
Journal of Animal Science, 2022, 100, 1–10
https://doi.org/10.1093/jas/skac055
Advance access publication 24 February 2022
Animal Genetics and Genomics

Received January 13, 2022 Accepted February 23 2022.

Heritability and genetic correlation estimates of semen 
production traits with litter traits and pork production 
traits in purebred Duroc pigs
Shinichiro Ogawa,†,1 Makoto Kimata,‡ Masamitsu Tomiyama,‡ and Masahiro Satoh†

†Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
‡CIMCO Corporation, Koto-ku, Tokyo 136-0071, Japan
1Corresponding author: shinichiro.ogawa.d5@tohoku.ac.jp

Abstract 
We estimated heritabilities of semen production traits and their genetic correlations with litter traits and pork production traits in purebred Duroc 
pigs. Semen production traits were semen volume, sperm concentration, proportion of morphologically normal sperms, total number of sperm, 
and total number of morphologically normal sperm. Litter traits at farrowing were total number born, number born alive, number stillborn, total 
litter weight at birth, mean litter weight at birth, and piglet survival rate at birth. Litter traits at weaning were litter size at weaning, total litter 
weight at weaning, mean litter weight at weaning, and piglet survival rate from birth to weaning. Pork production traits were average daily gain, 
backfat thickness, and loin muscle area. We analyzed 45,913 semen collection records of 896 boars, 6,950 farrowing performance records of 
1,400 sows, 2,237 weaning performance records of 586 sows, and individual growth performance records of 9,550 animals measured at ap-
proximately 5 mo of age. Heritabilities were estimated using a single-trait animal model. Genetic correlations were estimated using a 2-trait 
animal model. Estimated heritabilities of semen production traits ranged from 0.20 for sperm concentration to 0.29 for semen volume and were 
equal to or higher than those of litter traits, ranging from 0.06 for number stillborn and piglet survival rate at birth to 0.25 for mean litter weight 
at birth, but lower than those of pork production traits, ranging from 0.50 for average daily gain to 0.63 for backfat thickness. In many cases, 
the absolute values of estimated genetic correlations between semen production traits and other traits were smaller than 0.3. These estimated 
genetic parameters provide useful information for establishing a comprehensive pig breeding scheme.

Lay Summary 
Genetic parameters of 5 semen production traits, 10 litter traits, and 3 pork production traits in purebred Duroc pigs was estimated. Heritabilities 
of semen production traits ranged from 0.20 for sperm concentration to 0.29 for semen volume and were equal to or higher than those of litter 
traits, ranging from 0.06 for number stillborn and piglet survival rate at birth to 0.25 for mean litter weight at birth, but lower than those of pork 
production traits, ranging from 0.50 for average daily gain to 0.63 for backfat thickness. In many cases, the absolute values of genetic correl-
ations between semen production traits and other traits were smaller than 0.3. These estimated genetic parameters provide useful information 
for establishing a comprehensive pig breeding scheme.
Key words: Duroc pigs, genetic parameter estimation, litter traits, pork production traits, semen production traits
Abbreviations: ADG, average daily gain; BF, backfat thickness; CON, sperm concentration; GP, grandparent; GGP, great-grandparent; LEPR, leptin receptor; LMA, 
loin muscle area; LSW, litter size at weaning; LWB, total litter weight at birth; LWW, total litter weight at weaning; MWB, mean litter weight at birth; MWW, mean 
litter weight at weaning; NBA, number born alive; NSB, number stillborn; NUM, total number of sperm; NUMN, total number of morphologically normal sperm; 
PROP, proportion of morphologically normal sperm; SCD, stearoyl-CoA desaturase; SNP, single nucleotide polymorphism; SVB, piglet survival rate at birth; SVW, 
piglet survival rate until birth to weaning; TNB, total number born; VOL, semen volume

Introduction
The Duroc breed is a terminal sire breed widely used in 
crossbreeding for modern pork production. In Japan, efforts 
have been made to improve pork productivity and quality 
in Duroc pig populations (Suzuki et al., 2005a; Ohnishi and 
Satoh, 2018; Yazaki et al., 2020). To achieve more efficient 
pork production, it is important to improve feed efficiency 
(Hoque et al., 2007; Ito et al., 2018; Homma et al., 2021) 
and reproductive efficiency, such as increasing litter size 
(Tomiyama et al., 2011; Konta et al., 2019; Ogawa et al., 
2019b) and using artificial insemination techniques (González-
Peña et al., 2015, 2016; Krupa et al., 2020). In regard to 

semen production traits, including semen volume (VOL) and 
total number of sperm (NUM) per ejaculate, previous studies 
have estimated genetic parameters by using a repeatability 
animal model (0.1–0.3; Wolf, 2010; Marques et al., 2017; 
Zhao et al., 2019), and moderate heritabilities were often esti-
mated (Zak et al., 2017). Recent studies have investigated the 
underlying genetic mechanism (Marques et al., 2018; Gòdia 
et al., 2019; Mei et al., 2021). For Landrace and Large White 
breeds, genetic correlations of semen production traits with 
total number born (TNB), number born alive (NBA), number 
stillborn (NSB), and litter size at weaning (LSW) have been 
also estimated (Wolf, 2010; Brinke et al., 2020). Nevertheless, 
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information on the genetic relationship of semen production 
traits with other economically important traits in pigs is still 
limited. Here, we estimated the heritabilities of semen pro-
duction traits and their genetic correlations with litter traits 
and pork production traits in purebred Duroc pigs.

Materials and Methods
Ethics statement
Approval of the Animal Care and Use Committee was not 
required for this study because the data were acquired from 
an existing database.

Phenotypic and Pedigree Information
The 50,646 semen collection records from the sperm-rich 
fraction of 966 Duroc boars collected during 2000 and 2017, 
8,128 litter performance records of 1,786 sows collected 
during 2000 and 2018, and individual records of perform-
ance testing at about 5 mo of age of 11,806 animals collected 
during 2004 and 2018 were used. These data were provided 
by CIMCO Corporation (Tokyo, Japan), which operates 
great-grandparent (GGP) and grandparent (GP) farms by 
Specific Pathogen Free system in northern to southern parts 
of Japan. Sows were serviced typically three times by artifi-
cial insemination with semen collected from the same boar. 
Pedigree data covered 67,993 animals. Five semen produc-
tion traits per ejaculate were analyzed: VOL, sperm con-
centration (CON), proportion of morphologically normal 
sperm (PROP), NUM, calculated as VOL × CON, and total 
number of morphologically normal sperm (NUMN), calcu-
lated as NUM × PROP. Six litter traits at farrowing were ana-
lyzed: TNB, NBA, NSB, total litter weight at birth (LWB), 
mean litter weight at birth (MWB), calculated as LWB/NBA, 
and piglet survival rate at birth (SVB), calculated as NBA/
TNB. Four litter traits at weaning at 21 d after farrowing 
were analyzed: LSW, total litter weight (LWW), mean litter 
weight (MWW), calculated as LWW/ LSW, and piglet survival 

rate from birth to weaning (SVW), calculated as LSW/ NBA. 
Three pork production traits were analyzed: average daily 
gain (ADG), calculated as live body weight/ age at end of 
testing, and ultrasonically measured backfat thickness (BF) 
and loin muscle area (LMA) at end of testing.

For semen production traits, we first excluded semen col-
lection records with an interval of longer than 21 d from the 
previous collection, and age at ejaculation of younger than 6 
or older than 48 mo. Then, we extracted records with VOL 
and CON within the ranges of their means ± 3 SD, collecting 
45,913 records of 896 boars. For litter traits, we extracted 
litter performance records at farrowing collected after 2001 
using semen from Duroc boars and extracted those at weaning 
without cross-fostering, according to previous studies of 
Landrace and Large White pigs in the same company (Ogawa 
et al., 2019a, b). This gave 6,950 records at farrowing from 
1,400 sows and 2,237 records at weaning from 586 sows. 
For pork production traits, we extracted performance testing 
records of 9,550 animals tested on GGP farms with live body 
weight between 80 and 130 kg, ADG between 300 and 1,500 
× g, BF between 5 and 50 mm, and LMA between 15 and 
60  cm2, according to the national swine genetic evaluation 
in Japan (http://www.nlbc.go.jp/kachikukairyo/iden/buta/
hyoka_meat2.pdf). Table 1 lists descriptive statistics of the 18 
traits studied.

Numerical analysis
The following repeatability animal model was fitted to the 
phenotypic records for semen production and litter traits:

y = Xb+ Za+Wpe+ e,

where y is the vector of phenotypic records; b is the vector 
of fixed effects; a is the vector of breeding values; pe is the 
vector of permanent environmental effects; e is the vector of 
errors; and X, Z, and W are the design matrices relating b, a, 
and pe, respectively, to y. Fixed effects for semen production 

Table 1. Descriptive statistics of the traits studied

Trait; abbreviation Unit No. of animals No. of records Mean SD Min Max 

Semen volume; VOL ml 896 45,913 126.7 56.8 9 321

Sperm concentration; CON 108 counts/ml 896 45,913 5.81 2.36 0.24 13.73

Proportion of morphologically normal sperm; PROP — 896 45,913 0.89 0.05 0.10 1

Total number of sperm; NUM 108 counts 896 45,913 660.3 245.6 5.7 2,753.1

Total number of morphologically normal sperm; NUMN 108 counts 896 45,913 588.3 221.5 5.2 2,505.3

Total number born; TNB Number 1,400 6,950 9.8 2.6 1 18

Number born alive; NBA Number 1,400 6,950 9.1 2.4 1 17

Number stillborn; NSB Number 1,400 6,950 0.7 1.0 0 8

Total litter weight at birth; LWB kg 1,400 6,950 14.1 3.6 1.2 26.5

Mean litter weight at birth; MWB kg 1,400 6,950 1.58 0.25 0.81 2.17

Survival rate at birth; SVB — 1,400 6,950 0.94 0.09 0.33 1

Litter size at weaning; LSW number 586 2,237 7.7 2.1 1 13

Total litter weight at weaning; LWW kg 586 2,237 41.4 11.2 5 76.8

Mean litter weight at weaning; MWW kg 586 2,237 5.54 1.12 3.10 9.48

Survival rate from birth to weaning; SVW — 586 2,237 0.83 0.16 0.15 1

Average daily gain; ADG g/d 9,550 9,550 704.8 64.5 519.5 921.4

Backfat thickness; BF mm 9,550 9,550 26.1 7.1 10.3 50

Loin muscle area; LMA cm2 9,550 9,550 28.4 5.0 15.0 45.1

http://www.nlbc.go.jp/kachikukairyo/iden/buta/hyoka_meat2.pdf
http://www.nlbc.go.jp/kachikukairyo/iden/buta/hyoka_meat2.pdf
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traits (Wolf and Smital, 2009a, b; Wolf, 2010) were year at 
ejaculation (18 levels; 2000 to 2017); month at ejaculation 
(12 levels; January to December); farm (6 levels; two GGP 
and four GP farms); age at ejaculation (43 levels: 6 to 48 mo), 
and interval between present and previous semen collections 
(13 levels: equal to or shorter than 3, 4, …, 14, and equal to 
or longer than 15 d). Fixed effects for litter traits (Ogawa et 
al., 2019a, b) were farrowing year (18 levels: 2001 to 2018), 
farrowing season (4 levels: spring [March to May], summer 
[June to August], autumn [September to November], winter 
[December to February]), farm (6 levels: two GGP farms and 
four GP farms), and dam parity (10 levels: 1st to 9th and 
equal to or higher than 10th).

The following animal model was fitted to the phenotypic 
records for pork production traits:

y = Xb+ Za+ e.

Fixed effects were sex (2 levels; boar, gilt); farm (2 levels; 
two GGP farms), birth year (13 levels; 2006 to 2018), month 
at end of testing (12 levels; January to December), and a linear 
covariate of live body weight at end of testing, similar to the 
statistical model used in the national swine genetic evaluation 
in Japan.

Heritability was estimated via single-trait analysis and gen-
etic correlation was estimated via 2-trait analysis. We con-
firmed that the estimated heritabitities from 2-trait analysis 
were similar to those from single-trait analysis (Supplementary 
Table S1). When estimating the heritabilities of semen pro-
duction and litter traits, the mean and (co)variance of the vec-
tors a, pe, and e were assumed as follows:
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A is the additive genetic relationship matrix; and I is the 
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When estimating the genetic correlation between the 2 
semen production traits and that between the 2litter traits, 
the mean and (co)variance of a, pe, and e were assumed as 
follows:
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where σa12 is the additive genetic covariance; σpe12 is the per-
manent environmental covariance; σe12 is the error covari-
ance; and subscripts correspond to traits. When estimating 

the genetic correlation between the two pork production 
traits, the mean and (co)variance of a and e were assumed as
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When estimating the genetic correlation between semen 
production and litter traits, the mean and (co)variance of a, 
pe, and e were assumed (Wolf, 2010), as
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When estimating the genetic correlations of pork produc-
tion traits with semen production traits and litter traits, the 
mean and (co)variance of a, pe, and e were assumed (Wolf et 
al., 2005; Konta et al., 2019; Ogawa et al., 2020) as

E
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Variance components were estimated using AIREMLF90 
software (Misztal et al., 2002). SEs were obtained according 
to Klei and Tsuruta (2008). Variance component estimation 
was stopped when at least one of the following conditions 
was satisfied:

∑n
i=1

Ä
θ̂i,k − θ̂i,k−1

ä2
∑n

i=1 θ̂
2
i,k

< 10−20or

∑n
i=1

∣∣∣θ̂i,k − θ̂i,k−1

∣∣∣
n

< 10−10

where θ̂i,k is the estimated value of parameter i in iteration k; 
and n is the number of parameters to be estimated.

Selection accuracies for VOL and NBA based on selection 
candidate’s own repeated phenotypic records were calculated 
using the estimated genetic parameters as:

 
mh2

1+ (m− 1) rep2
→

m→+∞

 
h2

rep2
,

where h2 is the heritability, rep2 is the repeatability, and m is 
the number of records. Here, we used genetic parameters es-
timated by single-trait analysis (Table 2) as true values. Then, 
we assumed that that age at first record collection was 8 mo, 
or 32 wk in this study, for VOL, and 1 yr, or 52 wk, for NBA, 
and that the interval between consecutive record collections 
was 1 wk for VOL and 23 wk for NBA. Under these assump-
tions, the age of a selection candidate when the number of 
own phenotypic records just reaches m can be expressed as 
31 + m weeks for VOL and 29 + 23 m weeks for NBA. Next, 
selection accuracy for VOL was calculated by decreasing the 

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac055#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skac055#supplementary-data


4 Journal of Animal Science, 2022, Vol. 100, No. 3 

values of permanent environmental and error variances, σ2
pe 

and σ2
e . The value of σ2

pe (719.8) was decreased to 75% (to 
539.9) and 50% (to 359.9) while keeping other variances the 
same. The value of σ2

e  (1,807.8) was decreased by subtracting 
25% and 50% of σ2

pe (to 1,627.8 and 1,447.9, respectively).

Results and Discussion
Estimated heritabilities and repeatabilities
Estimated heritabilities of semen production traits ranged 
from 0.20 for PROP to 0.29 for VOL, equal to or higher 
than those of litter traits (ranging from 0.06 for NSB and 
SVB to 0.25 for MWB), but lower than those of pork produc-
tion traits (from 0.50 for ADG to 0.63 for BF; Table 2). The 
heritabilities of several semen production traits, estimated 
using a repeatability model (0.1 to 0.3) here and elsewhere 
(Wolf, 2010; Buranawit and Imboonta, 2016; Li et al., 2019; 
Brinke et al., 2020), were higher than those of TNB, NBA, 
NSB, and LSW in Landrace and Large White populations. 
Our estimated heritabilities of litter traits agreed with those in 
studies of Landrace and Large White populations in the same 
company and different Duroc populations in Japan (Ohnishi 
and Satoh, 2014; Ogawa et al., 2019b, 2020). Heritabilities 
of pork production traits may be overestimated if common 
environmental effects such as maternal, pen, littermate, 
and pen-mate effects are ignored (Willham, 1963; Ellen et 
al., 2007; Ogawa et al., 2021). Furthermore, the estimated 
phenotypic variance for ADG seems small. In this study, it 
is likely that the variance of phenotypic records for ADG re-
flects the variability in body weight more than that in age at 
end of testing. In fact, when we used the model ignoring the 
effect of body weight, estimated values of additive genetic and 
error variances increased from 69.0 to 1,653.5 and from 70.3 
to 1,692.9, respectively.

Estimated repeatabilities for semen production traits 
ranged from 0.41 for CON to 0.49 for VOL, and they were 
higher than those of litter traits (from 0.09 for NSB to 0.32 
for LWB). Estimated repeatabilities for litter traits agreed 
with those of Landrace and Large White populations of the 
same company and in another Duroc population in Japan 
(Ogawa et al., 2019b, 2020). Wolf (2010) estimated propor-
tions of permanent environmental variance to the phenotypic 
variance of several semen production traits to be higher than 
those of TNB, NBA, and LSW in Landrace and Large White 
populations. Ratios of estimated heritability to estimated re-
peatability ranged from 0.43 for PROP to 0.90 for MWB, 
comparable to the estimated heritabilities of pork production 
traits.

Estimated genetic correlations
The absolute values of the genetic correlation between pairs 
of semen production traits were more than twice their re-
spective SEs, except for PROP and NUM and PROP and 
NUMN (Table 3). The estimated genetic correlation between 
NUM and NUMN was almost 1, possibly due to low contri-
bution of PROP to NUMN in this study. As reported in pre-
vious studies (Wolf, 2010; Buranawit and Imboonta, 2016; 
Brinke et al., 2020), genetic correlations of VOL were positive 
with NUM and NUMN and negative with CON, and those of 
CON were positive with NUM and NUMN. The genetic cor-
relation between CON and PROP was −0.33 here, whereas be-
tween CON and percentage of deformed or abnormal sperm 
cells was 0.13 in Landrace and −0.14 in Large White (Wolf, 
2010), and −0.34 in Duroc, 0.08 in Landrace, and −0.04 in 
Yorkshire (Li et al., 2019). Previous studies have estimated 
different genetic correlations for some pairs of semen pro-
duction traits among breeds and lines (Wolf, 2010; Marques 
et al., 2017; Li et al. 2019). Semen production records could 

Table 2. Genetic parameters estimated by single-trait analysis

Trait1 Additive genetic variance Permanent environmental 
variance

Error variance Heritability (h2) Repeatability (rep2) h2 ÷ rep2 

Estimate SE Estimate SE Estimate SE 

VOL 1,025.1 177.1 719.8 110.4 1,807.8 12.1 0.29 0.49 0.59

CON 1.68 0.25 0.76 0.15 3.54 0.02 0.28 0.41 0.69

PROP 2.26 × 104 0.43 × 104 3.00 × 104 0.32 × 104 6.21 × 104 0.04 × 104 0.20 0.46 0.43

NUM 11.11 × 103 2.04 × 103 10.50 × 103 1.36 × 103 26.83 × 103 0.18 × 103 0.23 0.45 0.51

NUMN 8.73 × 103 1.66 × 103 9.02 × 103 1.12 × 103 21.67 × 103 0.14 × 103 0.22 0.45 0.49

TNB 0.76 0.15 0.69 0.12 4.73 0.09 0.12 0.23 0.53

NBA 0.62 0.12 0.57 0.10 4.25 0.08 0.11 0.22 0.52

NSB 0.05 0.01 0.03 0.01 0.80 0.01 0.06 0.09 0.67

LWB 1.98 0.35 1.62 0.26 7.74 0.15 0.17 0.32 0.55

MWB 1.51 × 102 0.20 × 102 0.17 × 102 0.12 × 102 4.48 × 102 0.08 × 102 0.25 0.27 0.90

SVB 0.45 × 103 0.12 × 103 0.16 × 103 0.10 × 103 7.07 × 103 0.13 × 103 0.06 0.08 0.74

LSW 0.39 0.14 0.36 0.13 3.25 0.11 0.10 0.19 0.52

LWW 18.39 5.32 13.47 4.21 74.37 2.59 0.17 0.30 0.58

MWW 0.10 0.04 0.07 0.03 0.96 0.33 0.09 0.14 0.59

SVW 0.15 × 102 0.06 × 102 0.12 × 102 0.06 × 102 1.92 × 102 0.07 × 102 0.07 0.12 0.55

ADG 69.0 4.1 — — 70.3 2.3 0.50 — —

BF 12.6 0.7 — — 7.3 0.4 0.63 — —

LMA 5.82 0.33 — — 4.43 0.18 0.57 — —

1See Table 1 for abbreviations of trait names.
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be mainly collected from sires after strict selection based on 
a particular breeding objective, which may be hampering the 
consistency of results across studies.

Estimated genetic correlations among litter traits in Table 
3 agree with those in Landrace and Large White populations 
of the same company and different Japanese Duroc popula-
tions (Ohnishi and Satoh, 2014; Ogawa et al., 2019b, 2020). 
The genetic correlation between SVB and SVW could not 
be reliably estimated, because the estimated permanent en-
vironmental variance of SVW was too small, at 10-10. This 
problem may be associated with the facts that the estimated 
heritabilities of SVB and SVW were both low in single-trait 
analyses and that NBA was the numerator of SVB but the 
denominator of SVW. With the approximation formula ex-
tended by Ogawa and Satoh (2020) from the formula pro-
posed by Sutherland (1965), the indirectly estimated genetic 
correlation between SVB and SVW was 0.34. However, the 
discrepancy between the estimated and the true values may be 
large, because the SEs of estimates used in the approximation 
calculation were not small.

Estimated genetic correlations among pork production 
traits were weak to negligible (Table 3). Previous studies of 
Japanese Duroc populations have reported a weak positive 
genetic correlation between ADG and BF and weak negative 
genetic correlations between ADG and LMA and between 
BF and LMA (Suzuki et al., 2005a; Ito et al., 2018; Ohnishi 
and Satoh, 2018; Yazaki et al., 2020). However, the defin-
ition of ADG in the previous studies included values within 
predefined ranges of body weight, such as from 30 to 105 kg 
(Suzuki et al., 2005a; Hoque et al., 2007; Ohnishi and Satoh, 
2018; Yazaki et al., 2020) or from 30 to 100 kg (Ito et al., 
2018; Homma et al., 2021).

Standard errors of genetic correlations between the five 
semen production traits and the ten litter traits tended to be 
greater, ranging from 0.11 to 0.23 (Table 3). The absolute 
values of estimated genetic correlations of 7 trait pairs were 
greater than twice their respective SEs, and those of 10 pairs 
were larger than 0.3. Estimated genetic correlations of semen 
production traits with NSB, SVB, and SVW were moderate 
to weak, but the reason is unknown. We estimated a genetic 
correlation of 0.12 between VOL and NBA, whereas Brinke 
et al. (2020) estimated weak negative correlations in German 
Landrace and Large White pigs, and Wolf’s (2010) estimates 
had different signs depending on breed and dam parity in 
Czech Landrace and Large White pigs. We estimated a genetic 
correlation of −0.39 between NUM and NSB, but Brinke et al. 
(2020) estimated positive values. Wolf (2010) estimated nega-
tive genetic correlations of NUM with TNB, NBA, and LSW, 
but their absolute values were often lower than twice their 
SEs. As discussed above, the consistency of the results seems 
to be low, perhaps because no animal has both semen produc-
tion and litter traits (Wolf, 2010), and therefore genetic cor-
relations could be estimated only via relatives in the pedigree.

Absolute values of estimated genetic correlations between 
semen production traits and pork production traits were equal 
to or smaller than 0.14, less than twice their SEs. Wolf (2009) 
also estimated weak genetic correlations between semen pro-
duction traits and pork production traits and noted that se-
lection on pork production traits would have minor effects 
on semen production traits. Buranawit and Imboonta (2016) 
found no significant genetic correlation between semen pro-
duction traits and pork production traits was estimated, ex-
cept for −0.52 between VOL and BF.

Absolute values of estimated genetic correlations between 
litter traits and pork production traits were greater than twice 
their respective SEs only for BF with LWB, MWB, LWW, and 
MWW. Previous studies estimated a weak genetic correlation 
between litter size traits and pork production traits in pigs 
(Ducos and Bidanel, 1996; Misumi et al., 2009; Ogawa et al., 
2020). Solé et al. (2021a, 2021b) investigated the effects of 
two single nucleotide polymorphisms (SNPs), rs709596309 
C>T of the leptin receptor (LEPR) gene and rs80912566 T>C 
of the stearoyl-CoA desaturase (SCD) gene, on piglet weight 
at weaning in Duroc pigs. The SNP of LEPR is thought to af-
fect BF in Duroc pigs (Óvilo et al., 2005; Uemoto et al., 2012; 
Ros-Freixedes et al., 2016), and may be in part responsible 
for the negative genetic correlation between BF and MWW 
here (−0.56).

Selection accuracy
Selection accuracies for VOL were always greater than 
those for NBA (Figure 1), because the estimated heritability 
of VOL was higher than that of NBA (Table 2), and more 
records can be quickly collected for VOL than for NBA. 
Selection accuracy for VOL approached an upper limit, that 
is, close to the positive square root of heritability divided by 
repeatability (0.77), by about 2 years (105 wk) of age, so the 
contribution of collecting further records to the increase in 
accuracy seems to be minimal (Satoh, 2017). Thus, effective 
selection for semen production traits may be possible at an 
earlier stage than for litter traits. It is required to keep col-
lecting semen from the same boar to increase the number 
of repeated records. However, it is not practical to continue 
to collect semen from boars not selected as sires, and the 
selection intensity is often higher in males than in females. 
Therefore, collecting semen production records from collat-
eral relatives may be difficult, and records from direct-line 
relatives such as fathers of the selection candidates could be 
more important (Satoh, 2017).

As expected, selection accuracy increased as σ2
pe (more so) 

and σ2
e  (less so) decreased (Figure 2) although the phenotypic 

variance was the same in both cases. Furthermore, as σ2
pe de-

creased, the difference in selection accuracy from that cal-
culated with default settings at m records increased with m, 
whereas as σ2

e  decreased, the difference was smaller and ap-
proached 0. Thus, adding effects so as to decrease permanent 
environmental variance may effectively increase the accuracy 
of breeding value prediction. Several studies have estimated a 

Figure 1. Accuracy of selection for semen volume (VOL) and number 
born alive (NBA) .
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lower permanent environmental variance when adding non-
additive genetic effects, such as dominance and epistatic ef-
fects, into repeatability model (Nagy et al., 2013; Aliloo et 
al., 2016; Aliloo et al., 2017; Vitezica et al., 2018). However, 
the possibility of more accurate breeding value prediction by 
adding these effects (Varona et al., 2018) may be limited, be-
cause introducing those effects brings additional covariances 
among individuals, as well as the difficulty in accurate esti-
mation of non-additive genetic effects and the possible con-
founding problem observed in various cases, including ones 
using genome-wide SNP markers (Hill et al., 2008; Lee et al., 
2010; Vitezica et al., 2013; Nagy et al., 2014; Bolormaa et al., 
2015; Aliloo et al., 2016; Aliloo et al., 2017; Raidan et al., 
2018; Joshi et al., 2020; Onogi et al., 2021).

Future perspectives
We estimated genetic parameters of semen production traits, 
litter traits, and pork production traits in purebred Duroc 
pigs. As far as we know, no such comprehensive range of 
genetic parameters has previously been estimated in pigs. 
Therefore, the results could provide novel information useful 
in determining a comprehensive breeding plan for future pork 
production. For example, when there is an antagonistic gen-
etic correlation between traits to be improved and litter size 
traits, selection intensity and selection accuracy in sib-testing 
may be decreased through a lower number of littermates. This 
could be more serious for traits relating to pork quality meas-
ured after slaughter, including intramuscular fat, fatty acid 
composition, and pork moisture and texture (Suzuki et al., 
2005a, b, 2006). In this study, however, strong genetic cor-
relations between litter size traits, such as NBA and LSW, 
and semen production and pork production traits were not 
estimated.

We used a repeatability model to estimate genetic param-
eters of semen production traits. Oh and See (2008) and 
Strathe et al. (2013) used multiple-trait and random-
regression models, both considering the difference in age at 
ejaculation. It is well known that pork production can be 
affected by seasonal variations in the external environment, 

including photoperiod and temperature (Zumbach et al., 
2008; Zasiadczyk et al., 2015; Sevillano et al., 2016). A 
detailed study of the interaction between genetics and en-
vironment (age at ejaculation and temperature) may pro-
vide useful information for breeding to resist aging and 
improve heat tolerance. Previous studies estimated genetic 
parameters in pigs and cattle using transformed semen pro-
duction records (Marques et al., 2017; Hagiya et al., 2018; 
Rostellato et al., 2021). Therefore, it may be necessary to 
investigate the effect of data transformation on the per-
formance of the analysis, as done by Zoda et al. (2021) for 
superovulatory response traits in Japanese Black cattle. On 
the other hand, for ratio-defined traits such as PROP and 
MWB, theoretical investigations and computer simulations 
have been conducted (Iwaisaki and Wilton, 1993; Ogawa 
and Satoh, 2020; Yazaki et al., 2021), and the results should 
be interpreted with caution. The results of genetic parameter 
estimation for semen production traits may contain bias due 
to both selection at a young age and data editing (Tusell et 
al., 2012; Atagi et al., 2017; Pelayo et al., 2019; Olsen et al., 
2021). Furthermore, genetic correlations of semen produc-
tion traits may differ among breeds (Wolf, 2010; Li et al., 
2019). Therefore, it is important to confirm our results by 
conducting similar analyses for different breeds and popula-
tions with larger data sets.

Conclusion
We estimated the heritabilities of semen production traits 
and their genetic correlations with litter traits at farrowing 
and weaning and pork production traits in purebred Duroc 
pigs. Estimated heritabilities of semen production traits were 
similar to or higher than those of litter traits. Absolute values 
of estimated genetic correlations between semen production 
traits and other traits were <0.3 in many cases, suggesting 
that genetic improvement of semen production traits is pos-
sible and that selection for them is unlikely to cause imme-
diate correlated responses in other economically important 
traits studied. Our results could contribute to developing a 
future comprehensive pig breeding scheme.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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