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Automated Assessment of Movement
Impairment in Huntington’s Disease
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Abstract— Quantitative assessment of movement impair-
ment in Huntington’s disease (HD) is essential to monitoring
of disease progression. This paper aimed to develop and
validate a novel low cost, objective automated system for
the evaluation of upper limb movement impairment in HD
in order to eliminate the inconsistency of the assessor
and offer a more sensitive, continuous assessment scale.
Patients with genetically confirmed HD and healthy controls
were recruited to this observational study. Demographic
data, including age (years), gender, and unified HD rat-
ing scale total motor score (UHDRS-TMS), were recorded.
For the purposes of this paper, a modified upper limb
motor impairment score (mULMS) was generated from
the UHDRS-TMS. All participants completed a brief, stan-
dardized clinical assessment of upper limb dexterity while
wearing a tri-axial accelerometer on each wrist and on
the sternum. The captured acceleration data were used
to develop an automatic classification system for dis-
criminating between healthy and HD participants and to
automatically generate a continuous movement impairment
score (MIS) that reflected the degree of the movement
impairment. Data from 48 healthy and 44 HD participants
was used to validate the developed system, which achieved
98.78% accuracy in discriminating between healthy and HD
participants. The Pearson correlation coefficient between
the automatic MIS and the clinician rated mULMS was
0.77 with a p-value < 0.01. The approach presented in
this paper demonstrates the possibility of an automated
objective, consistent, and sensitive assessment of the HD
movement impairment.

Index Terms— Accelerometers, upper-limb assessment,
Huntington’s disease, movement disorder.
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I. INTRODUCTION

HUNTINGTON’s disease (HD) is an autosomal dom-
inant, progressive neurodegenerative genetic disorder,

which affects 11.2 to 13.5 people per 100,000 of the
general population. HD is characterised by the develop-
ment of progressive motor impairment, cognitive decline
and behavioural problems [1], [2], caused by an expanded
trinucleotide CAG sequence in the Huntingtin (HTT)
gene [2]–[4].

One of the most prominent motor symptoms in HD is
chorea, which is used to describe abnormal involuntary move-
ment characterized by abrupt, irregular, unpredictable, non-
stereotyped movements, However, other motor abnormalities
such as dyskinesia, dystonia, rigidity, and bradykinesia are
also seen. A critical problem for the evaluation of novel
therapeutics is the acknowledged lack of objective clini-
cal measures suitable for evaluating the components of the
movement disorder. The Unified Huntington’s Disease Rating
Scale (UHDRS) [5] is currently the gold standard to assess
disease symptoms in HD. However, UHDRS assessment is
limited by inter- and intra-rater variability, subjective bias, and
categorical design. Furthermore, the UHDRS score does not
relate motor impairment to function in daily life, which is
desirable in HD assessment [6].

Over the past twenty years there has been significant
progression in human motion recording and analysis over a
wide range of applications, including orthopaedic and neu-
rological rehabilitation. Such analysis requires highly accu-
rate motion tracking made possible using, for example,
camera-based systems (e.g. Qualisys, Sweden and Vicon, UK).
Unfortunately such systems are expensive, difficult to trans-
port, and require dedicated laboratory space, although low-
cost but less accurate motion capture devices such as
Kinect are also becoming popular in motion analysis
research [7].

More recently, there have been a number of attempts to
evaluate chorea, dystonia and bradykinesia in people with
movement disorders using Inertial Measurement Units (IMUs)
or electromagnetic motion sensors [6], [8]–[13]. The majority
have relied on statistical methods to assess movement impair-
ment [10], [11], however more recently machine-learning
techniques are being applied to the data to achieve automated
assessment of the presence or absence of the symptoms or
their severity [9], [13]–[15]. Application of machine learning
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methods for wearable sensor data in Parkinson’s disease (PD)
was advocated and explained in detail in a recent review
where the possibility of using wearable sensor data for clin-
ical PD measurement was also highlighted [16]. Specifically,
the main stages in applying machine learning techniques to
the analysis of the sensor data were identified as feature
extraction, which summarises sensor data into a small set of
features; dimensionality reduction, which further reduces the
number of features for ease of analysis and to retain only the
most significant information; and supervised or unsupervised
learning which finds patterns in the sensor data. In particular,
supervised learning learns a model (relationship) between
inputs (a set of feature values) and outputs (for example,
symptom severity classification) from a set of examples,
and uses this model to predict outputs given a new set of
input values. At the same time, common pitfalls of machine
learning such as overfitting and underfitting a model were
noted along with possible remedies, such as model complexity
control through the use of, for example, cross-validation model
testing.

There has been a fair amount of research in the area of
applying machine learning methods for the automatic assess-
ment of the movement disorders associated with PD, partic-
ularly tremor and bradykinesia [14], [15], [17]–[19]. At the
same time, there were only two reports on the application
of these methods in HD [9], [13]. In the two latter studies,
machine learning techniques were used to automatically clas-
sify people into HD and healthy controls groups based on
gait analysis [9] or arm movements [13] and data from IMUs.
However, these studies are still falling short of proposing
an automatic system capable of assessing HD movement
impairment using a more sensitive, continuous scale necessary
for monitoring the disease progression.

The aim of this study was to apply signal processing
and machine learning techniques in the development and
validation of a low cost, objective automated system for
the evaluation of upper limb movement impairment in HD.
Data from 48 healthy and 44 manifest stage HD participants
were collected and used to design and validate the proposed
system. Signal processing techniques were used to extract
time and frequency domain features from the acceleration
signals; a feature selection method was used to determine the
features important for distinguishing HD patients from healthy
controls. The selected features were subsequently used in the
classification and quantitative assessment tasks. An ensemble
classifier was proposed to distinguish between healthy indi-
viduals and those with a diagnosis of HD, which significantly
improved the accuracy of the previously proposed simple
SVM classifier [13]. Linear regression model was created to
generate continuous scale sensitive assessment of movement
impairment in HD, which has not been attempted in previous
research.

In this research, we limited our focus to the upper limbs
during the performance of a functional task both to minimise
error in placement of accelerometers during movement and to
ensure ease of clinical application of the automated assessment
in the future.

Fig. 1. The MBT test enclosed in the case when not in use (left) and
open ready for testing (right).

II. MATERIALS AND METHODS

A. Participants and Setting
Participants with manifest HD and healthy controls were

recruited to this observational study. All participants were
provided with a written information sheet describing the
research, and their consent was obtained before any data col-
lection. HD participants were eligible if they had a genetically
confirmed diagnosis of HD with score of four on the motor
diagnostic confidence scale of the UHDRS, were over 18 years
of age and recruited onto Enroll-HD, which is a global obser-
vational study that provides researchers with access to non-
identifiable clinical information (https://www.enroll-hd.org/).
They were not eligible if they were unable to provide informed
consent. Ethical approval was granted for this study by the
South East Wales Research Ethics committee (REC reference:
14/WA/1195) and Cardiff University School of Engineering.

B. Assessments
Demographic data including age (years), gender and

UHDRS-TMS [5] were recorded from the most recent annual
Enroll-HD assessment. The UHDRS-TMS provides a clinician
observed rating of oculomotor function, dysarthria, chorea,
dystonia, rigidity, bradykinesia, balance and gait. Each item
was rated by a rater certified clinician on a scale of 0-4, where
0 is equivalent to no impairment. The maximum possible score
of all items is 124 (indicating maximum disability). For the
purposes of this study a modified upper limb motor impairment
score (mULMS)was generated from the UHDRS-TMS as the
sum of items assessing left and right upper limb dystonia,
trunk chorea, and left and right upper limb chorea. Thus
mULMS can vary between zero for no impairment to a
maximum of 20 representing severe motor impairment.

All participants completed the Money Box Test
(MBT) [13], [20] - a functional upper limb dexterity
assessment involving a series of token transfer tasks (Fig. 1).
The tasks increase in difficulty (baseline simple, baseline
complex and a dual task). In the baseline simple task, eight
blank tokens of varying size are presented and positioned
in designated slots, vertically, in size order. The participant
is asked to pick up each token individually with their
non-dominant hand, transfer it to their dominant hand and
place into the moneybox, starting with the largest token
and finishing with the smallest. For the baseline complex
task, a different set of tokens, with one of the eight values
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Fig. 2. The placement and orientation of accelerometers on the wrists
and chest of a participant. In the image, the x-axis is red, y-axis is blue
and z-axis is green. The z-axis for the chest sensor (green) is pointing
away from the viewer.

printed on them (1, 2, 5, 10, 20, 50, 100, and 200) is used.
In this task, the tokens are positioned in order of size. The
participant is asked to transfer the tokens into the moneybox
in decreasing value order. The dual task consisted of the same
test procedure as the baseline complex, with the participants
additionally asked to recite the alphabet simultaneously while
transferring the tokens to the moneybox.

C. Accelerometers
Three triaxial GENEactiv accelerometers (Activinsights,

UK) were placed on the participant during the performance
of the MBT, one on each wrist to record the acceleration of
the hands, and one on the chest to capture the movement of
the trunk (Fig. 2). Each GENEactiv sensor incorporates three
accelerometers, where the accelerometers are orthogonally
aligned to each other. The technical specifications of the
accelerometers are as following: unit mass 16g, unit size
43mm × 40mm × 13mm, sample frequency up to 100Hz,
acceleration range ±8g, where g = 9.81 m/s2. Before the
accelerometers were fixed on the participant, their time set-
tings were synchronized with those of the computer using
GENEactive PC software application. The accelerometers did
not require any additional calibration. All data were recorded
at frequency of 100Hz.

D. Automatic Classification System
An early version of the system proposed in this article was

presented in [13]. In comparison to the full system presented
in this article, the system described in [13] was based on a
simple SVM classifier and temporal features only and was
used to distinguish between HD patients and healthy controls.

The fully developed system presented in this article consists
of three main modules: signal processing and feature extrac-
tion including both temporal and frequency domain features,
ensemble classifier to distinguish between HD patients and
healthy controls during the performance of three different
MBT tasks, and a linear regression model to generate con-
tinuous scale sensitive assessment of movement impairment
in HD (Fig. 3). In this study, both ensemble classifier and
the linear regression model are implemented using supervised
learning techniques.

E. Signal Processing
In this part of the system, a range of signal processing

techniques are applied to the accelerometer data in order to
extract informative features, which potentially could be used
for continuous quantification of the movement impairment
typical of HD, such as chorea and dystonia, i.e. the abruptness
and irregularity of movement and twisting body movements.
Each of three MBT tasks consists of eight repeated sub-tasks
of transferring a coin from its position to the moneybox, which
results in eight observable cycles in motion acceleration data
for a healthy person, but not for HD patients, whose motion
is characterized by jerky, sudden movements (Fig. 4) [20].
Time and frequency domain features measuring the degree of
repeatability, regularity, and recurrence are extracted from the
accelerometer data as explained in detail below.

F. Time Domain Features
This set of features (Table I) includes several features

derived directly from the raw accelerometer signals without
any filtration or down sampling to ensure that no important
information related to the movement impairment is lost.

These features include simple time domain features such
as signal mean and standard deviation as well as correlation
between the acceleration signals along different axes. Other
time domain features used in this study are derived using
Recurrence Quantification Analysis of Nonlinear Dynamical
Systems (RQA) [21], which quantifies the recurrences of
a dynamical system. The values of RQA are expected to
be higher for HD than for healthy participants. In addition,
Lyapunov exponent (LE) [22] is used to measure the degree of
chaos in the signal. As the acceleration signals are less regular
and more chaotic for HD patients, a significant difference
between the LE values can be expected for these two groups.
Sample entropy is used to assess the complexity and regularity
within the time series data, as it measures the degree of
dependency of a given data point on a number of previous
data points [23]. Finally, permutation entropy [24] is used to
measure the regularity in the time series data by measuring
the existence or absence of permutation patterns within it.

G. Frequency Domain Features
Frequency domain features are expected to change depend-

ing on the presence of involuntary jerky movements in the
acceleration data, so short-time Fourier Transform (STFT)
is employed to transform the acceleration data to frequency
domain. There are eight clearly observable cycles in the
acceleration data for a healthy person resulting from the
activity of transferring eight coins (Fig. 4). On average, for
healthy volunteers, each of the transfer cycles lasts 2 seconds.
Therefore, a decision was made to use a sliding window of
2 seconds length and 50% overlap for STFT. In this study,
a simple rectangular window followed by a low-pass filter was
used. As explained below, only the first five low frequency
components are to be used in further calculations, and thus
applying a smoothing window such as Hanning was deemed
unnecessary.

Three sets of frequency features are extracted from the result
of STFT, namely, spectral energy, component entropy, and the
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Fig. 3. Above: classification system; below: ensemble classifier.

Fig. 4. Examples of accelerometer data for the non-dominant hand for:
(a) healthy control participant; (b) manifest stage HD patient.

average magnitudes of each of the first five STFT components
over all windows in each of the tests. These features were cho-
sen as they had been reported to provide good results for move-
ment recognition on the basis of accelerometer signals and thus
potentially could contain information useful for measuring
the degree of movement impairment in HD patients [25].

TABLE I
TIME DOMAIN FEATURES

Wavelet Packet Decomposition (WPD) is also used to extract
a number of time-frequency features from the signals. The
decision to employ WPD was made on the basis of its ability
to describe signals containing numerous frequency changes
over time [26]. In this study, the accelerometer signals are
decomposed into five levels using Daubechies 2 wavelets. The
six wavelet features used in this study are defined as the sum of
the absolute values of coefficients at levels 1-5; these features
were chosen as they have been reported to have good ability
to capture the patterns of the low frequency movements in
the accelerometer signals, which should be suitable for HD
data [24]. Table II shows a summary of the extracted frequency
domain features.

H. Feature Selection
Following the initial feature extraction, when a total

of 234 time and frequency domain feature values are extracted
from the signals of the three sensors for each participant
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TABLE II
FREQUENCY DOMAIN FEATURES

and each MBT task, a feature selection method is used
to select the most relevant and non-redundant features for
discriminating between HD and healthy participants and thus
to reduce the dimensionality of the data set. In this study the
Joint Mutual Information Maximisation (JMIM) [27] feature
selection method is chosen as it relies on an objective function
to select the most informative features from a set and has
been reported to outperform the other state of the art meth-
ods. Continuous features are discretized using Equal Width
Discretization method (EWD) [28] before JMIM is applied to
all features.

I. Ensemble Classifier
The goal of this part of the system is to distinguish

between HD patients and healthy participants, for which an
ensemble classifier is created. A supervised learning approach
is followed to create an ensemble classifier, the inputs for
which are the values of the selected features, and the output
takes on one of the two values: HD or healthy control.
To make the classifier more sensitive to the detection of HD
patients at the early manifest stage of HD, the data from
all three MBT tasks (if available) is used for all HD and
healthy participants. For each MBT task, a Support Vector
Machine (SVM) classifier with radial basis function (RBF)
kernel [29] is trained using a number of the most significant
features extracted from the corresponding dataset (Fig. 3).
Thus the first classifier is trained on the selected features for
the baseline simple dataset, the second classifier is trained
on the selected features for the baseline complex dataset and
the third classifier is trained on the selected features for the
dual task dataset. Finally, the results of the three classifiers
are combined in an ensemble classifier. Different techniques
for combining results of different classifiers such as Bayes,
majority voting, and decision template [30] were tested, from
which the majority voting was chosen as providing the best
results. In some cases, when the participant failed to perform
the baseline complex or the dual task (due to the advanced
stage of the disease), the classification was performed using
only the baseline simple classifier.

TABLE III
TEN MOST SIGNIFICANT FEATURES FOR DISCRIMINATING BETWEEN

HD AND HEALTHY CONTROLS IN THE BASELINE SIMPLE TASK

J. Linear Regression Model
In this stage, a linear regression model is used to auto-

matically generate the Movement Impairment Score (MIS)
intended to describe the degree of impairment related to the
upper limb movement. Five of the most significant features
extracted from the baseline task MBT dataset are used as
independent variables (inputs) and the mULMS is used as a
dependent variable (output). SVM linear regression is applied
to obtain the regression model parameters and leave-one-out
cross-validation is employed to assess the correlation between
the MIS and the mULMS.

III. RESULTS

Mean (SD) age in years in HD participants (n = 44,
26 males) and healthy controls (n = 48, 26 males) were
53.49 (13.19) and 37.38 (13.31) respectively. Mean (SD)
scores on the UHDRS-TMS and mULMS for HD participants
were 36.43(23.16) and 5.98 (4.17) respectively. Seven HD
participants failed to perform both the baseline complex and
the dual tasks, while five other HD participants failed to
perform the dual task only. The average time taken to perform
the test by the HD participants was 30.62 seconds. The average
time for the healthy controls was 13.6 seconds.

A. Significant Features
The most significant features for discrimination between

HD and healthy participants were identified using the JMIM
method for the baseline simple, baseline complex, and dual
tasks (Tables III-V). The results showed that the recurrence
rate feature of the non-dominant hand X-axis was significant
for discriminating between HD patients and healthy controls
in all three MBT tasks. This can be explained by the fact
that most of the transfer task was performed by the non-
dominant hand with the dominant hand remaining close to
the moneybox. The results also showed that time domain
features measuring regularity, repeatability, and chaos were
more significant than the frequency domain features, which
means that time domain features represent the movement
patterns specific to chorea and dystonia better than other
features.

B. Performance of Ensemble Classifier
The performance of each classifier for discriminating

between healthy controls and HD patients was tested
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TABLE IV
TEN MOST SIGNIFICANT FEATURES FOR DISCRIMINATING BETWEEN

HD AND HEALTHY CONTROLS IN THE BASELINE COMPLEX TASK

TABLE V
TEN MOST SIGNIFICANT FEATURES FOR DISCRIMINATING BETWEEN

HD AND HEALTHY CONTROLS IN THE DUAL TASK

separately as well as in combination as an ensemble classifier.
The ranking of features provided by the feature selection
method was used to find the best subset of features for each
classifier. Five folds cross-validation was used to train and test
the classifiers. This means that the data related to different
participants was divided randomly into five folds (sets of
approximately equal size), with four folds used for training
and the remaining fold used for testing. The cross-validation
process was repeated five times until each fold was used for
testing exactly once. Thus in each iteration the training and
testing data were different. The average accuracy, sensitivity,
and specificity over five iterations were used as the measure
of the classification performance.

In the experiment, the first classifier was trained and tested
using the baseline simple MBT dataset. For this classifier,
a combination of 43 most significant features produced the best
performance with accuracy of 91.11%, sensitivity of 90.38%,
and specificity of 92.11%. The second classifier was trained
and tested using the baseline complex MBT dataset, for
which the best performance was achieved using only three
features, with the classification accuracy in discriminating
between HD patients and healthy controls of 93.1%, and
sensitivity and specificity of 87.76% and 100% respectively.
Finally, the third classifier was trained and tested using the
dual task MBT dataset. The best accuracy of 87.8% was
achieved using 49 most significant features. The corresponding

Fig. 5. The output of the ensemble classifier vs the mULMS for HD
patients.

values for sensitivity and specificity were 81.82%, and 94.74%
respectively.

The ensemble classifier obtained by majority voting between
the above three classifiers achieved the accuracy of 98.8%,
100% specificity and 97.7% sensitivity with only one out
of 44 HD participants misclassified as a healthy control, and all
healthy controls classified correctly. This compares well to the
accuracy of 86.4% reported in [13] in a similar experiment.
The misclassified HD case had a very low mULMS equal
to 2, indicative of very subtle motor symptoms, which can
explain the error, although 11 more patients with the mULMS
of 2 or lower were classified correctly as HD patients (Fig. 5).

Considering that the features related to the chest sensor
often appeared at the bottom of Tables III-V, it was decided
to evaluate the performance of the ensemble classifier without
the features related to the chest sensor in order to test the
hypothesis that the chest sensor was not needed to achieve
accurate classification of HD and healthy control participants.

In this experiment, the best accuracy for the baseline sim-
ple MBT classifier was achieved using 60 most significant
features. For the baseline complex MBT classifier, the best
accuracy was achieved using 49 most significant features, and
the best accuracy for the dual task MBT classifier was achieved
using 25 most significant features. The achieved accuracy,
sensitivity and specificity for the ensemble classifier were
86.52%, 83.78% and 88.46%, which is considerably lower
than in the previous experiment, and thus the importance of
the chest sensor for correct discrimination between healthy
and HD participants was demonstrated.

C. Evaluation of the Linear Regression Model
The data from baseline simple MBT task for HD patients

were used in a linear regression model of movement impair-
ment in order generate an automatic MIS for new HD patients.
The SVM regression algorithm with a linear kernel was used
for this purpose [29]. Five most significant features from the
baseline simple MBT classifier were used as independent vari-
ables for the regression model. Leave one out cross validation
was used to evaluate the correlation between the automatically
produced MIS and the mULMS of five chosen items related
to chorea and dystonia.
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Fig. 6. mULMS and corresponding automatic MIS generated by the
linear regression model trained on all HD baseline simple task data apart
from one of the samples used for testing.

The Pearson correlation coefficient r between the automatic
MIS and the mULMS was 0.77, which corresponds to r2 =
0.59 and r2

ad j = 0.53 with a p-value < 0.01 indicating its
high statistical significance. In addition, the mean absolute
error (MAE) [31] between the automatic MIS and mULMS
was 2.11, which corresponds to the normalised MAE of
12.41% with respect to the maximum score of 17 in the
sample, thus showing an ability to predict the clinician rated
upper limb chorea and dystonia scores with some accuracy.
Fig. 6 shows the values of the mULMS and the correspond-
ing automatic MIS generated by the linear regression model
trained on all HD data apart from one of the samples used for
testing.

IV. DISCUSSION

Here we present a system for an objective and continuous
assessment of motor impairment during a novel upper limb
task for HD patients. The system is based on data collected
from tri-axial accelerometers, which were worn during the per-
formance of a recently proposed MBT assessment of bilateral,
upper motor function. Signal processing and machine learning
methods were applied to the recorded accelerometer signals
in order to produce an automatic MIS intended to reflect the
degree of the movement impairment during the performance
of the MBT.

A number of features, potentially useful for quantification of
the movement impairment, were extracted from the accelerom-
eter data and their significance in the discrimination task
between healthy controls and HD participants was assessed.
The results showed that temporal features were more important
than frequency features, and in particular, features related to
the non-dominant hand were just as significant if not more
significant than those extracted from the data related to the
dominant hand.

Before proceeding to the stage of generating an automatic
MIS for HD patients, the extracted features were tested in
a simpler discriminative task of differentiating between HD
patients and healthy controls, in which very encouraging

results were achieved, further proving that the extracted fea-
tures captured the information relevant to motion impairment
of HD patients. In this stage, three classifiers, one for each
MBT task, were trained and tested, with the complex baseline
classifier producing the best performance among the three
classifiers. The results produced by the ensemble classifier
demonstrate the advantage of using three tasks of increasing
difficulty when performing MBT, with the complex baseline
and dual task classifiers improving the accuracy of the baseline
classifier when their results were combined. Given these
results, we do not believe that the difference in ages between
the HD and the healthy control groups had a detrimental effect
on the ability of the assembly classifier to determine the group
correctly on the basis of the accelerometer data, however
will confirm this in subsequent studies. Furthermore, the
importance of the chest sensor was assessed by removing the
features related to this sensor from the dataset and repeating
the above experiments and cross-validation using the reduced
dataset. The results demonstrated significant increase in mis-
classifications indicating that the chest sensor is important in
the assessment of HD movement impairment.

The system also produces a continuous value movement
impairment score (MIS) that is well correlated with the clini-
cian rated mULMS reflecting upper body chorea and dystonia.
From a clinical perspective this is an exciting development in
that the novel MIS provides a quantitative representation of
chorea and dystonia of the upper limb in HD that traditionally
is very difficult to rate reliably. The correlation between the
automatic MIS and the mULMS demonstrates the viability of
using the MIS for monitoring the progression of the movement
disorders.

Nonetheless, further validation of the proposed system is
required. Special care will need to be taken when comparing
the automatic MIS and mULMS due to the subjectivity of the
latter. There is a number of strategies which can be followed
to address this issue, including testing intra- and inter-rater
reliability.

V. CONCLUSIONS

The approach presented in this study demonstrates the
possibility of objective, consistent and sensitive assessment of
the HD movement impairment using the MBT and three low-
cost tri-axial accelerometers. The initial application of this test
has been in HD: a highly characterised, single gene neurode-
generative disease. Given these promising results, we are now
working to establish proof of concept in other neurological
conditions such as Parkinson’s disease, tremor and dystonia.
Future research will focus on combining acceleration with
orientation data to improve the performance of the system and
to expand the number of neurological movement disorders the
system could assess.
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