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Induction of thermogenic adipocytes: molecular targets
and thermogenic small molecules
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Adipose tissue is a central metabolic organ that controls energy homeostasis of the whole body. White adipose tissue (WAT)

stores excess energy in the form of triglycerides, whereas brown adipose tissue (BAT) dissipates energy in the form of heat

through mitochondrial uncoupling protein 1 (Ucp1). A newly identified adipose tissue called ‘beige fat’ (BAT-like) is produced

through a process called WAT browning. This tissue mainly resides in WAT depots and displays intermediate characteristics of

both WAT and BAT. Since the recent discovery of BAT in the human body, along with the identification of molecular targets for

BAT activation, stimulating energy expenditure has been considered as a great strategy to treat human obesity and metabolic

diseases. Here we summarize recent findings regarding molecular targets and thermogenic small molecules that can stimulate

BAT and increase energy expenditure, with an emphasis on possible therapeutic applications in humans.
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INTRODUCTION

Obesity is caused by an imbalance between energy intake and
energy expenditure.1 The excess energy is stored as triglycerides
in adipocytes. The prevalence of obesity and its related
metabolic diseases is increasing worldwide. However, current
approaches to combat obesity are limited due to their adverse
side effects. For example, Orlistat, a well-known medication
that blocks fat digestion, causes multiple side effects, including
diarrhea, body aches, headache and nausea.2–4 Phentermine is
another widely used drug that suppresses appetite. However,
phentermine targets the central nervous system and can cause
severe mental changes and sensory deficits.5 The recent
discovery of brown adipose tissue (BAT) in adults has brought
about a new interest in alternative therapies that activate BAT
to treat obesity and associated metabolic diseases.6–8 These
studies have thus fueled the development of therapeutic
strategies that increase energy expenditure.

The major site of energy storage is the white adipose tissue
(WAT). BAT generates heat by oxidation of stored energy with
the help of uncoupling protein 1 (Ucp1). Cold exposure and
adrenergic activation can simulate Ucp1 expression and
activity.8–10 Beige adipocyte (BAT-like) is another subtype
within white adipose tissue. The cells that make up this tissue
are called brite (brown in white) or brown-like adipocytes.
Similar to brown adipocytes, beige adipocytes also express

Ucp1, which allows protons to cross the inner mitochondrial
membrane, resulting in increased oxygen consumption and
heat generation.8,11 Heat generated through the activation of
brown and beige adipocytes can protect mammals against cold
exposure. This process greatly affects energy homeostasis and
whole body metabolism.

The activation and/or induction of thermogenic adipocytes
can lead to significant body weight reduction and improved
metabolic parameters in animal studies. Thus, a promising
therapeutic strategy to increase the energy expenditure is to use
chemical agents to stimulate the induction of beige adipocytes
or the activation of brown adipocytes (Figure 1 and Table 1).
Several compounds, including berberine, butein, salsalates,
fucoxanthin and peroxisome proliferator-activated receptor
γ (Pparγ) agonists, have been identified as they exhibit great
potential to activate/induce BAT or beige fat.12–16 This review
summarizes findings regarding the molecular mechanisms
responsible for the induction of thermogenic adipocytes
(Figure 1). This review also summarizes thermogenic small
molecules (Table 1) that are derived from plants (natural
thermogenic compounds), artificially synthesized small mole-
cules (synthetic thermogenic compounds) or endogenous small
molecules (endogenous thermogenic compounds). Finally, the
possible therapeutic applications of these thermogenic com-
pounds in human diseases are discussed.
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MOLECULAR TARGETS FOR INDUCING THERMOGENIC

ADIPOCYTES

Uncouplers
Uncoupling protein 1. Ucp1 is a multipass transmembrane
protein that is highly expressed in the mitochondria
of thermogenic adipocytes, brown adipocytes and beige
adipocytes. Ucp1 modulates the proton gradient between the
mitochondrial matrix and the intermembrane space and
generates heat by uncoupling the respiratory chain with
a low rate of ATP production.17,18 Because the proton gradient
is essential for ATP synthesis, the activity of Ucp1 is tightly

regulated. Normally, Ucp1 is activated in response to
cold exposure. Cold exposure stimulates the secretion of
noradrenaline from the sympathetic nervous system,
leading to the activation of adrenergic receptors and the
stimulation of the thermogenic response in adipocytes.9,19

Leptin and other factors that stimulate free fatty acid release
can activate BAT or beige fat through direct binding to
fatty acids with Ucp1.20–22 Cold exposure also increases
Ucp1-dependent thermogenesis by increasing the levels
of reactive oxygen species in the mitochondria and
sulfenylation of Ucp1.23 Ucp1 transcription is also regulated

Figure 1 Molecular mechanism of thermogenic induction by small molecules. Activation of cell surface receptors, such as Trpv1, β3-AR,
Ptch1 and A2aR, in adipocytes and TrkB in muscles involves cellular signaling cascades (PKA, PKG, Sirt1, AMPK and p38 MAPK),
transcriptional regulators (Prdm family, Pgc-1α, Ppar family and Zfp516) and cytokines (IL-4 and IL-13) to induce Ucp1 expression. This
process also stimulates brown adipocytes followed by Ucp1-mediated heat production. Natural thermogenic small molecules, such as
berberine, butein, capsaicin and fucoxanthin, activate thermogenic transcriptional factors through their cell surface receptors or by
modulating cellular signaling cascades in adipocytes. 7,8,DHF stimulates TrkB and induces sustained AMPK activity in muscles. Synthetic
thermogenic compounds Ppar agonists, Jak inhibitors, Notch inhibitors, salsalate, β-AR agonists, BAY 41–8543 and DNP can also increase
thermogenesis. Thermogenic small molecules, including serotonin, lactate, BAIBA, nitrate, and adenosine, are endogenously produced
upon certain stimuli to increase thermogenic responses. BAIBA and lactate secreted from myocytes upon exercise can act upon white
adipocytes and stimulate thermogenic conversion. A2aR, adenosine A2a receptor; AMPK, AMP-activated protein kinase; β-AR, β-adrenergic
receptor; BAIBA, β-aminoisobutyric acid.; BBR, berberine; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CAP, capsaicin;
7,8 DHF, 7,8 dihydroxyflavone; DNP, dinitrophenol; Fx, fucoxanthin; Hes, hairy and enhancer of split; IFN, interferon; Jaki, Jak inhibitor;
p38 MAPK, p38 mitogen-activated protein kinase; Pgc-1α, peroxisome proliferator-activated receptor gamma coactivator-1α; PKA, protein
kinase A; PKG, protein kinase G; Pm20d1, peptidase M20 domain-containing 1; Ppar, peroxisome proliferator-activated receptor;
Prdm, PR domain-containing proteins; Ptch1, Patched-1; sGC, soluble guanylate cyclase; Shh, Sonic hedgehog; Sirt1, Sirtuin 1;
TrkB, tropomyosin-related kinase receptor B; Trpv1, transient receptor potential cation channel subfamily V member 1;
TZD, thiazolidinedione; Ucp1, uncoupling protein 1; Zfp516, zinc finger protein 516; Noti, Notch inhibitor.
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by multiple transcription factors, including Pparγ, PR domain-
containing 16 (Prdm16) and peroxisome proliferator-activated
receptor gamma coactivator-1 alpha (Pgc-1α).24–29 Thus, to
generate functionally active thermogenic adipocytes, regulation
of Ucp1 transcription and activity should be carefully
considered.

Peptidase M20 domain-containing 1. Most studies related to
the thermogenic action of adipocytes have focused on the
expression and activity of Ucp1 due to limited knowledge
regarding thermogenic enzymes. Nonetheless, questions have
been steadily raised for the presence of Ucp1-independent
thermogenic processes. Until recently, the underlying
mechanism of Ucp1-independent thermogenic processes has
been unclear.30,31 Peptidase M20 domain-containing 1
(Pm20d1) is a bi-directional N-acyl amino acid producing
enzyme (from fatty acids and amino acids) that has been
recently identified as a new thermogenic molecule that func-
tions independent of Ucp1. N-Acyl amino acids processed
from Pm20d1 can directly bind to the mitochondria and
function as endogenous uncouplers, leading to increased
mitochondrial respiration to replenish the ATP pool. Mice
injected with Pm20d1-containing adenovirus have been found
to be protected from diet-induced obesity via an increase in
energy expenditure.32 Moreover, injection of N-acyl amino acid
itself can also improve glucose metabolism and increase energy
expenditure.32

Transcriptional regulators
PR domain-containing protein. PR domain-containing protein
16 (Prdm16) was first identified as a powerful transcriptional
regulator of brown adipogenesis via modulation of the
muscle-to-brown fat switch.26 Forced expression of Prdm16
in white adipocyte precursor cells can lead to the induction
of brown adipocyte-selective genes, resulting in higher
metabolic rates.25,26,33 Transgenic mice expressing Prdm16 in
WAT depots are protected from obesity due to improved
glucose metabolism.34 Consistently, adipocyte-specific knock-
out of Prdm16 exacerbates obesity and glucose homeostasis.35

Mechanistic studies have further revealed that Prdm16 interacts
with multiple transcriptional regulators, including Pparγ,
euchromatic histone-lysine N-methyltransferase 1 (Ehmt1),
CCAAT/enhancer binding protein beta (Cebpβ) and
transducing-like enhancer of split 3 (Tle3).26,36–38 Another
transcriptional Ucp1 regulator, Prdm4, has also been recently
identified. Loss of Prdm4 can increase white adipocyte
differentiation while suppressing the expression of thermogenic
genes in beige and brown adipocytes. Mice lacking Prdm4
have shown increased weight gain and insulin resistance on
a high-fat diet.13 Therefore, targeting pathways to increase
Prdm16/Prdm4 expression may lead to new therapeutic
avenues for obesity and diabetes.

Peroxisome proliferator-activated receptor gamma coactivator-
1α. Peroxisome proliferator-activated receptor gamma
coactivator-1α (Pgc-1α) was identified as a binding partner of
Pparγ in brown adipocytes.27 Pgc-1α plays a critical role in

Table 1 Thermogenic small molecules and their biological actions

Compound name Mechanism Biological action Reference

Natural compound
Berberine AMPK activation Classical BAT activation/browning of WAT 12

Butein Prdm4 induction Browning of WAT 13

Capsaicin TrpV1 activation Classical BAT activation/browning of WAT 64

7,8-Dihydroxyflavone Muscular TrkB activation Ucp1 induction in skeletal muscle 68

Fucoxanthin Unknown Ucp1 induction in WAT 15,72

Synthetic compound
Pparγ agonist Prdm16 stabilization Browning of WAT 16,74–76

Jak inhibitor Jak/Stat pathway inhibition Unknown 77

Notch inhibitor Notch pathway inhibition Browning of WAT 80

Salsalate Pka pathway Classical BAT activation 14

β3-AR agonists β-adrenergic receptor activation Classical BAT activation/browning of WAT 46,85–91

BAY 41–8543 cGMP-dependent pathway Classical BAT activation/browning of WAT 94

Dinitrophenol Uncoupler Heat production 95

Endogenous small molecule
Serotonin 5-HTR activation, β-AR inactivation Inhibition of classical BAT activation/browning of WAT 99,100

Lactate Redox state modification Browning of WAT 102

β-Aminoisobutyric acid Pparα-mediated Improving glucose tolerance and increasing energy expenditure 103

Nitrate cGMP-dependent pathway Classical BAT activation/browning of WAT 105

Adenosine A2a receptor activation Classical BAT activation/browning of WAT 107–109,131

Abbreviations: BAT, brown adipose tissue; cGMP, cyclic GMP; WAT, white adipose tissue.

Thermogenic small molecules
N-J Song et al

3

Experimental & Molecular Medicine



cold-mediated WAT browning downstream of β3-adrenergic
receptor signaling pathways. β3-Adrenergic receptor agonist or
cold exposure can activate MAPK and cAMP signaling to
modulate the activity and expression of Pgc-1α. The ectopic
expression of Pgc-1α in white adipocytes induces a brown
adipocyte-selective gene program and increases cellular
respiration.28,29 Mechanistic studies have revealed that Pgc-1α
binds with multiple transcription factors to regulate brown
adipocyte-specific gene programs. Interaction of Pgc-1α with
Prdm16 and mediator of RNA polymerase II transcription
subunit 1 (Med1) can increase the expression of Ucp1.39,40

Pgc-1α also binds with interferon regulatory factor 4 (Irf4) to
control transcription of the Ucp1 mRNA.41

Forkhead box protein c2. Forkhead box protein c2 (Foxc2) is
a well-known transcription factor that regulates adipocyte
differentiation and metabolism.42–44 Foxc2 transgenic mice
have increased beige fat formation and BAT activity,
subsequently increasing the rates of oxygen consumption and
energy expenditure. Foxc2-activated thermogenic adipocytes
are mediated by an elevated level of β-adrenergic receptor-PKA
signaling, leading to higher Ucp1 expression.45

Zinc finger protein 516. Cold-inducible zinc finger protein 516
(Zfp516) was identified by its interaction with the proximal
region of the Ucp1 promoter.46,47 Prdm16 and Zfp516
complexes can also induce the expression of Ucp1
and Pgc-1α. Knockout of Zfp516 has caused embryonic
lethality, with a significant reduction in BAT mass. Conversely,
adipocyte-specific expression of Zfp516 can activate
thermogenic adipocytes in WAT depots and prevent
diet-induced obesity by increasing energy expenditure.46

Hormones
Irisin. Although intrinsic transcription factors regulating
thermogenic adipocytes have been widely studied, extrinsic
factors are relatively less elucidated. One important hormone
that induces beige fat from WAT is irisin.48,49 Transgenic
mice expressing Pgc-1α in muscles have increased beige fat
and are protected from diet-induced obesity. Subsequent
studies have shown that induction of thermogenic adipocytes
by muscle Pgc-1α is mediated by muscle-secreted irisin.
Injection of irisin (also called fibronectin type III domain-
containing protein 5)-expressing adenovirus can induce beige
fat formation with increased thermogenic gene program
expression, improve glucose metabolism, and increase
energy expenditure.48 Circulating levels of irisin appear to be
correlated with acute exercise. However, its physiological roles
in humans remain to be determined.50

Fibroblast growth factor 21. Fibroblast growth factor
21 (Fgf21) has been studied as a critical metabolic regulator
in multiple organs, including adipose tissues, the liver and
the pancreas.51 Fgf21-knockout mice have abnormal gene
expression patterns and body temperatures when exposed to
low temperatures. Therapeutic doses of Fgf21 can lower
glucose levels shortly after being administered in both mice

and humans. The impaired expression of a thermogenic gene
program is also associated with a reduced level of Pgc-1α
protein in adipocytes.52

Cytokines
Type II cytokines, including IL-4 and IL-13, play beneficial
roles in adipose tissue remodeling. Cold exposure activates
eosinophils to secrete IL-4 and IL-13, resulting in alternative
activation of macrophages in adipose tissues. These activated
macrophages in turn produce catecholamines, resulting in
the induction of WAT browning and of the thermogenic
capacity of BAT.53 It has also been demonstrated that IL-4 and
IL-13 are critically involved in the commitment of beige
adipocytes from the progenitors in WAT depots, thereby
revealing dual roles of type II cytokines in the induction of
thermogenic adipocytes.54

NATURAL THERMOGENIC COMPOUNDS

Berberine
Berberine is a natural quaternary ammonium salt found in
medicinal herbal plants including barberries (Berberis spp.),
Oregon grape holly (Mahonia aquifolium), goldenseal (Hydrastis
canadensis) and Chinese goldthread (Coptis chinensis).55–57 These
medicinal plants are mainly used to treat diarrhea and metabolic
diseases. Previous studies have shown that berberine-treated
db/db mice can be protected from obesity by increasing
energy expenditure via the activation of BAT and browning of
inguinal but not epididymal WAT. Mechanistic studies have
shown that the AMPK/Pgc-1α pathway is responsible for the
induction of Ucp1 expression and brown adipocyte-selective
gene program expression.12

Butein
Butein, a naturally occurring chalcone, is isolated from the
medicinal Chinese lacquer tree (Toxicodendron vernicifluum).58

Toxicodendron vernicifluum has been shown to possess
anti-inflammatory, anti-obesity and anti-cancer activities.59–61

Butein also has the ability to induce Ucp1 mRNA expression.
Although the in vivo efficacy of butein in obese or diabetic mice
has not yet been demonstrated, butein has been utilized to
identify Prdm4 as a key driver of the brown and beige fat gene
program. Prdm4 knockdown and overexpression studies have
further revealed that Prdm4 can stimulate Ucp1 expression and
increase energy expenditure.13

Capsaicin
Capsaicin is one of the bio-active compounds found in
chili peppers.62 This compound produces a burning
sensation in humans. Capsaicin has been shown to be able to
activate transient receptor potential cation channel subfamily V
member 1 (TrpV1), resulting in anti-obese effects in mice.63,64

Capsaicin treatment can increase BAT activity and Ucp1mRNA
expression in inguinal WAT, leading to weight loss.65 Similar to
the action of capsaicin, the capsinoids capsiate, dihydrocapsiate
and nordihydrocapsiate can also activate TrpV1 and
subsequently increase energy metabolism; however, they do
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not cause pungency.66 Thus, further investigation of capsinoids
may also provide alternative treatment for metabolism-related
diseases.

7,8-Dihydroxyflavone
7,8-Dihydroxyflavone (7,8-DHF) is a naturally occurring
flavone found in primula tree (Godmania aesculifolia)
leaves.67 This flavone has been shown to have beneficial effects
on central nervous system-related diseases.68,69 In metabolic
diseases, 7,8-DHF-treated female, but not male, mice have been
shown to be resistant to obesity induced by a high-fat diet. This
resistance can be explained by increased expression of Ucp1 in
muscles accompanied by increased energy expenditure
without appetite suppression.70 However, the mechanism for
its differential effects in the different sexes is currently unclear.
Regardless, it is known that 7,8-DHF treatment increases Ucp1
expression and AMPK activity via TrkB (tropomyosin-related
kinase receptor B) in skeletal muscles. The anti-obese effect of
7,8-DHF is blunted in TrkB-knockout mice, further indicating
that TrkB plays a crucial role in 7,8-DHF-mediated anti-obese
effects.70

Fucoxanthin
Fucoxanthin is a highly enriched carotenoid found in edible
seaweeds.71 Fucoxanthin has been shown to prevent obesity,
metabolic disease and cancer.72,73 Fucoxanthin treatment in
mice can reduce whole body weight and abdominal fat. These
improvements in metabolic parameters are also related to the
induction of Ucp1 protein levels in white adipose tissue.15,74

SYNTHETIC THERMOGENIC COMPOUNDS

Ppar γ agonists
Pparγ, a nuclear receptor, belongs to the class of transcription
factors with a characteristic ligand binding domain. Pparγ is
regarded as the master regulator of adipogenesis.6,75 Treatment
with Pparγ agonists can stimulate the formation of beige
adipocytes. However, its underlying mechanism remains
unclear.76–78 A recent study has indicated that Pparγ agonists,
particularly rosiglitazone, can induce beige adipocyte formation
through stabilizing the Prdm16 protein. The induction of beige
adipocyte by rosiglitazone is blunted in Prdm16-knockdown
cells, further indicating a role for Prdm16 in rosiglitazone-
mediated WAT browning.16

JAK inhibitors
In a recent study, Moisan et al.79 screened small-molecule
inducers of human beige fat from white adipocytes and
identified JAK inhibitors—tofacitinib and R406—as key
molecules. JAK inhibitors can reduce lipid-droplet size,
increase cellular oxygen consumption and increase Ucp1
expression in human adipocytes. These JAK inhibitor effects
could be due to the repression and activation of the interferon
and hedgehog signaling pathways, respectively.79

Notch inhibitor
Notch signaling is a critical pathway in the central nervous
system. This pathway also plays an important role in metabolic
regulation.80,81 Adipocyte-specific deletion of notch1 or Rbpj
(a downstream activator of notch signaling) in mice can induce
beige adipocytes, resulting in an increase in whole body energy
expenditure. Treatment with the chemical notch inhibitor
DAPT has shown similar upregulation of brown fat-specific
genes, including Ucp1, in cultured and primary adipocytes.
Injection of another notch inhibitor, DBZ, in leptin-deficient
mice resulted in a reduction in body weight gain and
improvement in metabolic parameters.82

Salsalate
Salsalate is a powerful anti-inflammatory drug originating from
salicylates. This drug has been traditionally used to reduce pain
and inflammation. Its action can be explained by reducing
inflammatory chemical signals such as TNF-α and IL-6.83 The
beneficial effects of salsalate in metabolic disease have been
observed in salsalate-treated patients.84–86 A recent study has
shown that salsalate-treated mice have increased BAT activity
and are resistant to diet-induced obesity. Salsalate has also
resulted in a reduction in body weight in preestablished obese
mice, further suggesting its therapeutic potential in obesity.
Mechanistically, salsalate appears to modulate PKA activity in
brown adipocytes.14

β3-Adrenergic receptor agonists
β3-Adrenergic receptor (AR) has a critical role in BAT
activation and WAT browning through PKA-mediated
signaling.87,88 Cold-exposed β3-AR knockout mice have
shown reduced Ucp1 expression compared to wild-type
counterparts.89 Mice with triple knockout of all beta receptors
(β1, β2 and β3) are more prone to diet-induced obesity and
metabolic diseases due to defects in thermogenic activities.90 In
accordance with this finding, two well-known β3-AR agonists,
isoproterenol and CL316.243, have been shown to cause
marked increases in Ucp1 expression at the mRNA and protein
levels in both brown and white adipocytes.91,92 Furthermore,
these agonists have been shown to activate BAT and induce
WAT browning in mice.46,93

BAY 41–8543 (soluble guanyl cyclase)
Cyclic GMP has also been shown to be connected to metabolic
processes in BAT via its roles in regulating mitochondrial
activity.94,95 Cyclic GMP-dependent pathways can be targeted
as a new therapeutic approach to treat obesity and metabolic
diseases. Treatment with BAY 41–8543 can sustain soluble
guanylyl cyclase, reduce body fat mass and improve glucose
metabolism in diet-induced obese mice. Accordingly, increased
thermogenic adipocytes and higher levels of energy expenditure
are observed in mice treated with BAY 41–8543. The
thermogenic activity of BAY 41–8543 is mediated by the
activation of lipid uptake in BATs and increased differentiation
of brown adipocytes.96
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Dinitrophenol
Dinitrophenol (DNP) is a proton ionophore that enables
protons to cross mitochondrial membranes.97 This process
allows protons to leak out of the mitochondria without
coupling the proton gradient to ATP synthesis. In the past,
DNP was widely used as a dieting aid. However, it has
been discontinued due to numerous side effects, including
death in several patients.98 Acute exposure to DNP increases
the metabolic rate; it also causes nausea, vomiting and
headache.99 Furthermore, long-term treatment with DNP
causes severe side effects, including cataracts, lesions and
cardiovascular failure among others.98

ENDOGENOUS THERMOGENIC SMALL MOLECULES

Serotonin
Serotonin is a monoamine neurotransmitter. The role of
serotonin and its related proteins in metabolism has also been
widely investigated.100 Recent studies performed by two
independent groups have reported that serotonin can
negatively act on WAT browning. Whole body or adipose
tissue-specific deletion of Tph1, the enzyme that produces
serotonin from its precursor tryptophan has protected mice
from high-fat diet-induced obesity. Such an effect is due to an
increased energy expenditure. Consistently, mice injected with
chemical inhibitors of Tph1 are also resistant to diet-induced
obesity.101,102

Lactate
Lactate is a well-known cellular metabolite produced in
muscles during anaerobic glycolysis and high-intense
activity.103 Lactate has been traditionally thought as a cellular
waste product. However, recent studies have revealed a new
function of lactate in the browning effect. Carrière et al.
presented evidence showing that cold exposure can increase
circulating lactate levels and induce monocarboxylate
transporter (Mct1) (lactate importer) gene expression in BAT
and subcutaneous WAT. Exposure to lactate in adipocytes
can stimulate mitochondrial activity, fatty acid oxidation and
Ucp1 expression. These metabolic effects of lactate are negated
in the presence of Mct1 inhibitors, showing that lactate
transport is important in lactate-mediated WAT browning.104

β-Aminoisobutyric acid
Exercise has been considered the best treatment for obesity and
metabolic diseases. Robert et al.105 suggested that the modula-
tion of circulating hormones and small molecules by increasing
muscle activity (exercise) is closely associated with adipocytes.
These authors identified β-aminoisobutyric acid (BAIBA) as
a key small-molecule myokine responsible for muscle-mediated
WAT browning. BAIBA treatment in human cells can increase
thermogenic gene expression, lipid oxidation and oxygen
consumption rates. Consistently, BAIBA treatment in mice
has decreased weight gain and improved glucose tolerance
through a Pparα-mediated mechanism.105 Thus, BAIBA can
add benefit to exercise against metabolic diseases.

Nitrate
Inorganic nitrate is a cellular metabolite produced from
NO oxidation.106 In the past, nitrate was considered
a non-bioactive molecule; however, it has been recently
reported that nitrate has anti-obesity effects via thermogenic
adipocyte induction.107 Nitrate treatment can induce brown
adipocyte-selective genes in primary adipocytes, and dietary
nitrate supplementation can increase beige adipocyte formation
in WAT depots. The effect of nitrate on WAT browning
is dependent on the nitrate–nitrite–NO pathway and cyclic
GMP signaling.107

Adenosine
Adenosine is an abundant ribonucleoside in the human body.
This ribonucleoside plays critical roles in energy transfer and
signal transduction.108 Adenosine regulates BAT lipolysis and
respiration in hamster and mouse models.109,110 Adenosine
treatment can activate thermogenic gene programs in both
human and mouse brown adipocytes. Loss of adenosine
receptor or treatment with adenosine antagonists has been
shown to impair BAT-dependent thermogenesis, whereas
activation of adenosine receptor prevents diet-induced obesity
by inducing WAT browning and increasing energy
expenditure.111

UNRESOLVED ISSUES FOR THERMOGENIC SMALL

MOLECULES

Modern technologies in cell, molecular biology and genetic
model systems have greatly advanced our understanding of the
molecular mechanisms of cell biology, including brown
adipocytes and WAT browning. In addition, recent progress
in the identification of chemical regulators has further
suggested that BAT should be considered promising therapeu-
tic targets for weight management and metabolic diseases.
Although recent studies have indicated that modulating energy
expenditure by BAT or beige fat is highly effective in
treating metabolic diseases, the significance of BAT in
human physiology and unsolved issues for future therapeutic
applications remain to be clarified.

Therapeutic applications in humans
Can brown fat in humans help increase energy expenditure
beyond its role in maintaining body temperature? One of the
main concerns is whether induction of browning in humans is
a legitimate strategy against obesity and metabolic diseases. It is
clear that diet-, cold- and exercise-induced WAT browning and
BAT activation in mice can prevent obesity and its associated
metabolic diseases. However, this strategy has not yet been
deemed attractive against human metabolic diseases. Indeed,
the proportion of brown fat mass in humans is nearly 1/10 of
that in mice. Systemic administration of catecholamines is
negatively associated with human obesity; it is ineffective for
human thermogenesis, with potential sympathomimetic
effects.112 By contrast, 3 h of cold exposure in humans can
increase energy expenditure by 1.8-fold. This result is thought
to be largely mediated by increased BAT activity.113
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The amount of BAT in human is inversely correlated
with BMI, suggesting that the activation of BAT can play
a significant role in counteracting human metabolic diseases.114

Nevertheless, further studies are needed to determine whether
WAT browning can be a valuable therapeutic strategy in
humans.

Potential negative outcomes by BAT stimulation
Are there any unwanted side effects of browning (or increased
BAT activity) in humans? WAT browning or increased
BAT activity can protect animals from weight gain, and
it can increase insulin resistance by enhancing energy
expenditure and thermogenesis. As seen in DNP cases,
increased uncoupling can also affect body temperature, free
radical levels, injury risk and cellular metabolic rates.98,99

However, further research is needed to determine the potential
harmful effects of sustained BAT activity. Alternatively,
to prevent any possible negative effects, temporal control
of BAT activation could be used as an essential therapeutic
intervention against metabolic diseases. In addition, targeted
delivery to adipocytes (discussed below) may be required
to circumvent psychological and other effects on non-adipose
tissues.

Tissue-specific control of BAT activity
Because currently available anti-obesity medications are often
limited by their psychological or cardiovascular side effects,
specific targeting of adipose tissue is needed to remove
any potential side effects. Most small molecules, including
berberine, butein and β3-AR agonists, have shown effects on
the neuronal system, thus suggesting that they might have
unwanted actions on the cardiovascular system or neuronal
tissues. By increasing the concentration of the drugs in specific
tissues, but not in others, targeted drug delivery can avoid the
interaction of thermogenic small molecules with healthy
tissues, thereby overcoming the downfalls of conventional
methods of drug delivery. Indeed, a recent discovery by
the Langer group has shown that nanoparticle drug
delivery methods targeting adipose tissues can be effective for
obesity and insulin resistance without drug accumulation in
other tissues.115 Involvement of different types of precursor
cells during the induction of beige fat in subcutaneous WAT
and inguinal WAT may also provide potential therapeutic
approach to modulate WAT depot-specific induction of
thermogenesis.116

In addition, targeting CNS or mimicking outflow of PNS to
activate brown fat or WAT browning can have therapeutic
potential. Autonomic hypothalamic innervation and peripheral
temperature-sensitive neurons are involved in BAT activation
and energy expenditure.117,118 Menthol-activated Trpm8 and
capsaicin-activated Trpv1 or Trpv4 have been shown to be
effective for BAT activation and weight management.119–121

The melanocortin system also plays a significant role in
the sympathetic outflow, BAT activation, and energy
expenditure.122 Mirabegron, a β3-AR agonist, can activate
BAT thermogenesis, induce glucose uptake, and increase

energy expenditure in humans, although some concerns, such
as increased heart rate and blood pressure, still exist.10 In
human studies, the GLP1 analog liraglutide and dipeptidyl
peptidase-4 inhibitors have been used as GLP-1 activators
and have been shown to be able to activate BAT, increase
WAT browning, and lower body fat.123,124 Therefore,
a better understanding of neuronal control of BAT activity
and selective targeting to specific neurons can also provide
new optimal strategies without causing harmful effects
in humans.

BAT activity in other diseases
Cancer cachexia is an atrophy of muscle and adipose tissue in
cancer patients. This condition can be easily observed in cancer
patients and is one of the main causes of decreased survival
rates and survival periods in cancer patients.125 Cancer patients
have higher energy expenditure rates, indicating that brown or
beige fat might have been induced.126 Using microarray
analysis in cancer clones, PTHrP has been identified as
a crucial thermogenic factor secreted by cancer cells.
Neutralization of PTHrP in cancer-bearing mice has abrogated
the WAT browning effect by cancer.127 Another possible
explanation of WAT browning by cancer cells is chronic
inflammation.128 Cancer-induced chronic inflammation
and IL-6 production have been reported to be responsible for
WAT browning in cancer-bearing mice. Similar to PTHrP,
anti-inflammatory treatments can also reduce the thermogenic
activity of adipose tissues. As such, current approaches
for diminishing symptoms of cancer cachexia rely on
anti-inflammatory treatments. In the future, more specific
targets, such as PTHrP and IL-6, should be investigated to
alleviate cancer cachexia. Because numerous genetic factors
and small molecules have been reported to have effects
on WAT browning, approaches that reduce thermogenic
adipocytes should be considered for cancer patients.

MOVING FORWARD

How can we better and effectively activate BAT? With only
a handful of thermogenic small molecules being available, a few
immediate strategies can be used to achieve better treatment
effects. First, chemical modifications can be made to increase
solubility, enhance targeted delivery, and improve controlled
release. For instance, structure–activity relationship studies by
chemical optimization can bring about thermogenic small
molecules that are more effective against obesity and metabolic
diseases. For example, optimized sirtuin inhibitors based on
resveratrol have been developed, and their efficacies have been
tested in diabetic animals. Modifications, such as PEGylation,
encapsulation with nanoparticles, and various other approaches
executed for cancer, could also be applied for diabetes
treatment. Targeted delivery to regions, such as hypothalamic
sites, brown adipose tissues, and white adipose tissues, can
further reduce dosages and side effects in healthy tissues. This
approach can also reduce the fluctuation of chemical levels in
the circulation. The field of drug delivery has advanced
markedly in the past few decades. Collaboration is needed to
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increase the pharmacokinetics of thermogenic small molecules
in the near future.

Second, combinatorial compounds are currently being used
for various diseases. Combinatory treatments with two or more
drugs with different mechanisms may thus increase the
beneficial metabolic effects. For example, GLP-1 agonist,
liraglutide, and melanocortin receptor agonist, RM-493, have
been shown to have additive metabolic benefits in diet-induced
obese mice.129 Similarly, combinations of plant-derived
polyphenols, such as carotenoids and isoflavones, also offer
great potential to facilitate energy metabolism. Third,
‘precision or individualized medicine’ is emerging as a result
of advancement in research technologies and clinical practice.
The amounts of BAT, BMI, environments (local temperatures,
exercise, and food) and genomes can vary widely among
individuals. Therefore, unique approaches can be made
for each patient. To achieve this, improved diagnosis of BAT
activation in humans (preferably with non-invasive
approaches) and identification of biomarkers would be
required to dissect the differences needed for personalized
medicine.

Finally, aside from focusing on the chemistry of small
molecules, small molecules can also be used as tools to identify
new molecular targets for therapeutic intervention and thus
provide novel insights on the plasticity of adipocytes. Using the
same concept, PPARγ, MyoD and Sirt1 have been identified as
molecular targets of a thiazolidinedione, suberanilohydroxamic
acid and resveratrol, respectively. These molecules have been
highlighted as targets for the therapeutic intervention of
metabolic diseases and have offered novel insights into the
biology of such diseases. Likewise, the identification of Prdm4
by using butein also emphasizes the utility of small molecules
in the better understanding BAT physiology. Therefore,
identification of better small molecules could provide new
insights into thermogenic adipocytes. These molecules can
thus be used as alternative therapeutic targets to develop
interventions against obesity and metabolic dysregulation.130

CONCLUSION

Recent studies of metabolism have focused on understanding
the biology of BAT. This adipose tissue utilizes glucose and
fatty acids as energy sources to burn calories and generate heat
in response to cold exposure.130 Since the discovery
of functional BAT in humans, targeting BAT is a promising
therapeutic approach for treating obesity and metabolic
diseases. However, further research is needed to reveal the
significance of BAT (and WAT browning) in humans and its
potential applications in human metabolic diseases.
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