Snapshots of the formation of transient intermediate 3a in
a CASSCF(4,3)/ANO-S-VDZP trajectory. The trajectory first formed 3a
at 122.5 fs and then converted to 3 at 331.5 fs.

© 2021 The Author(s). Published by the Royal Society of Chemistry
fs. The formation of 3a and 3b rotate the C]C bond leading to
a ¼ 180� and the continued conversion to 3 recovery the planar
cyclohexadiene with a < 30�. The bottom panel in Fig. 11 shows
the trajectories involved with a long-lived 3a and 3b. The
trajectories retain the dihedral angle a ¼ 180� at 1 ps. By
tracking reaction coordinate a, we note that the earliest
conversion occurred right aer 1 ps and the last one appeared at
0.9 ns. In the end of 1 ns simulation, the yield of 3a reduced to
1% and the 3b completely converted to 3. Measuring the�0.9 ns
lifetime of these reactive intermediates would not be possible
without ML-NAMD simulations; this dynamic effect offers
Fig. 11 The NN trajectories showing the thermal conversion from 3a
(red) and 3b (blue) to 3 in 1 ns. The top panel shows the conversions
occurred within 1 ps; the bottom panel shows the conversions after 1
ps. a is defined as the:H–C–C–H dihedral angles (0–180�) marked in
pink. a ¼ 0� in 3; a ¼ 180� in 3a and 3b.
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important mechanistic insight into photochemical ladderene
formation reactions.

5. Concluding remarks

We have applied and expanded a ML-NAMD approach using
neural networks that overcome current limitations in photody-
namics simulations, including simulation time and molecular
complexity. We used a composite generation scheme to effectively
sample the initial training set, which combines the Wigner
sampling, geometrical interpolations, and short-time quantum
chemical trajectories. We implemented an adaptive sampling
workow to automatically expand the initial training set with the
important data in the unexplored conformational space using
a query of committee model. The nal data set of the cis–trans
isomerization and 4p-electrocyclic ring-closing models has 6207
and 6267 data points, respectively. The training error in energy
achieved chemical accuracy with a mean absolute error of 0.023–
0.032 eV. The forces and NAC interstate couplings errors were
0.12–0.15 eV�A�1 and 0.078–0.182 eV�A�1 respectively.

For the cis–trans isomerization of trans-1, the NNs effectively
accelerated the computations of energies, forces, and NACs for
trans-1 in 3.4 � 104-fold compared to the CASSCF calculations.
The 10 ns ML-NAMD simulations from the S1 Franck–Condon
regions of the Wigner sampled initial conditions at 300 K on
a single CPU completed in 2 days 2 hours on average of 89
trajectories, which would have approximately required 58 years
for running the CASSCF(2,2)/cc-pVDZ calculations. The analysis
of 5820 NN trajectories in 500 fs shows consistent results with
the QC trajectories, predicting the formation of cis-1 (trans : cis
¼ 3.5 : 1) and 2 (trans : carbene ¼ 1.1 : 1). The NN acceleration
becomes more signicant (2.1 � 105-fold) for complex organic
molecules such as 3 because of the considerably increasing cost
of CASSCF calculations with more electrons and larger active
space. Our results of 3954 NN trajectories in 1 ps conrmed the
low-yield of syn-4 (0.2%) and anti-4 (0.7%) that support our
experimental results. The continued 1 ns NN photodynamics
simulations revealed almost complete thermal conversion from
3a and 3b to 3, which explain their absence in experiment.

We have demonstrated that the PyRAI2MD ML-NAMD
approach is able to not only reproduce experimental results,
but can be used to identify new light-induced mechanistic
pathways. The identication of reactive intermediates such as
the carbene 2 and isomers 3a and 3b help to explain experi-
mental results. Our study provides a path forward to quantify
the lifetimes of reactive long-lived excited-states and reactive
intermediates currently inaccessible with quantum chemical
methods alone. We anticipate that these PyRAI2MD-enabled
simulations will enable other researchers to understand
photochemical reactivities and selectivities with thousands of
nanosecond trajectories, facilitating connections between
excited- and ground-state mechanistic pathways.
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