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Abstract

Background: Mild Traumatic Brain Injury (mTBI) has been identified as a major public and military health concern both in
the United States and worldwide. Characterizing the effects of mTBI on postural sway could be an important tool for
assessing recovery from the injury.

Methodology/Principal Findings: We assess postural sway by motion of the center of pressure (COP). Methods for data
reduction include calculation of area of COP and fractal analysis of COP motion time courses. We found that fractal scaling
appears applicable to sway power above about 0.5 Hz, thus fractal characterization is only quantifying the secondary effects
(a small fraction of total power) in the sway time series, and is not effective in quantifying long-term effects of mTBI on
postural sway. We also found that the area of COP sensitively depends on the length of data series over which the COP is
obtained. These weaknesses motivated us to use instead Shannon and Renyi entropies to assess postural instability
following mTBI. These entropy measures have a number of appealing properties, including capacity for determination of the
optimal length of the time series for analysis and a new interpretation of the area of COP.

Conclusions: Entropy analysis can readily detect postural instability in athletes at least 10 days post-concussion so that it
appears promising as a sensitive measure of effects of mTBI on postural sway.
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Introduction

Traumatic Brain Injury (TBI) occurs when a direct or indirect

blow to the head results in neuropathologic changes. In the United

States, TBI represents a major medical concern that costs nearly

$60 billion in direct and indirect expenses annually [1–3]. Most of

these injuries are classified as mild TBI (mTBI) [1], with an

estimated 1:6{3:8 million injuries occurring in the United States

annually as a result of sport participation [4]. The estimate likely

represents underreporting: in one study [5], more than 50% of

high school athletes failed to report their injuries to medical

personnel. The acute and long term effects of mTBI also are

prominent medical concerns for the armed services, as 15% of

soldiers surveyed have experienced head trauma causing loss of

consciousness or altered mental status while serving in Iraq [6].

Current clinical assessment protocols have demonstrated strong

sensitivity (89–96%) in acutely identifying the presence of mTBI

[7]; however, no such instruments have successfully identified the

recovery process or when an individual has ‘‘healed’’. Attempts to

elucidate recovery following concussion has been limited both by

the unique aspects of the individual’s mTBI and by limitations in

the assessment tools. Indeed, structural imaging techniques (MRI,

CT) are of limited value beyond classifying the injury as ‘‘mild’’ as

the pathophysiology of mTBI is generally considered to be a

functional disorder [8]. Traditional clinical assessment techniques

such as graded symptom checklists (GSC), standard assessment of

concussion (SAC) cognitive assessment, balance error scoring

system (BESS), and neuropsychological (NP) tests have 1)

demonstrated inconsistent ability to acutely identify the presence

of a concussion, 2) have not been validated to identify recovery

from mTBI, and 3) are substantially limited by a practice effect [9–

11]. As premature return to participate presents an acute risk of

the potentially fatal second impact syndrome [12] as well as

elevated risk of repeat concussion and associated potential long

term sequele including mild cognitive impairment [13], earlier

onset of Alzheimer disease [13], chronic traumatic encephalopathy

[14] and amyotrophic lateral sclerosis [15]. Thus, the development

of a sensitive method to identify healing following mTBI

represents a pressing need in the neurological and sports medicine

communities.

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24446



The assessment of postural control provides an interesting

means of identifying concussion-related neurophysiological abnor-

mality. It is one of several recommended tools for determining

readiness to resume competitive activity among athletes [16].

Previous research has suggested that athletes with postural

instability after concussion return to their baseline levels of

postural steadiness performance within about 3 days often despite

still being symptomatic [17–20]. This suggests that either (a)

neurophysiological impairments affecting postural control are not

necessarily a predictable consequence of injury, or (b) more

sensitive analyses of postural instability may be required.

The methods currently used to assess postural control following

mTBI may be one limiting factor in better classifying the severity

of mTBI as well as elucidating the path to recovery from the

injury. Traditional measures of postural sway based on variance of

ground reaction forces, or their extremes observed within a given

time window, are likely to be insensitive to the effects of the injury,

since they are largely controlled by body weight. Fractal analysis of

COP signals, while promising for identifying differences in

postural stability between control and elderly subjects [21–24],

has not been shown whether it can characterize the instability of

postural control following mTBI. While the notion of virtual time-

to-contact (VTC) is able to indicate effects of TBI to about 30 days

post injury [25], the mechanism for such a capability is unclear.

Approximate entropy (ApEn), a metric from nonlinear dynamics

theory, seems to offer more insight into classifiable characteristics

of the postural control system [26,27]. The analyses are however,

based on fairly short data sets with limited parameter combina-

tions. This raises an important question regarding the adequacy of

those analyses.

To gain deeper insights into the dynamics of postural instability

following mTBI, in this work, we ask three fundamental questions:

(1) What is an optimal length for the data that would be adequate

for assessing postural control following mTBI? (2) How effectively

can fractal analysis assess postural control following mTBI? (3)

Can a general information theoretic approach based on Shannon

and Renyi entropies be developed such that it can assess postural

instability as well as shed light on the effectiveness of other

methods for analyzing COP signals?

Methods

1. Experimental procedure and data
Ten varsity intercollegiate student athletes with mTBI or with

recent diagnosis of concussion participated in this study. Three of

the ten subjects had a history of a prior concussion (0.7+1.3, R = 0–

3) and, utilizing the Cantu revised evidence based grading scale

[28], eight of the ten subjects were classified as grade II concussions

while two were classified as grade III. Further, 50% of the subjects

reported post traumatic amnesia and 40% of the subjects reported

loss of consciousness, however only one was lasted longer than a few

seconds. All subjects denied current and past history of balance,

neurological, metabolic, or vestibular disorders. All subjects

provided written informed consent prior to participating as

approved either by the University of Florida Institutional Review

Board, for studies conducted by Dr. Hass, or by the Georgia

Southern University Institutional Review Board, for studies

conducted by Dr. Buckley. Analyses of these existing data, which

are reported in the present paper, were also disclosed to the

University of Florida and Georgia Southern University Institutional

Review Boards, and to the US Army Research Office Human

Research Protections Office, and were determined to be exempt.

Potential subjects were identified by the athletic training staff

and the concussion diagnosis was confirmed by both the treating

certified athletic trainer and the team physician. On the day

following the concussion, Day 1, the experimental procedures

were initiated. The subject reported to the biomechanics

laboratory for testing each day until they were cleared to return

to participation in accordance with university medical policies,

seven days symptom free with progressive exertion (11.8+2.5 days).

The last day of testing was the day the subject was cleared for

return to full activity in their sport. One subject suffered a second

concussion during the recovery from his initial concussion and did

not return to participation that season. Upon arrival at the

biomechanics laboratory, each subject performed one trial of static

stance for 2 minutes. The subject was instructed to stand barefoot

on the force platform and to remain as stationary as possible for

the duration of the experiment. The trial was initiated and

concluded with a verbal cue from the investigator. Ground

reaction forces (A/P, M/L, and vertical) and center of pressure

(A/P and M/L) data were collected from a single force platform

(model OR-6, AMTI, Watertown, MA, USA) at 1000 Hz, where

A/P and M/L denote Anterior/Posterior and Medial/Lateral

balance, respectively. An example of a COP trajectory is shown in

Fig. 1 for a subject on day 6 after concussion.

2. Calculation of area of COP trajectory
The area of the COP trajectory is a popular metric for

characterizing postural sway. Consider a COP trajectory such as

shown in Fig. 1. To compute the area the trajectory has traced out,

one can partition a 2-dimensional plane that encompasses the

trajectory into unit areas, and sum up all the non-empty unit areas

covered by the COP trajectory.

3. Detrended fluctuation analysis
Detrended fluctuation analysis (DFA) [29–31] characterizes the

second order statistic – the correlation, in a time series. It can

automatically remove certain trends or nonstationarity contained

in the data under study. When applying DFA, one works on a

random-walk-type process, and expects the process to have a

power-law decaying spectral density. Denote the COP data

by x(i),i~1,2, � � � ,N . The random-walk-type process y(n),n~
1,2, � � � ,N can be obtained by first removing the mean value �xx and

then forming partial summation,

y(n)~
Xn

i~1

½x(i){�xx�: ð1Þ

DFA works as follows. First, one divides the time series into

tN=ms non-overlapping segments (where the notation txs
denotes the largest integer that is not greater than x), each

containing m points; then one calculates the local trend in each

segment to be the ordinate of a linear least-squares fit for the

random walk in that segment, and computes the ‘‘detrended

walk’’, denoted by ym(i), as the difference between the original

walk y(i) and the local trend; finally, one examines if the following

scaling behavior (i.e., fractal property) holds or not:

Fd (m)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v

Xm

i~1

ym(i)2
w

s
*mH ð2Þ

where the angle brackets denote ensemble average of all the

segments. The parameter H is often called the Hurst parameter

[32]. When the scaling law described by Eq. (2) holds, the

Entropy Analysis of Mild Traumatic Brain Injury
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process under investigation is said to be a fractal process.

The autocorrelation for the ‘‘increment’’ process, defined as

x(i)~y(iz1){y(i), decays as a power-law,

c(k)*k2H{2 as k??: ð3Þ

When H~1=2, the process is called memoryless or short range

dependent. The most well-known example is the Brownian motion

(Bm) process. In nature and in man-made systems, often a process

is characterized by an H=1=2. Prototypical models for such

processes are fractional Brownian motion (fBm) processes. When

0ƒHv1=2, the process is said to have ‘‘anti-persistent’’

correlations [32]. For 1=2vHƒ1, the process has ‘‘persistent’’

correlations, or long memory properties [32]. The latter is justified

by noticing that

Xk~?

k~1

c(k)~?: ð4Þ

In practice, quite often power-law relations are only valid for a

finite range of k. Unfortunately, some researchers try to estimate

the H parameter (or other scaling exponents such as the fractal

dimension) by some optimization procedure without being

concerned about the scaling region.

4. Calculation of Shannon and Renyi entropies
As we have discussed, to compute the area of the COP, one can

count the number of non-empty grids/boxes covered by the COP

trajectory. The idea can straightforwardly be extended to calculate

Shannon and Renyi entropies, by the following procedure.

Assume a trajectory has visited m unit areas, with the i{th unit

area being visited by ni times. This is schematically shown in Fig. 1.

Note that an empty unit area, such as that denoted by k in Fig. 1 is

irrelevant. Let the trajectory be N points long. Then the

probability pi that the i{th unit area being visited is ni=N. The

Shannon entropy is defined by

I~{
Xm

i~1

pi log pi, ð5Þ

where the unit for I is a bit or baud corresponding to base 2 or e in

the logarithm. Without loss of generality, we shall choose base e.

Renyi entropy is a generalization of Shannon entropy. It is

defined by

IR
q ~

1

1{q
log (

Xm

i~1

pi
q): ð6Þ

IR
q has a number of interesting properties:

N When q~1, IR
1 is the Shannon entropy: IR

1 ~I .

N IR
0 ~log (m) is the topological entropy, which is just the

logarithm of the area traced out by a sway trajectory.

Therefore, the case of q~0 is equivalent to the logarithm of

the area.

N If p1~p2~ � � �~pm~
1
m

, then for all real valued q,

IR
q ~log (m).

N In the case of unequal probability, IR
q is a nonincreasing

function of q. In particular, if we denote

pmax~ max
1ƒiƒm

(pi), pmin~ min
1ƒiƒm

(pi),

then

lim
q?{?

IR
q ~{log (pmin), lim

q??
IR

q ~{log (pmax):

It is clear that so far as the unit areas are not visited with equal

probability, the Renyi entropy provides a better and more

Figure 1. COP trajectory for a subject on day 6 after concussion.
doi:10.1371/journal.pone.0024446.g001
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comprehensive characterization than the area metric. In partic-

ular, we can envision two potential advantages:

N Unit areas that are visited very rarely have very small

probability. Sometimes, they could correspond to outliers or

‘‘errors’’. Their effect can be mitigated by making q larger.

N If instead unit areas with small probability are to be ‘‘weighed’’

more, then one can simply make q smaller.

Results

1. Optimal data length for analysis
A standard balance test may last only 20 s [26]. Would such

short data be adequate for calculating nonlinear entropy metrics

from postural sway data? To see the problem, we have first

calculated a popular metric for characterizing postural sway, the

area of the COP. Specifically, we have calculated the area of COP

based on the first 20 s, first 40 s, first 60 s, first 80 s, first 100 s,

and all 120 s data. The variation of the area vs. such data length

for one subject is plotted in Fig. 2(a). We observe that on day 1

after concussion, the area increases with the data length rapidly.

Actually, the growth rate is faster than linear! From other subjects’

data, we have always observed that on day 1 after concussion, the

area increases with data length at least linearly, and sometimes

even exponentially.

The result shown in Fig. 2(a) compels us to ask: i) How long

should the data be to make proper conclusions? Note that so far as

area is the metric, no easy answer can be given, since area is a

strictly non-decreasing function of data length. Note also that the

work by Cavanaugh et al. [26] using approximate entropy was

based on 20 s data. They commented ‘‘Paradoxically, the range of

COP displacement after injury (approximately 4 cm) was less than

at preseason (approximately 5 cm), suggesting that postural

stability had improved, rather than become more impaired, after

injury.’’ Their puzzling observation could just be due to the

shortness of data they analyzed, noticing that the increase of area

with data length is much slower on day 12 than on day 1 – in other

words, postural instability would not be fully revealed by short

data right after concussion. ii) How should comparisons be made

among different injured subjects before traditional clinical

measures such as GSC, SAC, or BESS scores return to baseline?

This is a harder question to answer. Especially, depending on the

severity of concussion, one subject’s day 1 behavior could be

similar to another subject’s day 2, day 3, or even other day’s

behavior.

While a clean, definitive answer to both questions might be

hard to obtain, later in Sec. 3, we shall develop an information

theoretic approach so that we can gain important insights into

these issues.

2. Fractal analysis for assessing postural instability
Numerous work has shown that gait dynamics can be modeled

by 1=f a processes, where f is frequency and a~2Hz1, where

0vHv1 is called the Hurst parameter and characterizes the

correlation structure of the process: depending on whether H is

smaller than, equal to, or larger than 1/2, the process is said to

have anti-persistent, short-range, or persistent long-range correla-

tions [29,30]. Fractal analysis is also very promising for identifying

differences in postural stability between control and elderly

subjects [21–24]. This motivates us to ask whether the key

parameter, H , from fractal analysis, can be used to indicate

postural instability after concussion.

To answer the above important question, we have systemati-

cally examined the frequency contents of sway data. Figs. 3–4

show the power spectral density (PSD) for COP on day 1 and day

10, where the 1st column is always for PSD in linear scale; the 2nd

column for PSD is in log-log scale. At the first sight, the 2nd

column is very interesting: we clearly observe a linear line in log-

log scale for both A/P and M/L COP data, indicating that COP

data may be modeled by 1=f 2Hz1 processes.

To further confirm the scaling law of the COP data, we apply a

more sophisticated method, DFA, which is a more reliable method

for fractal analysis [29,30]. The DFA curves for the COP data of

one subject for day 1 and day 10 are shown in Figs. 3–4 as the 3rd

column, where the quantities are plotted also in log-log scale –

when the curve is linear, it means the process is a fractal process,

with H given by the slope of the linear curve. Indeed, the curves

are quite linear. In fact, the 2nd and 3rd columns correspond well:

the 1=f 2Hz1 scaling is from about 1 Hz up for COP, amounting

to m*210 samples in the DFA curve. Further, the H estimated

from PSD and DFA curves are consistent. Unfortunately, H here

is always greater than 1, and is not effective in indicating postural

instability after concussion. This compels us to have a serious 2nd

thought about the frequency contents of the data.

It turns out significant understanding can be found from the 1st

column of Figs. 3–4: only low frequencies have appreciable power;

the frequency range where fractal scaling is observed basically has

Figure 2. Variation of area and Shannon entropy with data length. (a) area and (b) Shannon entropy vs. data length for a subject on day 1
and day 12 after concussion.
doi:10.1371/journal.pone.0024446.g002
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negligible power. The 1st columns of Figs. 3–4 actually have

indicated how long the sway data have to be for a meaningful

analysis. For example, the frequency with the largest power in

Figs. 3(a1,b1) is around 0.1 Hz. Thus, if one only uses 20 s data, as

Cavanaugh et al. did [26], one basically only observes about 4

cycles of variations, if one assumes the frequency to be cut at

0.2 Hz. Since data here are not really periodic, but rather random,

little can be inferred from data as short as 20 s.

Figure 3. Power spectral density (PSD) and DFA results for COP of subject CW04 on day 1. First column: PSD in linear scale; 2nd column:
PSD in log-log scale; observe the linear relation on high frequency end. 3rd column: DFA results; indeed, there is very good linear (or scaling) relation.
doi:10.1371/journal.pone.0024446.g003

Figure 4. Same as Fig. 3 except for day 10.
doi:10.1371/journal.pone.0024446.g004
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3. Shannon and Renyi entropies for assessing postural
instability

We now check how Shannon entropy varies with data length.

The result is shown in Fig. 2(b). We observe two interesting

features: (1) Shannon entropy for data measured on day 1 after

concussion keeps increasing with data length, while that on day 12

reaches saturation when data length is 40 s; with longer data

length, it fluctuates slightly. The latter feature reflects that the

trajectory visits different unit boxes with un-equal probability. (2)

While overall, Shannon entropy for day 1 is much larger than that

for day 12, when data length is as short as 20 s, the opposite is

actually the case. Recall that a similar behavior has also been

observed with approximate entropy with 20 s data right after

concussion [26]. We now see that associating the value of

approximate entropy with the complexity of postural sway based

on such short data may not be justified.

The above discussions make it clear that we have to use all 120 s

of the data, in order to reliably assess the effects of postural

instability after concussion. The variations of entropies with the

number of days after concussion are shown in Fig. 5 for two

subjects. When such curves are averaged over the 10 subjects (up

to day 10, which is the last day for some subjects), we obtain Fig. 6.

While we identify that the general trend for the variation of the

Renyi entropies is decreasing after concussion, suggesting recovery

from concussion, we emphasize that the actual variation of the

Renyi entropies is not simply monotonic, but quite complicated.

This implies that the subjects might not have fully recovered from

concussion-induced postural instability, even after a fairly long

period of time (such as 1–2 weeks). This also means that these

entropy measures can effectively indicate postural instability long

after concussion has occurred. Note that there is a RTP protocol

that lets concussed student athletes return to sports activity only 4–

5 days after injury [33]. Our analysis indicates that such a clinical

practice may be too aggressive.

4. Dealing with nonstationarity
Postural sway data are notoriously nonstationary. One motiva-

tion that the standard practice only collects 20–30 s data is to

suppress nonstationarity. Now that we have shown that 20–30 s

data are too short, the issue of nonstationarity becomes more

acute. Therefore, an emerging challenge would be to properly deal

with nonstationarity and remove noise from sway data, so that

subsequent analysis is meaningful.

Figure 5. Temporal variations of Renyi entropies for 2 subjects. The 2nd subject (right) had two concussions: day 7 was the 1st day of the
2nd concussion.
doi:10.1371/journal.pone.0024446.g005

Figure 6. Temporal variations of Renyi entropies averaged
over 10 subjects.
doi:10.1371/journal.pone.0024446.g006
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In this regard, a versatile adaptive algorithm for detrending,

denoising, multiscale decomposition, and multifractal analysis

recently developed by the authors may be very useful [34–37]. In

fact, as far as denoising is concerned, the method is better than

linear filters, wavelet and chaos-based approaches [36]. While we

omit the details of the method here, we would like to show an

example (Fig. 7) to illustrate the effectiveness of the method.

Clearly, the long-term trend has been accurately determined.

It is important to note that the trend in Fig. 7(i.e., the red curve)

may have its own significance; therefore, whether it should be

filtered out or not depends on an understanding of the mechanism

for the trend signal. Overall, we may conclude that nonstationarity

associated with longer data will not pose a challenge in data

analysis.

Discussion

MTBI is a major public and military health concern. To help

assess recovery from mTBI, in this paper, we have carefully

examined the effects of COP data length on the computation of a

popular metric, the area of COP. We have found that immediately

following concussion, the area of COP data increases with data

length at least linearly for data length up to 2 min, therefore, at

least 2 min data is required in order to reliably quantify the effects

of mTBI on postural instability. We have also examined the utility

of fractal analysis for assessing postural instability, and found that

fractal scaling appears applicable to sway power above about

0.5 Hz, thus fractal characterization is only quantifying the

secondary effects (a small fraction of total power) in the sway

time series, and not effective in indicating recovery following

mTBI. More interestingly, we have developed an information

theoretic approach to quantify postural instability, by defining

Shannon and Renyi entropies from COP data. These entropy

measures have a number of appealing properties, including

capacity for determination of the optimal length of the time series

for analysis and a new interpretation of the area of COP. Most

importantly, entropy analysis can readily detect postural instability

in athletes at least 10 days post-concussion so that it appears

promising as a sensitive measure of effects of mTBI on postural

sway.

We emphasize that our purpose here is to develop suitable

concepts to effectively quantify postural instability. The data

analyzed here may be considered minimal for verifying our

concepts. In future, it will be very desirable that data collection can

be more systematic, in the sense that normal, pre-concussion data

can also be collected, together with post-concussion data long after

the injury, such as one month after the injury. It will also be

interesting to re-examine approximate entropy using longer data,

to gain more insights into the findings of Cavanaugh et al. [26].
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