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A B S T R A C T   

The predicted age difference (PAD) between an individual’s predicted brain age and chronological age has been 
commonly viewed as a meaningful phenotype relating to aging and brain diseases. However, the systematic bias 
appears in the PAD achieved using machine learning methods. Recent studies have designed diverse bias 
correction methods to eliminate it for further downstream studies. Strikingly, here we demonstrate that bias still 
exists in the PAD of samples with the same age even after kind of correction. Therefore, current PAD may not be 
taken as a reliable phenotype and more investigations are needed to solve this fundamental defect. To this end, 
we propose an age-level bias correction method and demonstrate its efficacy in numerical experiments.   

1. Introduction 

Brain aging often accompanies cognitive decline and dementia, and 
even neurological diseases (Cole et al., 2018) such as Alzheimer’s dis
ease (Abbott, 2011), schizophrenia (Koutsouleris et al., 2014), and 
Parkinson’s disease (Reeve et al., 2014). Thus abnormal brain aging is 
usually considered an important indicator of the occurrence of such 
diseases. As an individual’s brain age is often different from his or her 
chronological age, computational prediction based on brain magnetic 
resonance imaging (MRI) data has been a common way of estimating 
brain age (Cole et al., 2018). Machine learning methods including 
feature extraction-based shallow learning (Franke et al., 2010; Wang 
et al., 2014; Kondo et al., 2015; Cole et al., 2015; Liem et al., 2017) and 
end-to-end deep learning methods (Huang et al., 2017; Cole et al., 2017; 
Jónsson et al., 2019; Peng et al., 2021; Cheng et al., 2021) have been 
applied for this task. 

The predicted age difference (PAD) between the predicted brain age 
and chronological age (Jónsson et al., 2019), sometimes referred to as 
brain age delta (Cole et al., 2017; Smith et al., 2019), has been proposed 
to characterize how an individual deviates from a healthy brain aging 
trajectory (Fig. 1). Several studies have shown that high positive PAD 
correlates with neurological degeneration and the development of dis
eases, such as lower fluid intelligence and higher mortality (Cole et al., 
2018), traumatic brain injuries (Cole et al., 2015), cognitive impair
ments (Franke et al., 2012; Liem et al., 2017) and schizophrenia 
(Koutsouleris et al., 2014; Schnack et al., 2016), while negative PAD is 

related to a healthy lifestyle. Thus, PAD has been viewed as an important 
phenotype relating to brain diseases (e.g., Alzheimer’s disease, brain 
injury), physical activity and even genome sequence variants (Cole 
et al., 2017; Jónsson et al., 2019; Kaufmann et al., 2019) (Fig. 1). 

However, there exists a systematical bias in the predicted age for 
subjects of all ages, indicating an over-prediction of the age for relatively 
younger individuals and an under-prediction for elderly individuals (de 
Lange and Cole, 2020; Smith et al., 2019). For general nonlinear pre
diction methods, the real cause of the bias is still obscure. Le et al. (2018) 
have shown that this bias is inevitable for regression, rather than a 
property limited to age prediction. It has been defined as ‘regression 
dilution’, which is attributed to the non-Gaussian distribution of the 
chronological age (MacMahon et al., 1990; Fuller, 2009; Smith et al., 
2019). However, when the age prediction method is linear, e.g., ordi
nary linear regression (OLS), for chronological age Y, the bias is 
generated due to the fact that the predicted age Ŷ and the PAD = Ŷ − Y 
are orthogonal, which forces PAD and Y to have an angle between 0 and 
90 degrees (Habeck et al., 2017). For models that do not account for 
significant variance in age Y, PAD and age Y will be more obviously 
correlated. This explanation of bias in linear situation reflects the cause 
of PAD in nonlinear cases. Since PAD is supposed to be an informative 
index that tells scientists or clinicians how a person compares his/her 
own age to peers in terms of brain health, and ideally provides predictive 
utility independent of chronological age, the correlation between un
corrected PAD and age undoubtedly weakens the rationality of PAD as a 
biomarker or phenotype. 
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To eliminate the bias existing in the predicted brain age, several bias 
correction methods have been developed (Beheshti et al., 2019; de 
Lange et al., 2019; de Lange and Cole, 2020; Liang et al., 2019; Smith 
et al., 2019; Treder et al., 2021). Bias correction is usually executed as an 
additional step after the prediction of brain age. Linear correction 
methods are commonly used, while high-order correction methods such 
as quadratic correction show similar results to the linear ones (Smith 
et al., 2019). There are mainly two linear correction methods, i.e., the 
Cole’s method and Beheshti’s method (de Lange et al., 2020). And such 
linear bias correction methods can be easily adapted to nonlinear ones, 
e.g., by replacing the linear regression in these methods with the 
quadratic regression (Smith et al., 2019). Although some recent methods 
add bias correction constraints for the regression model such as LASSO 
during model training (Treder et al., 2021), some studies claimed that 
this kind of methods essentially adjusts the degree of linear bias 
correction after training and provides a balance between Mean Absolute 
Error (MAE) and PAD bias. Although those bias correction methods have 
been adopted to correct the bias in the PAD of all samples (sample-level 
bias), which gives the mean of PAD over all samples close to zero, 
however, in this paper, we show that after such bias corrections, the bias 
appears significantly in the PAD of samples with the same age (age-level 
bias). This phenomenon exists for various datasets, age prediction 
methods, and sample-level bias correction methods. The existence of 
age-level bias weakens the reliability of results in previous research 
related to PAD. Therefore, we propose an age-level correction method 
and verify its efficacy for different settings. To the best of our knowl
edge, this is the first time to consider age-level bias. Furthermore, via 
doing OLS regression between non-imaging indexes in UK Biobank and 
two variables: chronological age and corrected PAD, we show that the 
age-level corrected PAD is a potentially reliable phenotype. 

2. Methods 

2.1. Datasets and preprocessing 

We used three brain MRI datasets including UK Biobank (Miller 
et al., 2016), OASIS (LaMontagne et al., 2019), and ABIDE (Craddock 
et al., 2013). UK Biobank is a large-scale biomedical database, which 
contains multi-modal brain image data of people in UK. We followed the 

data processing pipeline of the UK Biobank in Alfaro-Almagro et al. 
(2018). OASIS (v3) is a dataset containing T1w MRI data of more than 
1000 participants that were collected across 30 years. Participants 
include 609 cognitively normal adults and 489 individuals at various 
stages of cognitive decline ranging in age from 42 to 97. We used 3388 
T1 structural MRI images from 1098 subjects. We directly used the 
processed data by the OASIS team. ABIDE is an MRI dataset containing 
functional and structural brain imaging data collected from multiple 
laboratories for studying the neural bases of autism. We used 1099 T1 
structural MRI images. We directly used the processed data from the 
ABIDE I provided by the ABIDE website. Since the edges of MRI images 
are often empty, the 3D MRI images in all three datasets were cropped to 
the proper sizes. Table 1 shows the basic information of all these three 
datasets. The 41 non-imaging indexes in UK Biobank we considered are 
listed in Table 3 of the reference Smith et al. (2019). 

In some studies, the bias correction model is fitted using the training 
data other than the test one, on which PAD is computed, while most 
other methods assume the chronological ages are known and the bias 
correction models are fitted using the test data directly. However, we 
showed that the bias correction results were almost identical no matter 
using an independent validation dataset or not for fitting parameters for 
both the Cole’s and Beheshti’s methods (Supplementary Fig. 8). There
fore, in the following, we adopt the setting without an independent 
validation dataset for bias correction step. For age prediction accuracy 
measured by MAE, we achieved the minimum MAE of 2.55 years by 
ResNet with Kullback–Leibler divergence loss, which is comparable to 
the minimum MAE achieved by other studies on dataset UK Biobank 
(Peng et al., 2021). 

2.2. Age prediction methods 

2.2.1. Loss functions for deep neural networks 
Kullback–Leibler divergence (KL) Peng et al. (2021) transformed 

the chronological age to a probability vector with a fixed length and 
trained the neural network by minimizing the KL divergence between 
the probability vectors of the chronological age and the predicted brain 
age. Suppose the length of the age probability vector is K, for sample i, 
the chronological age Yi can be represented as the mean of the age 
vector, that is 

Fig. 1. Illustration of the computation and applications of PAD. Left: The predicted age is obtained by a prediction model trained on the brain data (e.g., structural 
MRI image) X and the chronological age Y of the samples. PAD is defined as the difference between the predicted age Ŷ and the chronological age Y. Right: PAD has 
been considered an important phenotype relating to brain diseases (e.g., Alzheimer’s disease, brain injury), physical activity, and even genome sequence variants. 

Table 1 
Summary of three brain age estimation datasets  

Dataset Sample Size Age Range Age Statistics (Mean  ± STD) Cropped Size Training Test Validation 

UK Biobank 9880 [38, 86] 62.02 ± 7.48 (160, 192, 160) 7979 1482 419 
OASIS 3388 [42, 97] 66.92 ± 9.70 (160, 196, 224) 2575 678 135 
ABIDE 1099 [6,  65] 17.07 ± 8.03 (224, 224, 160) 836 220 43  
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Yi =
∑K

k=1
pik⋅aik, (1)  

where aik is the age vector for sample i in a dataset (e.g., the age vector of 
UK Biobank is [38,86]). pik is generated by a Gaussian distribution with 
variance equal to 1. For sample i, the predicted age Ŷ i can also be rep
resented as the mean of the age vector with an estimated probability 
vector, that is 

Ŷ i =
∑K

k=1
p̂ik⋅aik, (2)  

where p̂ik is the kth element of the probability vector for sample i esti
mated by neural network. The total KL loss is 

KL({Yi}, {Ŷ i} ) =
1
N
∑N

i=1
KL(Pi | P̂i) =

1
N
∑N

i=1
KL
(
Pi
⃒
⃒ fp(Xi)

)
, (3)  

where N is the number of samples and fp represents the neural network, 
which outputs a probability vector. 

Mean Square Error (MSE) It is defined as 

MSE({Yi}, {Ŷ i}) =
1
N
∑N

i=1
(Yi − f (Xi))

2
, (4)  

where f represents the neural network that outputs the predicted age 
directly. 

Cross-Entropy loss (CE) When cross-entropy loss is used, neural 
networks also output a softmax probability vector. Besides, the chro
nological age is rounded to integers and the regression problem is 
transformed into a classification problem. The cross-entropy loss is 
defined as 

CE

({

Yi

}

,

{

Ŷ i

})

=
1
N

∑N

i=1

∑K

k=1
( − Yiklog(p̂ik)), (5)  

where p̂ik is the kth element of the estimated softmax probability vector, 
and (Yi0,Yi1,…,YiK) is the one-hot vector formulation of Yi. 

2.2.2. Deep learning methods 
The deep learning methods were all trained on NVIDIA Tesla V100 

GPU. The data processing procedures are identical. We used learning 
rate decay for all the models and chose the optimal epoch number by 
evaluating PAD on the validation dataset. The detailed hyper- 
parameters of all the deep learning methods for various datasets and 
loss functions are summarized in Supplementary Table 1. 

3D ResNet We implemented the ResNet (He et al., 2016) in Peng 
et al. (2021) for 3D images and modified the last layer slightly for 
different datasets or loss functions. ResNet is a special convolutional 
neural network with short connections between layers. The convolu
tional filters mostly are 3 × 3 × 3 and batch normalization layer (Ioffe 
and Szegedy, 2015) is used in almost every layer. Considering the 
problem complexity, we chose ResNet with 34 layers (ResNet-34). Be
sides, for different loss functions, the hyper-parameters were optimized 
on the validation dataset. To be specific, the final 3D average pooling is 
set to (3,6, 5) for UK Biobank, (5, 6,7) for OASIS, and (7, 7,5) for ABIDE, 
respectively. To ensure the convergence of neural networks, we added a 
nonlinear ReLU activation layer into the linear layer when the loss is 
MSE and CE. On UK Biobank, 3D ResNet-34 achieves an MAE of 2.55 
years with KL loss, 2.77 years with MSE loss, and 2.81 years with CE loss. 
On OASIS, 3D ResNet-34 achieves an MAE of 2.23 years with KL loss. On 
ABIDE, 3D ResNet-34 achieves an MAE of 3.38 years with KL loss. 

SFCN Simple Fully Convolutional Network (SFCN) (Peng et al., 
2021) defeats other methods on age prediction tasks in Predictive An
alytic Challenge (PAC) 2019. The model consists of seven blocks and 
each of the first five blocks contains a 3 × 3 × 3 3D convolutional layer, 

a batch normalization layer, a max pooling layer and a ReLU activation 
layer. The sixth block contains a 1 × 1 × 1 3D convolutional layer, a 
batch normalization layer and a ReLU activation layer. The seventh 
block contains an average pooling layer, a dropout layer (Srivastava 
et al., 2014) (50% dropout rate), a fully connected layer and a softmax 
output layer. We used the default parameters apart from adjusting the 
batch size to make SFCN converge on the UK Biobank dataset. In Peng 
et al. (2021), when SFCN and 3D ResNet share the same training pa
rameters, they achieve comparative performance in the training set. 
However, after hyper-parameters adjustment, 3D ResNet performs bet
ter on all three data sets we used. In our experiment, SFCN achieves an 
MAE of 3.17 years with KL loss. 

3D MSDNet Mixed-scale dense convolutional neural network 
(MSDNet) (Pelt and Sethian, 2018) has been shown to be effective on 
large image segmentation with significantly fewer parameters and 
training samples. Since a single MRI image has millions of voxels, and 
most MRI datasets are composed of an insufficient quantity of images, 
we adapted the architecture of MSDNet to the age prediction problem. In 
the original MSDNet, feature maps of each layer are connected to the 
other layers, and the shape of the feature map keeps the same across 
layers. As shown in Supplementary Fig. 1, we added multiple blocks into 
the 3D MSDNet, and each block has the same structure as the original 3D 
MSDNet. Then, between any two blocks, there is a max-pooling opera
tion scaling down the 3D MRI images. At the last layer, the 3D feature 
maps are flattened to be input into a fully-connected neural network. 3D 
MSDNet achieves an MAE of 3.88 years with KL loss. 

2.2.3. Statistical learning methods 
For statistical learning methods, we first applied the 2 × 2 × 2 max- 

pooling and flattening on the MRI image data in UK Biobank. Then we 
used PCA to extract 1000 features with maximal variance. We further 
trained Least Absolute Shrinkage and Selection Operator (LASSO) 
regression (Tibshirani, 1996), Support Vector Regression (SVR) (Smola 
and Schölkopf, 2004), and XGBoost (Chen and Guestrin, 2016) using 
package scikit-learn, with the training dataset of UK Biobank and 
tested their performance on the test dataset. LASSO is a regression 
analysis method that performs both variable selection and regulariza
tion. SVR is developed for function estimation based on Support Vector 
Machines (SVM) (Cortes and Vapnik, 1995). XGBoost is an extended 
end-to-end algorithm of gradient boosting tree and it is used widely on 
many machine learning challenges. The three methods achieve 3.94, 
4.01, and 3.93 of MAE with KL loss. And the hyper-parameters were 
optimized on the validation dataset. 

2.3. Bias correction methods 

2.3.1. Sample-level bias correction 
There are mainly two linear correction methods, i.e., the Cole’s 

method (Cole et al., 2018; Peng et al., 2021; Smith et al., 2019) and 
Beheshti’s method (de Lange et al., 2020). Specifically, let Y, Ŷ , Ŷc 
represent the chronological age, predicted age, and predicted age with 
correction, respectively. Let PAD = Ŷ − Y and PADc = Ŷc − Y denote the 
PAD and the corrected one, respectively. The Cole’s method first re
gresses Ŷ on Y to estimate the linear relations between the predicted age 
and chronological age using 

Ŷ = α × Y + β, (6)  

where α and β represent the slope and intercept used to correct the 
predicted age, respectively. Then PAD is corrected by 

PADc = Ŷ c − Y =
Ŷ − β

α − Y.

The Beheshti’s method first fits the relationship between PAD and the 
chronological age as 

B. Zhang et al.                                                                                                                                                                                                                                   
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PAD = α × Y + β,

and the PAD is corrected by 

PADc = Ŷ c − Y = Ŷ − [(α + 1) × Y + β ].

Besides, de Lange et al. (2019) adopts an equivalent one to the 
Beheshti’s method after deriving α and β using the same method as that 
in Eq. (6), and PAD is corrected by 

PADc = Ŷ c − Y = Ŷ − (α × Y + β).

These bias correction methods have no significant differences except 
that the data corrected by the Cole’s method inevitably contains higher 
variance as the predicted age is divided by the slope value α for each 
subject, while the Beheshti’s method reduces the variance and results in 
a lower MAE as it includes the chronological age in the correction. 

2.3.2. Age-level bias correction 
To eliminate the bias that still exists after applying the well-known 

bias correction methods, we propose a straightforward age-level bias 
correction method. It corrects the bias via eliminating the bias curve 
corresponding to the mean PAD of samples at each age after the sample- 
level bias correction. For samples of age a, let μa, σa denote the mean, 
standard deviation of PAD over samples of age a, respectively, we can 
correct the PAD of sample i at the age level via 

PADac
i =

(
PADi − μa

)/
σa, (7)  

where PADac
i denotes the age-level corrected PAD of the same age a. This 

kind of correction can be executed after the Cole’s method or Beheshti’s 
method. The bias could be eliminated with this straightforward 
correction, since the mean of PADac

i of the same age a is zero: 

Ea
[
PADac

i

]
= Ea[(PADi − μa)/σa] = (Ea[PADi] − μa )

/
σa = 0.

2.4. Data and code availability 

The UK Biobank dataset is accessible upon applications via the 
website: https://www.ukbiobank.ac.uk/. OASIS can be downloaded 
from the website: https://www.oasis-brains.org/. ABIDE can be down
loaded from the website: https://fcon_1000.projects.nitrc.org/indi/abi 
de/. The code of this paper is deposited on GitHub: https://github. 
com/saulgoodenough/pad_bias_correction. 

3. Results 

In this section, we first demonstrate that age-level bias still exists 
after applying the current bias correction methods in PAD across mul
tiple data sets, several up-to-date machine learning methods, and 
different loss functions. We then show that with the proposed age-level 
bias correction method, the correlation between PAD and chronological 
age is greatly weakened. 

3.1. Bias still exists in the PAD of samples with the same age 

The bias correction methods including the quadratic ones have been 
adopted to correct the bias in the PAD of all samples (sample-level bias), 
which gives the mean of PAD over all samples close to zero. However, 
here we demonstrate that after such bias corrections, the bias appears 
significantly in the PAD of samples with the same age (age-level bias). 
The PAD correction results on the UK biobank dataset using the Cole’s 
method fitted with the linear, cubic, and quintic curves, respectively are 
shown in Fig. 2A-B. We can clearly observe that a systematic age-level 
bias pattern appears, though the sample-level bias declines close to 
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Fig. 2. Illustration of significant discrepancy between PAD, mean PAD of the same age, and age-level corrected PAD. The prediction model is ResNet with the KL 
divergence loss trained on the UK Biobank dataset. ‘Uncorrected’,‘Linear correction’, and ‘Quadratic correction’ mean PAD is uncorrected or corrected using Cole’s 
method with linear or quadratic correction, respectively. A. The scatter plots of PAD and the corrected PAD. B. The bar plots of the mean of PAD and the corrected 
PAD over samples of the same age. The trend curves are fitted with the linear, cubic, and quintic polynomials, respectively. C. The scatter plots of age-level corrected 
PAD. Age-level corrected PAD displays almost no bias patterns whether PAD is first corrected using Cole’s method or not. D. Comparison of the Pearson correlations 
between PAD, mean PAD of the same age and chronological age without or with bias correction using Cole’s method, respectively. E. Comparison of the Pearson 
correlations between PAD, mean PAD of the same age and chronological age, respectively. PAD is age-level corrected after bias correction using Cole’s method or not. 
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Fig. 3. Illustration of significant discrepancy between PAD and mean PAD of the same age after bias correction with the Cole’s method. A-B. For different loss 
functions (KL, MSE, and CE), and datasets (UK Biobank, OASIS, and ABIDE) with 3D ResNet-34, the fitted linear, cubic and quintic curves are quite significant in the 
bar plot of the mean PAD though all are close to a straight line for the PAD. In bar plots at the bottom, Pearson correlations between PAD and the chronological age 
decline close to zero while those between mean PAD and chronological age are still very high. These show linear and quadratic bias corrections do not correct the 
tendency in mean PAD, although they correct bias in the PAD of samples. 
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zero after linear or quadratic corrections. This phenomenon exists across 
diverse datasets, methods including deep learning and statistical ap
proaches, and loss functions (Fig. 3 and Fig. 4). The situation of the 
Beheshti’s method is quite similar (Supplementary Fig. 3). 

In addition, whether bias exists or not in PAD can be evaluated 
quantitatively by the correlation between the corrected PAD and the 

chronological age called PAD correlation (PADC), which is also referred 
to as age delta correlation (ADC) in Treder et al. (2021). To this end, we 
calculated the Pearson correlation coefficients (PCC) between the PAD 
over all samples and their chronological age, and between the mean PAD 
of samples with the same age and the chronological age, respectively. 
The age-level PADC is still relatively high after both the linear and 
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Fig. 4. Illustration of significant discrepancy between PAD and mean PAD of the same age after bias corrections with the Cole’s method for different methods (SFCN 
with KL loss, 3D MSDNet with KL loss, LASSO, SVR and XGBoost). Pearson correlations between PAD and the chronological age decline close to zero while those 
between mean PAD of the same age and the chronological age are still high for deep learning methods. 
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quadratic corrections using Cole’s method though the sample-level 
PADC almost declines to zero (Fig. 2D). We also used the Spearman 
rank correlation coefficients (SRCC) to further confirm our findings 
(Supplementary Fig. 1). This situation is quite similar across diverse 
correction methods, datasets, loss functions, and prediction methods 
(Figs. 3, 4, Supplementary Figs. 2–4). These results imply that previous 
bias correction methods are not sufficient to eliminate the intrinsic 
correlation between PAD and chronological age. 

3.2. Age-level bias correction 

Our investigation reveals that the age-level PAD bias correction is 
quite different from that of the sample level. The existing bias correction 
methods mainly focus on sample-level bias, while overlook the age-level 
bias. This intrinsic problem could bring false conclusions in downstream 
applications. For example, those genome-wide association studies 
(GWAS) of PAD may yield misleading sequence variants (Cole et al., 
2017; Jónsson et al., 2019). Thus, PAD may not be a reliable phenotype 
correlating with neurological diseases as shown in many studies (Cole 
et al., 2018). How to correct this special bias requires further explora
tion. Combining that the sample-level bias is explained via regression 
dilution resulted from random measurement error (Hutcheon et al., 

2010), the age-level bias is presumably caused by random measurement 
error and variation in the population. 

Scatter plots of age-level corrected PAD and chronological age 
display almost no bias patterns no matter whether sample-level 
correction is conducted (Fig. 2C, Supplementary Figs. 5–7). Compared 
to the usual corrected PAD, the age-level corrected PAD gives much 
fewer correlations between PAD, mean PAD and the chronological age 
measured by both the Pearson and Spearman correlations in most cases 
(Fig. 5 and Supplementary Figs. 6–7). An exception is that for LASSO, 
SVR and XGboost, the mean PAD is already close to zero with only linear 
or quadratic bias corrections, and then PAD corrected by combinations 
of age-level and linear or quadratic correlates slightly stronger with 
chronological age. This should be caused by the linearity and under
fitting as the performance of these three models is significantly worse 
than the other methods as shown in the method section. This is also 
worth further studying. 

Furthermore, we conducted experiments to test if the age-level cor
rected PAD, which has no linear associations with chronological age, is 
an independent phenotype reflecting the human health state. We did 
OLS regression between clinical/cognitive indexes and two variables, i. 
e., chronological age and PAD corrected by six bias correction methods. 
We used 41 non-imaging indexes in UK Biobank, which are reported as 
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Fig. 5. Age-level bias correction results. Pearson and Spearman correlations between PAD, mean PAD, and chronological age by first using Cole’s method followed 
by age-level correction method for loss functions of deep neural networks (KL loss, MSE loss, and cross-entropy loss) using 3D ResNet-34, different datasets (UK 
Biobank, OASIS and ABIDE) using 3D ResNet-34 with KL loss and methods (SFCN, 3D MSDNet, LASSO, SVR and XGBoost). Compared to the results in Fig. 3 and 
Fig. 4, age-level bias correction gives much smaller correlations between PAD, mean PAD, and chronological age. 
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correlating with PAD the most (Smith et al., 2019). In the six methods, 
‘Uncorrected’ is the uncorrected PAD, ‘Age-level’ represents the age- 
level corrected PAD, ‘Linear’ and ‘Quadratic’ represent linearly and 
quadratically corrected PAD, respectively. ‘Linear  + Age-level’ and 
‘Quadratic  + Age-level’ are the combination of age-level and both lin
early and quadratically corrected PAD. The age prediction method is 
ResNet-34 with KL loss. 

To test the significance of the regression, we did F-test and computed 
the coefficient of the determinant (R2) of each regression model and 
endpoint, respectively. To check the linear relationship between the 
response variable and the corrected PAD, we also implemented a t-test 
for the regression coefficient corresponding to the corrected PAD for the 
six correction methods. The results are presented as bar plots and box 
plots in Fig. 6 and Supplementary Fig. 10 for Cole’s method and Sup
plementary Fig. 11 for Beheshti’s method. As illustrated in Fig. 6B, 
Supplementary Fig. 10B, and Supplementary Fig. 11, F-test shows strong 
statistical significance (p − value⩽10− 2) for almost all the regressions. 
The R2 values are mostly lower than 0.2 (Supplementary Fig. 10–11), 
which is consistent with the results in the previous study (Smith et al., 
2019), and this indicates that there should be other variables in the 
regression. Most importantly, for some clinical or cognitive indexes, 
such as systolic blood pressure, weight, Basal metabolic rate, Abdominal 
subcutaneous adipose (ASA) tissue volume, etc., the t-test p-values for 
the corrected PAD coefficients in the OLS regression increase signifi
cantly after age-level corrections (Fig. 6A, Supplementary Fig. 10–11). 
This implies that the age-level corrected PAD correlates more strongly 
with those clinical or cognitive indexes. Hence, age-level corrected PAD 
should be a better phenotype linearly independent of chronological age 
and reflects the human health state. 

The above results show that the straightforward age-level bias 
correction method performs well in mitigating the age-level bias, though 
several issues need to be investigated further, for example, the accurate 
estimation of the mean and variance of PAD requires a considerable 
number of samples. Besides, developing regression methods with 
elaborately-designed regularization terms is also a potential way to 
solve it. 

4. Conclusion 

In this paper, by doing comprehensive experiments on various brain 
MRI data sets, we reveal that age-level bias still exists in age prediction 

models after applying the updated bias correction methods, and suggest 
an age-level correction strategy. The age-level bias has not been found 
and properly corrected. As a consequence, many previous studies on 
brain age prediction are probably not reliable, and applying age-level 
bias correction to those works is more likely to give quite different re
sults. Promising future work is to make those comparisons. For example, 
it is meaningful to investigate how the yielded sequence variants (Cole 
et al., 2017; Jónsson et al., 2019) from GWAS associated with PAD, 
sample-level corrected PAD, and age-level corrected PAD differ. We 
mainly focus on the analysis of bias in brain age prediction problems in 
this paper. However, age prediction is not constrained by brain MRI 
data. Preceding research combines multi-modal brain data (Niu et al., 
2020; Rokicki et al., 2021) including MRI, resting-state functional MRI, 
diffusion tensor imaging, etc. In this work, the proposed age-level bias 
correction method is solely for linear bias. Whether there exists some 
nonlinear bias requires more investigations, and the corresponding age- 
level correction method also needs further exploration. How age-level 
bias fluctuates along the data type is also a promising open question. 
In addition, for general problems similar to brain age prediction, a 
natural question is whether there exists a bias similar to age-level bias as 
we described. The sphere can be extended to general regression prob
lems and deserves more attention in machine learning. How to build 
theoretical explanations of age-level bias is an essential issue. Our sim
ple correction method and its efficacy in experiments suggest that un
certainty analysis and measurement is a potential approach. Sample- 
level correction method (Hahn et al., 2022) based on uncertainty anal
ysis demonstrates its superiority. Besides, although some sample-level 
correction methods train prediction models by adding the correlation 
between the corrected PAD and the chronological age into the objective 
function or constraints, how to execute age-level bias correction during 
the model training is unknown. For deep learning, lack of interpret
ability further increases the problem’s hardness. In summary, further 
investigations are still necessary for age-level bias correction. 
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Fig. 6. Comparison of linear and quadratic correction of Cole’s method, age-level correction, and their combinations. Statistical significance of t-test (A) of the 
corrected PAD coefficient, and F-test (B) of the linear regression between four non-imaging indexes and two variables, i.e., chronological age and PAD corrected by 
various methods. The age prediction model is ResNet-34 with KL loss, and the dataset is UK Biobank. 
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Franke, Katja, Ziegler, Gabriel, Klöppel, Stefan, Gaser, Christian, Initiative, Alzheimer’s 
Disease Neuroimaging, et al., 2010. Estimating the age of healthy subjects from t1- 
weighted mri scans using kernel methods: exploring the influence of various 
parameters. Neuroimage 50 (3), 883–892. 

Wang, Jieqiong, Li, Wenjing, Miao, Wen, Dai, Dai, Hua, Jing, He, Huiguang, 2014. Age 
estimation using cortical surface pattern combining thickness with curvatures. Med. 
Biol. Eng. Comput. 52 (4), 331–341. 

Kondo, Chihiro, Ito, Koichi, Kai, Wu., Sato, Kazunori, Taki, Yasuyuki, Fukuda, Hiroshi, 
Aoki, Takafumi, 2015. An age estimation method using brain local features for t1- 
weighted images. In: 2015 37th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC) IEEE, pp. 666–669. 

Cole, James H, Leech, Robert, Sharp, David J, 2015. Alzheimer’s Disease Neuroimaging 
Initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain 
injury. Ann. Neurol. 77 (4), 571–581. 

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S.K., Huntenburg, J.M., 
Lampe, L., Rahim, M., Abraham, A., Craddock, R.C., Riedel-Heller, S., 2017. 
Predicting brain-age from multimodal imaging data captures cognitive impairment. 
Neuroimage 148, 179–188. 

Huang, T.W., Chen, H.T., Fujimoto, R., Ito, K., Wu, K., Sato, K., Taki, Y., Fukuda, H., 
Aoki, T., 2017. Age estimation from brain MRI images using deep learning. IEEE, 
pp. 849–852. 

Cole, James H, Poudel, Rudra PK, Tsagkrasoulis, Dimosthenis, Caan, Matthan WA, 
Steves, Claire, Spector, Tim D, Montana, Giovanni, 2017. Predicting brain age with 
deep learning from raw imaging data results in a reliable and heritable biomarker. 
NeuroImage 163, 115–124. 

Jónsson, Benedikt Atli, Gyda Bjornsdottir, T.E., Thorgeirsson, Lotta María, Ellingsen, G 
Bragi, Walters, DF Gudbjartsson, Stefansson, Hreinn, Stefansson, Kari, Ulfarsson, M. 
O., 2019. Brain age prediction using deep learning uncovers associated sequence 
variants. Nature Commun. 10 (1), 1–10. 

Peng, Han, Gong, Weikang, Beckmann, Christian F, Vedaldi, Andrea, Smith, Stephen M, 
2021. Accurate brain age prediction with lightweight deep neural networks. Med. 
Image Anal. 68, 101871. 

Cheng, J., Liu, Z., Guan, H., Wu, Z., Zhu, H., Jiang, J., Wen, W., Tao, D., Liu, T., 2021. 
Brain age estimation from MRI using cascade networks with ranking loss. IEEE 
Transactions on Medical Imaging 40 (12), 3400–3412. 

Smith, Stephen M, Vidaurre, Diego, Alfaro-Almagro, Fidel, Nichols, Thomas E, 
Miller, Karla L, 2019. Estimation of brain age delta from brain imaging. Neuroimage 
200, 528–539. 

de Lange, Cole, J.H., 2020. Commentary: Correction procedures in brain-age prediction. 
NeuroImage: Clinical 26. 

de Lange, A.M.G., Kaufmann, T., van der Meer, D., Maglanoc, L.A., Alnæs, D., 
Moberget, T., Douaud, G., Andreassen, O.A., Westlye, L.T., 2019. Population-based 

neuroimaging reveals traces of childbirth in the maternal brain. Proceedings of the 
National Academy of Sciences 116 (44), 22341–22346. 

Franke, Katja, Luders, Eileen, May, Arne, Wilke, Marko, Gaser, Christian, 2012. Brain 
maturation: predicting individual brainage in children and adolescents using 
structural mri. Neuroimage 63 (3), 1305–1312. 

Schnack, Hugo G, Van Haren, Neeltje EM, Nieuwenhuis, Mireille, Hulshoff, Hilleke E, 
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