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Abstract
Drug-induced long QT syndrome (diLQTS) is the phenomenon by which the administration of drugs causes prolongation 
of cardiac repolarisation and leads to an increased risk of the ventricular tachycardia known as torsades de pointes (TdP). 
In most cases of diLQTS, the primary molecular target is the human ether-à-go-go-related gene protein (hERG) potassium 
channel, which carries the rapid delayed rectifier current  (IKr) in the heart. However, the proarrhythmic risk associated with 
drugs that block hERG can be modified in patients by a range of environmental- and disease-related factors, such as febrile 
temperatures, alterations in pH, dyselectrolytaemias such as hypokalaemia and hypomagnesemia and coadministration with 
other drugs. In this review, we will discuss the clinical occurrence of drug-induced LQTS in the context of these modifying 
factors as well as the mechanisms by which they contribute to altered hERG potency and proarrhythmic risk.
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Drug‑induced long QT syndrome

Drug-induced (diLQTS) or acquired long QT syndrome 
(aLQTS) is characterised by prolongation of the QT inter-
val on the surface electrocardiogram (ECG) and is associ-
ated with a markedly increased risk of the potentially lethal 
ventricular arrhythmia known as torsades de pointes (TdP 
(Roden 2004)). A prospective study of hospital admission 
for drug-induced TdP reported 3.3 cases per million over 
the 4-week study period, translating to an annual incidence 
of 4/100,000 (Darpö 2001). However, this may be an under-
estimate for the broader population since TdP is often not 
reported in out-of-hospital cases (Birda et al. 2018; Lin et al. 
2020; Yu et al. 2017). For hospitalised patients, the preva-
lence of severe diLQTS has been reported as between 1.6 
and 3.3% of patients (Birda et al. 2018; Lin et al. 2020; Yu 
et al. 2017), with these patients having a higher all-cause 
mortality than their non-LQTS counterparts (Lin et al. 2020; 
Yu et al. 2017). Over the past 30 years, a range of cardiac 

(Kannankeril et al. 2011; Selzer and Wray 1964; Singh et al. 
2000) and noncardiac (Schoonmaker et al. 1966) drugs have 
been shown to prolong the QT interval, with several being 
recalled from the market (Roden 2004). diLQTS can be 
caused by drugs that block any of the ion channel currents 
that contribute to normal cardiac repolarisation. In practice, 
however, the majority of drugs that cause diLQTS do so by 
inhibiting hERG/Kv11.1 potassium channels, encoded by 
the KCNH2 gene, which carries the rapid delayed rectifier 
 K+ current  (IKr) in the heart (Vandenberg et al. 2012). This 
unintentional block of hERG is therefore a problem both 
for development of new therapeutic compounds, as well as 
management of patients prescribed such drugs (see Table 1 
for a full list of compounds discussed in this review). Con-
sequently, screening for potency of hERG channel block, as 
a surrogate for QT prolongation and repolarisation delay, is 
a mandated part of preclinical drug development ((ICH S7B 
2005), Fig. 1). However, the link between a drug’s potency 
to block hERG and the emergence of arrhythmia is complex. 
Of the majority of new chemical entities, up to 70% in some 
estimates (Shah 2005) can block hERG at some concentra-
tion, yet only a small percentage cause arrhythmia (Darpö 
2001, 2007). Moreover, even for drugs that are demonstrably 
“high risk”, the severity of adverse events across the patient 
population can be highly variable ranging from minimal pro-
longation of cardiac repolarisation to the induction of lethal 
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Table 1  Compounds related to TdP development. List of all compounds mentioned in this literature review, their drug class and primary target

Drug name Drug class Primary target Reference

Amiodarone Class III antiarrhythmic hERG and  CACNA2D2* channel Du et al. (2011)
Amisulpride Antipsychotic Dopamine D2 receptor Lin et al. (2009)
Astemizole Antihistamine Histamine H1 receptor Yao et al. (2005)
Azimilide Class III antiarrhythmic I(Ks) and hERG channels Busch et al. (1998), Dong et al. (2004)
Azithromycin Macrolide antibiotic 23 s RNA of the bacterial 50S ribosomal unit Delaunois et al. (2021), TeBay et al. (2021), 

Zequn et al. (2021)
Bepridil Antianginal L-type calcium channel and  Na+/K+-ATPase 

pump
Windley et al. (2018)

Berberine Alkaloid Unknown Zhi et al. (2015)
Ceftriaxone Cephalosporin antibiotic Peptidases of the bacterial cytoplasmic 

membrane
Lazzerini et al. (2018)

Chloroquine Antimalarial Hemozoin Delaunois et al. (2021), TeBay et al. (2021), 
Warhurst (1986), Warhurst et al. (2003), 
Zequn et al. (2021)

Cisapride Gastroprokinetic Serotonin 5-HT4 receptor Barrows, et al. (2009), Kamiya et al. (2008), 
Lacerda et al. (2001), Lee et al. (2019), Lin 
et al. (2005c), Perrin et al. (2008), Thomas 
et al. (1998), Thouta et al. (2018), Windley 
et al. (2016), Windley et al. (2018)

Clarithromycin Macrolide antibiotic 23 s RNA of the bacterial 50S ribosomal unit Zhi et al. (2015)
Diltiazem Antianginal L-type calcium channel Thomas et al. (1998)
Disopyramide Class 1A antiarrhythmic Fast sodium channels Hirose et al. (2008), Lazzerini et al. (2018)
Dofetilde Class III antiarrhythmic hERG channel Du et al. 2011, Perrin et al. (2008), Singh 

et al. (2000), Wang et al. (2016), West et al. 
(1997), Yang et al. (2004)

Domperidone Gastroprokinetic Dopamine D2 and D3 receptor Boyce et al. (2012)
E-4031 Class III antiarrhythmic hERG channel Wang et al. (1997), West et al. (1997), Yao 

et al. (2005)
Enalapril Antihypertensive Angiotensin converting enzyme Varriale and Ramaprasad (1995)
Encainide Class 1c antiarrhythmic Sodium channel protein type 5 subunit alpha Echt et al. (1991)
Erythromycin Macrolide antibiotic 23 s RNA of the bacterial 50S ribosomal unit Delaunois et al. (2021), Guo et al. (2005), 

Kirsch et al. (2004), Lacerda et al. (2001), 
Paris et al. (1994)

Fentanyl Opioid analgesic µ-opioid receptor Tschirhart and Zhang (2020)
Flecainide Class 1C antiarrhythmic Fast sodium channel Du et al. (2011), Echt et al. (1991), Paul et al. 

(2002)
Flupenthixol Antipsychotic Dopamine D1 and D2 receptor Lin et al. (2009)
Gentamicin Aminoglycoside antibiotic Lipopolysaccharides and phospholipids and 

the bacterial cell membrane
Varriale and Ramaprasad (1995)

Glyburide Sulfonylurea KATP** channels Varriale and Ramaprasad (1995)
Halofantrine Antimalarial Unknown Charbit et al. (2002)
Haloperidol Antipsychotic Dopamine D2 receptor Lin et al. (2009)
Hydroxychloroquine Antimalarial Unknown Delaunois et al. (2021), TeBay et al. (2021), 

Warhurst et al. (2003), Zequn et al. (2021)
Ibutilide Class III antiarrhythmic hERG and slow sodium channel Lin et al. (2008)
Ibogaine Psychoactive/psychedelic µ-, δ- and κ- opioid receptors, serotonin 

5-HT2A,  HT2C and  HT3− receptors, sigma 
σ1 and σ2 receptors, NMDA*** receptor, 
nicotinic acetylcholine (nACh) receptor, 
serotonin transporter (SERT) and dopa-
mine active transporter (DAT)

Thurner et al. (2014)

Itraconazole Antifungal 14-α-sterol demethylase of the fungal cell 
membrane

Pohjola-Sintonen et al. (1993)
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arrhythmia (Kannankeril et al. 2011; Singh et al. 2000). A 
number of factors likely contribute to this variable response, 

including pre-existing disease resulting in electrical or struc-
tural remodelling of the myocardium, sex differences and an 

* Calcium voltage-gated channel auxiliary subunit alpha2 delta2 gene protein.**ATP-sensitive  K+ channel.***N-methyl-D-aspartate receptor

Table 1  (continued)

Drug name Drug class Primary target Reference

Ketoconazole Antifungal 14-α-sterol demethylase of the fungal cell 
membrane

Boyce et al. (2012) Rajput et al. (2010), Yao 
et al. (2005)

Lopinavir Antiretroviral HIV-1 protease enzyme Zequn et al. (2021)
Loratadine Antihistamine H1 histamine receptor Lacerda et al. (2001)
Moxifloxacin Fluoroquinolone antibiotic Topoisomerase II (DNA gyrase) and topoi-

somerase IV of the bacteria
Alexandrou et al. (2006)

Posaconazole Antifungal 14-α-sterol demethylase of the fungal cell 
membrane

Panos et al. (2016)

Prednisolone Glucocorticoid Phospholipase A2 Hirose et al. (2008)
Quinidine Class I antiarrhythmic L-type calcium, hERG, slow IKs and 

KATP** channels
Ayad et al. (2010), Barrows et al. (2009), 

Dong et al. (2004), Paul et al. (2002), Po 
et al. (1999), Roden et al. (1986), Selzer and 
Wray, (1964), Yang et al. (1997)

Quinine Alkaloid/antimalarial Unknown Warhurst (1986)
Risperidone Antipsychotic Dopaminergic D2 and serotonin 5-HT2A 

receptors
Lin et al. (2009)

Ritonavir Antiretroviral HIV protease inhibitor Zequn et al. (2021)
Terfenadine Antihistamine Histamine H1-receptor Kamiya et al. (2008), Lacerda et al. (2001), 

Paris et al. (1994), Perrin et al. (2008), 
Pohjola-Sintonen et al. (1993), Rajput et al. 
(2010), Thouta et al. (2018), Windley et al. 
(2018), Yao et al. (2005)

Thioridazine Antipsychotic Dopamine D1 and D2 receptors Schoonmaker et al. (1966)
Vancomycin Glycopeptide antibiotic Peptidoglycan matrix inhibitor of the bacte-

rial cell membrane
Varriale and Ramaprasad (1995)

Verapamil Class IV antiarrhythmic L-type calcium channel Windley et al. (2018), Zhang et al. (1999)

Fig. 1  Summary of environmental effects on drug potency. Many 
disease factors are known to shift the potency of drugs blocking 
hERG, such as fever, hypokalaemia, hypocalcaemia, etc. a A theo-
retical hERG tail current with scale indicated for current amplitude 
and time, as elicited by the protocol in the above insert. The black 
trace represents a control current evoked in drug-free conditions, with 
the blue trace representing 50% inhibition of the current evoked by a 
theoretical drug. A condition leading to less potent drug inhibition is 
represented in green, showing only 25% inhibition, with a condition 

leading to greater potency leading to 75% inhibition and as depicted 
in red. b A theoretical concentration response curve, with the main 
drug effect represented in blue. A condition creating lesser potency 
would lead to a rightward shift, as indicated in green, and, on an 
ECG, would lead to less QT prolongation, as seen in the insert and 
depicted in green. Conditions leading to greater potency are depicted 
in red, and would shift leftward and, on an ECG, would lead to more 
prolongation, as seen in the insert and as depicted in red. Assets for 
the ECG traces obtained from Servier Medical Art (Servier 2021)
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individual’s genetic background (Echt et al. 1991; Makkar 
et al. 1993; Roden and Viswanathan 2005). Aside from these 
patient-specific factors, a drug’s proarrhythmic propensity 
can also be modified by other systemic/acquired factors in 
patients such as electrolyte disturbances, acidosis, febrile 
temperatures and coadministration with other drugs. The 
importance of such considerations has been highlighted 
recently in relation to repurposing of drugs for treatment 
of COVID-19. Specifically, various combinations of drugs 
that are known to carry some degree of proarrhythmic risk, 
including chloroquine, hydroxychloroquine, azithromycin, 
erythromycin and lopinavir/ritanavir, have been proposed as 
potential therapies (Delaunois et al. 2021; Zequn et al. 2021) 
in COVID-19 patients where fever (Aslam et al. 2021; Pan 
et al. 2020; Zhou et al. 2020), acidosis (Zhou et al. 2020) 
and electrolyte disturbances (Alfano et al. 2021; Lippi et al. 
2020; Stevens et al. 2021) were also reported. Here, we will 
review both the clinical occurrence of diLQTS in the context 
of fever, hypokalaemia, hypomagnesemia and other electro-
lyte disturbances and the mechanisms by which these factors 
contribute to altered potency of hERG block and proarrhyth-
mic risk.

Effect of kalaemic variation on drug‑induced 
long QT syndrome

Potassium is the most abundant intracellular cation, which 
in healthy patients exists within the range of 3.6–5.0 mM in 
the plasma (El-Sherif and Turitto 2011; Salzman 2018). In 
the case of altered serum potassium, hypokalaemia is the 
most common electrolyte abnormality, occurring in over 
20% of hospitalised patients, and is defined as a plasma  K+ 
level of less than 3.6 mM. This occurs most frequently as a 
result of decreased intake, increased renal or gastrointestinal 
loss or via transcellular shift (El-Sherif and Turitto 2011; 
Salzman 2018). Hyperkalaemia (plasma  K+  > 5.0 mM) is 
less common, reported in 8% of hospitalised patients, and 
occurs as a result of potassium-sparing diuretic use, higher 
intake, decreased excretion due to renal failure or damage 
or transcellular shift of potassium into the extracellular 
environment (El-Sherif and Turitto 2011; Salzman 2018). 
In patients taking drugs with established proarrhythmic 
risk, changes in serum  K+ have been observed to drive fur-
ther QT prolongation and incidence of TdP. For example, 
Ayad et al. reported the case of a patient taking quinidine 
for 15 years without any incidence of QT prolongation who 
developed TdP and syncope as a result of hypokalaemia by 
way of gastrointestinal loss (Ayad et al. 2010). Similarly, 
in a study of 24 individuals, patients administered hERG 
blockers such as quinidine while taking potassium-depleting 
diuretics were identified to be at higher risk for QT pro-
longation and development of TdP, although some of these 

patients also presented with several other risk factors such 
as hypertension, cardiomyopathy or were also taking addi-
tional QT prolonging drugs (Roden et al. 1986). However, 
hypokalaemia rarely presents alone, meaning other parallel 
factors can also contribute to QT prolongation. In a study of 
11 patients in whom diLQTS was present, including 8 who 
exhibited severe hypokalaemia, additional factors such as 
hypomagnesaemia, hypertension and alcohol use were also 
present (Digby et al. 2011), while in a larger study of 804 
chronic kidney disease patients, lower serum  K+ and  Ca2+ 
were each found to be significant contributors to QT prolon-
gation, often against a background of chronic diseases such 
as hypertension or diabetes (Liu et al. 2019).

Mechanism of kalaemia‑dependent changes 
in hERG block and QT prolongation

Understanding the relationship between kalaemic variation 
and drug-induced prolongation of repolarization is com-
plex, since variation in extracellular potassium has direct 
effects on cardiac repolarization, via effects on potassium 
channel function and expression, as well as drug binding 
(Barrows et al. 2009; Guo et al. 2009, 2011; Limberis et al. 
2006; Melgari et al. 2014; West et al. 1997; Yang et al. 2004, 
1997). Here we will focus on studies that have specifically 
addressed potassium dependence of a drug’s potency to 
block hERG. Across the literature, reports of the influence 
of  K+ on potency to block hERG across drugs is broadly 
consistent, with increasing extracellular potassium reducing 
the potency of block (Barrows et al. 2009; Busch et al. 1998; 
Lin et al. 2007, 2008, 2005c; Lin and Papazian 2007; Mer-
genthaler et al. 2001; TeBay et al. 2021; Wang et al. 1997; 
West et al. 1997; Yang et al. 2004) and decreased potassium 
concentration increasing potency of block (Lin et al. 2005a; 
TeBay et al. 2021; Tschirhart and Zhang 2020). Two poten-
tial mechanisms have been proposed to explain this. First, 
it has been suggested that changes in the state or conforma-
tion of hERG as a function of  K+ might impact the potency 
of drugs that exhibit state-dependent binding. The hERG 
channel can exist in one of three states: closed, open or inac-
tivated, with two voltage-dependent gates, a fast inactivation 
gate and a slow activation/deactivation gate (Vandenberg 
et al. 2012). Some drugs can exhibit “state preference”, 
showing a greater affinity for either open or inactivated 
state (Lee et al. 2016, 2019; Perrin et al. 2008; Stork et al. 
2007). As a result, changes in conditions such as  K+ that is 
known to alter the equilibrium between the open and inac-
tivated states of the channel can contribute to variation in 
observed potency for state-dependent drugs. For example, 
after observing reduced potency across a panel of drugs with 
inactivated state preference in the presence of elevated  K+, 
Yang et al. posited that the shift away from the inactivated 
state of the hERG channel that occurs under these conditions 
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(Fig. 2a) would reduce the observed degree of block (Yang 
et al. 2004). Supporting this idea, it has also been shown (in 
the absence of variation of external  K+) that hERG mutants 
with reduced inactivation could greatly attenuate the block 
of drugs with inactivated state preference such as cisapride 
and terfenadine (Perrin et al. 2008), while voltage proto-
cols that drive occupancy of the inactivated state result in 
a higher observed potency for state-dependent drugs (Lee 
et al. 2016, 2019). However, there is also evidence to counter 
the concept of state-dependent binding underlying the effect 
of potassium. Barrows et al. showed that despite significant 
reduction in hERG potency for cisapride and quinidine with 
increasing  K+ between 0 and 20 mM  K+, there was little 
change in the fraction of channels existing in inactivated 
state at + 20 mV between these two potassium concentra-
tions. Based on this evidence, they reasoned that state prefer-
ence of block did not underpin the altered potency seen for 
these drugs (Barrows et al. 2009). Similarly, though again 
outside of a  K+ context, Thouta et al. used mutants that were 
constitutively open to explore the preference of terfenadine 
or cisapride for binding to the open or inactivated state and 
were able to show that degree of drug block did not change 
in accordance with the extent of inactivation, suggesting that 
these two drugs do not exhibit an inactivation state prefer-
ence (Thouta et al. 2018).

The second mechanism proposed to explain the potassium 
dependence of a drug’s potency to block hERG is that elec-
trostatic repulsion between the  K+ ion and the bound drug 
molecule induces a “knock-off” effect (Barrows et al. 2009; 
Wang et al. 1997). Wang et al. showed that an inactivation-
deficient mutant (S631C, G628C) had near identical external 
 K+ sensitivity for E-4031 block as the wild-type channel 
(Wang et al. 1997) and proposed that since both potassium 
and E-4031 possess a single positive charge, an electrostatic 
repulsion mechanism could explain the effect of potassium 
on drug potency. The study found that with the differences 
in  K+ they had used (2 mM vs 98 mM), there would be suf-
ficient free energy to account for the observed reduction in 
block (Wang et al. 1997). Further to this, it has been pro-
posed that the ability of monovalent cations to “knock off” 
a drug from its binding site on the hERG channel depends 
on the ion’s permeability (Barrows et al. 2009). Evidence 
for this includes a correlation between the observed degree 
of potency of block for cisapride and quinidine and ionic 
permeability when the permeant ion or chemical species is 
switched between potassium, rubidium, caesium and TEA, 
where the degree of block follows the ion’s permeability 
through hERG of PK+  = PRb+  > PCs+  >  > PTEA (Barrows 
et al. 2009). However, sensitivity of block to specific mono-
valent ions is also drug dependent, as the degree of block 
for quinidine was significantly different between 2 and 
20 mM  K+, as well as between  K+ and  Cs+, whereas cisap-
ride block was unchanged (Barrows et al. 2009).

In reality, it is likely that both mechanisms may contrib-
ute, depending on the specific compound. In the current 
literature, mechanistic studies have generally sampled only 
small subsets of drugs, often because data has been gener-
ated using manual patch-clamp electrophysiology, which 
limits the throughput and scale of these investigations. To 
more confidently discern the mechanism by which altered 
 K+ affects drug potency, it is likely that studies of larger 
drug panels are required, which could be facilitated using 
high-throughput platforms such as automated patch-clamp or 
radioligand binding assays. For example, Diaz et al. used 3H 
dofetilide binding assay to assess a panel of 56 compounds, 
showing that higher  K+ lead to reduced potency for some 
compounds, though increased potency for others (Diaz et al. 
2004) — inconsistent with the broad trend reported in prior 
patch-clamp studies. However, in comparison with the gold 
standard of manual patch clamp, there was a greater than 5- 
to sixfold difference between potencies measured in binding 
versus patch clamp for some compounds, with 6 of those 
compounds having greater than tenfold difference (Diaz 
et al. 2004). In resolving this question, the use of automated 
patch-clamp platforms, which combine throughput with gold 
standard electrophysiology, is likely the technology that will 
facilitate the scale and quality of information required for 
interpreting and predicting the clinical implications of  K+ 
on hERG drug block and proarrhythmic risk into the future.

Effects of divalent ions on drug‑induced 
long QT syndrome

Clinical observations for altered serum divalent 
concentration

Two divalent cations that are (i) present in human plasma at 
concentrations relevant for modification of hERG function 
and/or block, and (ii) have altered concentrations in patho-
physiological states, are magnesium and calcium. In healthy 
patients, normal total plasma calcium concentration is in the 
range 2.2–2.55 mM, where concentrations outside of this 
range, typically lower, can contribute to QT prolongation 
and hence arrhythmic risk (Liu et al. 2019; Nijjer et al. 2010; 
Szymanski et al. 2013). However, free- or ionised-calcium 
concentrations are significantly lower (1.05–1.3 mM (Gold-
berg 2019)), due to binding to plasma proteins such as albu-
min (Labriola et al. 2009), making this the preferred clinical 
measurement in predicting prolongation of the QT interval 
(Kim et al. 2019) and a more suitable comparison for in vitro 
experiments than total  Ca2 + . Hypocalcaemia can be observed 
with renal insufficiency, parathyroid disease, reduced intake, 
acute pancreatitis, septic shock or other electrolyte distur-
bances, whereas hypercalcaemia is associated with hyper-
parathyroidism, vitamin D disturbances, endocrine disorders, 
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neoplastic disorders and many other malignancies (El-Sherif 
and Turitto 2011; Salzman 2018). For magnesium, the nor-
mal range is 0.7–0.95 mM, and while both hypomagnesemia 
and hypermagnesemia can result in QT interval prolongation 
(Topf and Murray 2003), their effects on electrophysiology 
are often hard to ascertain due to their frequent association 
with other electrolyte or electrophysiological abnormalities 
(Ayad et al. 2010; El-Sherif and Turitto 2011; Roden et al. 
1986; Salzman 2018; Whang and Ryder 1990). Hypomagne-
semia is common, especially in geriatric populations, and can 
occur due to decreased gastrointestinal uptake or renal loss, 

whereas hypermagnesemia is far rarer, especially outside of 
an obstetric population, given the large reserve of magnesium 
excretion potential the kidneys possess, often only occurring 
in the background of renal failure (El-Sherif and Turitto 2011; 
Topf and Murray 2003).

Mechanism of divalent ion‑dependent changes 
in hERG block

While there is significant literature on the effect of divalent 
cations on cardiac electrophysiology and hERG channel 

Biophysical Reviews (2022) 14:353–367358



1 3

function, there are fewer comprehensive reports on diva-
lent cation dependence of hERG drug block potency. Fur-
thermore, the literature that does exist presents a somewhat 
inconsistent narrative. Increased extracellular  Mg2+ has been 
shown to increase the potency of hERG block for multiple 
compounds (Po et al. 1999; TeBay et al. 2021), whereas 
reduced internal  Mg2+ was found to reduce the potency of 
quinidine (Yang et al. 1997). Conversely, concentrations of 
extracellular  Ca2+ between 0.1 and 10 mM did not modify 
the block of either quinidine or cisapride (Barrows et al. 
2009). Since there are suggestions that divalent ions could 
act as hERG/IKr blockers themselves, with binding sites 
identified within the hERG channel (Anumonwo et al. 1999; 
Ho et al. 1996, 1998, 1999), one potential mechanism could 
be that divalent ions together with hERG blocking drugs 
could result in an increased overall load of IKr inhibition (Po 
et al. 1999). Another potential explanation is that divalent 
ions regulate the deactivation kinetics of hERG, which could 
in turn affect drug dissociation and the degree to which some 
drugs exhibit “drug trapping” (Barrows et al. 2009). One 

factor that has confounded in vitro investigations in this area 
is the need for 1–2 mM concentrations of calcium in bath 
solutions for patch-clamp electrophysiology, which is criti-
cal for formation and maintenance of high-quality seals (Lin 
and Papazian 2007). As a result, investigations of the effects 
of variation in divalent ion concentrations in the physiologi-
cal range are limited in these systems. This issue is particu-
larly salient in automated high-throughput patch-clamp sys-
tems, where calcium fluoride seal enhancers are critical in 
establishing high-quality seals (Braun et al. 2021), meaning 
thorough investigation of the effects of divalent ions on drug 
block of hERG at large scale remains technically difficult. In 
addition to this practical challenge, there is also the issue of 
what is physiologically or clinically relevant. While observ-
ing the effects of wide ranges in concentration of divalent 
ions may be mechanistically interesting, calcium and par-
ticularly magnesium exist in narrow physiological ranges, 
meaning the clinical relevance of such studies are limited.

Acidosis and alkalosis

Effect of acidosis and alkalosis on drug‑induced QT 
prolongation

Metabolic acidosis can increase the QT interval on the 
ECG (Yenigun et al. 2016) as well as lower the threshold 
for ventricular fibrillation. Such changes can become par-
ticularly problematic in the case of localised changes in pH 
surrounding ischemic regions of the heart, which produce 
heterogeneity in action potential duration and provide an 
electrical substrate for re-entry (Clayton and Holden 2005; 
Gebert et al. 1971; Podrid and Myerburg 2005; Surawicz 
1985). Of specific relevance to this review, acidosis has also 
been reported as a comorbidity in cases of diLQTS (Riezzo 
et al. 2009). In relation to hERG channels, changes in pH 
can directly affect hERG function (Anumonwo et al. 1999; 
Jiang et al. 1999; Jo et al. 1999; Lin et al. 2005a; Shi et al. 
2014; Van Slyke et al. 2012; Vereecke and Carmeliet 2000) 
as well as the molecular pharmacology of the drug channel 
interaction. In the latter case, early experiments showed that 
a reduction in pH to 6.8 could significantly reduce hERG 
block by dofetilide (West et al. 1997). Across numerous sub-
sequent reports, there is broad consensus that extracellular 
acidification reduces hERG block by a range of compounds 
(Du et al. 2011; Lin et al. 2005a, b, 2008; TeBay et al. 2021; 
Thurner et al. 2014; Tschirhart and Zhang 2020; Wang et al. 
2016; Zhang et al. 1999), with alkalisation enhancing drug 
block (Lin et al. 2005a; Thurner et al. 2014; Tschirhart and 
Zhang 2020; Zhang et al. 1999). There is however some 
complexity to this relationship since quite different results 
were seen when the extracellular solution was acidified using 
sodium acetate rather than hydrochloric acid. In this case, 

Fig. 2  Mechanisms of environmental effects on hERG and drug inter-
actions. Some pathophysiological changes can have effects on the 
molecular mechanisms of hERG. a Represents a schematic showing 
hERG gating starting in the closed state (left), transitioning through 
to the open state (middle) by processes of depolarisation and transi-
tioning again to an inactivated state (right) through depolarisation, 
with the reverse direction of these processes driven by repolarisation. 
Conditions that can increase deactivation, from open to closed state, 
include acidosis and high concentration of divalent ions, whereas 
conditions that could lead to a greater drive to inactivation includes 
low potassium ion concentration. Finally, raising temperature 
increases the threshold for hERG to exist in the open state. Beneath 
are drugs with state preference, with arrows indicated towards which 
hERG state they possess preferential binding towards, including dofe-
tilide able to bind to open or inactivated state, with greater prefer-
ence for the latter (Perrin et al. 2008; Wang et al. 2016; Yang et al. 
2004), flecainide with open-state preference (Paul et  al. 2002) and 
erythromycin with open or closed state preference (Guo et al. 2005). 
b Indicates the effect of acidosis on drug diffusion across the lipid 
bilayer. The site of binding is often located such that drug molecules 
require access from the intracellular side of the membrane and so 
must be able to cross the cell membrane. The left panel indicates drug 
administered extracellularly in the presence of extracellular acidosis. 
Where the local pH is far below the pKa of the drug molecule, a sig-
nificant proportion of the drug molecule will become charged (D +) 
and hence unable to cross the lipid bilayer and reach the site of drug 
binding. Whereas when pH is only slightly below (or above) that of 
the molecules pKa, a greater proportion is available in the neutral or 
uncharged state (Dn), which can cross the cell membrane and reach 
its site of action, indicated by the closed green circle. On the right 
shows similar conditions yet for intracellular drug application with 
intracellular acidosis. Here, the difference is that a greater amount 
of neutral drug molecule would lead to a greater diffusion out of the 
cell, and hence, less drug is available for channel block, where instead 
with a local pH far below the drug molecule’s pKa, the drug molecule 
becomes charged, and hence experiences trapping within the cell, and 
so a greater amount is available to block the channel. All channels, as 
well as lipid bilayer assets, were obtained from Servier Mediact Art 
(Servier 2021)

◂
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while lowered pH still reduced block by quinidine and azi-
milide, the potency of dofetilide was increased (Dong et al. 
2004), with the authors suggesting this perhaps occurred 
because sodium acetate reduced the intracellular (as well as 
extracellular) pH (Dong et al. 2004). Furthermore, in experi-
ments examining acidification of the intracellular space, 
while extracellular pH was maintained in the physiological 
range, dofetilide, flecainide and amiodarone’s block was not 
diminished when the drugs were applied extracellularly (Du 
et al. 2011), while for ibogaine, intracellular application of 
the drug in the presence of intracellular acidification greatly 
increased the extent of block (Thurner et al. 2014).

Mechanism of pH effects on hERG block

Despite differences in drug class and chemical structure of 
compounds that block hERG, a common explanation for the 
effect of pH on drug potency has emerged, based on how 
charge on the functional groups of a drug molecule affects 
their partition coefficients and hence their ability to cross 
the cell membrane. For example, antimalarial drugs such 
as quinine and chloroquine are weak bases and can gain 
or lose protons from their amino groups depending on pH 
(Warhurst 1986). In their neutral form, these compounds are 
lipophilic, with a high partition coefficient (logP), and hence 
are able to cross the membrane to access their intracellular 
binding site. However, in more acidic environments, these 
molecules become protonated, more hydrophilic/lipopho-
bic and less membrane permeable, limiting access to their 
intracellular binding site and reducing the observed degree 
of block (Warhurst 1986; Warhurst et al. 2003) (Fig. 1b). 
Consistent with this, it has been seen that a drug’s potency 
to block hERG increases with lipophilicity, as measured by 
logP, or basicity, as measured by pKa (Kawai et al. 2011), 
while several studies of individual compounds also sup-
port this mechanism. For example, Zhang et al. calculated 
that for verapamil, with a pKa around 8.8, 4% of molecules 
would exist in a neutral form at pH 7.4, compared to 28% 
at pH 8.4 and 0.4% at pH 6.4, and observed a correspond-
ing reduction in the potency of block as pH was decreased 
in vitro (Zhang et al. 1999). The authors also demonstrated 
that block by N-methyl-verapamil, a permanently charged 
analogue of verapamil, was not sensitive to changes in pH, 
confirming that the effect on block was specifically due to 
the charge on the drug molecule (Zhang et al. 1999). Similar 
explanations have also been posed for other drugs such as 
flecainide (Du et al. 2011), ibogaine (Thurner et al. 2014), 
fentanyl (Tschirhart and Zhang 2020) and hydroxychloro-
quine (TeBay et al. 2021) supporting the case that this is a 
common mechanism for the effect of pH on a drug’s potency 
to bock ERG.

For some drug molecules, however, the picture can be 
more complicated. Dofetilide has multiple functional groups 

with different pKa values, including two methanesulfona-
mide groups, with pKa values of 9.0 and 9.6, as well as a 
nitrogen atom with a pKa of 7, making it a zwitterion (Du 
et al. 2011). At a pH of 7.4, 2.5 and 0.6% of the methane-
sulfonamide moieties are charged, compared with 28.5% of 
amine groups (Du et al. 2011), while at pH 6.3, 0.2% and 
0.06% of the methanesulfonamide and 84% of the amine 
groups would be charged. Thus, the overall effect of acidic 
pH is a more charged, membrane impermeant molecule that 
shows reduced block of hERG at lower pH (Du et al. 2011). 
Other drugs have pKa values outside of the physiological/
pathophysiological range but can also exhibit modified 
potency of hERG block with respect to pH. For example, 
flecainide, with a pKa of 9.3, exists in 1.2% and 0.1% neutral 
form at pH 7.4 and 6.3, respectively (a 12-fold difference), 
so still exhibits significant changes in observed potency 
between these pH values. Conversely, at the other extreme, 
amiodarone has a pKa of 5.6 (98% neutral at pH 7.4 and 
83% at pH 6.3) and is not sensitive to pH changes in the 
same range (Du et al. 2011). Finally, for some drugs such 
as ibogaine, this same mechanism can also result in internal 
accumulation of a drug molecule, where under low intra-
cellular pH the drug molecule becomes ionised, and hence 
trapped within the cell, thus increasing the apparent potency 
of the drug (Fig. 2b) (Thurner et al. 2014).

In addition to the effect of pH via charge on the drug 
molecule, a further layer of nuance exists in understanding 
how environmental pH can alter a drug’s potency to block 
hERG. In a similar manner to extracellular potassium, pH 
can also affect hERG channel function and hence influences 
state-specific drug-channel interactions. Specifically, acido-
sis is known to accelerate hERG deactivation, affecting the 
occupation of the open state at a given voltage (Anumonwo 
et al. 1999; Jiang et al. 1999; Jo et al. 1999; Vereecke and 
Carmeliet 2000) (Fig. 2a). In relation to this, the neutral 
form of dofetilide has been reported to preferentially bind 
to the open state of the hERG channel, while the cationic 
form preferentially binds to the inactivated state (Wang et al. 
2016). Using molecular docking simulations, Wang et al. 
showed that as the channel transitions between open and 
inactivated states, there is reorientation of the key residues 
F656 and Y652 that form the drug binding site. Concomi-
tant with this, cationic dofetilide can change confirmation, 
bringing its benzene rings closer in an event known as π-π 
stacking, which allows the dofetilide molecule to bind to the 
channel and stabilise hERG in the inactivated state (Wang 
et al. 2016). Therefore, overall, a range of factors including 
the pKa of the compound, the pH of the extracellular versus 
intracellular environment, passage to the compounds intra-
cellularly accessed binding site and the compound’s state 
preference all contribute to the pH effect on hERG block in a 
compound-specific manner. Furthermore, in the physiologi-
cal/pathophysiological range of pH, significant changes in 
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hERG block, and hence QT prolongation, can occur, mak-
ing this an important factor for consideration in relation to 
diLQTS.

Temperature

Effect of febrile temperature on hERG block 
and drug‑induced long QT syndrome

Elevated/febrile body temperature, as a result of illness and 
infection, is known to alter or exacerbate diLQTS pheno-
types in patients. Perhaps, most commonly, this occurs in 
association with the use of antibiotics such as vancomycin 
and gentamicin (Varriale and Ramaprasad 1995), or antifun-
gals such as posaconazole (Panos et al. 2016), to treat infec-
tion. However, febrile temperatures are also associated with 
other pathophysiological conditions such as hypertension 
and diabetes mellitus in patients who may also be prescribed 
drugs with potential to prolong the QT interval such as enal-
april and glyburide, respectively (Varriale and Ramaprasad 
1995). In vitro studies that are specific to febrile versus phys-
iological temperature are limited, with inconsistent reports 
across different drugs. Erythromycin, for example, has been 
shown to be a more potent hERG blocker at physiological 
(37 °C) as opposed to ambient (22 °C) temperature, with 
further increased potency observed at febrile temperatures 
(42 °C) (Guo et al. 2005). In contrast, for moxifloxacin, no 
significant change in potency was observed between physi-
ological temperature and 42 °C (Alexandrou et al. 2006). 
Similarly, our investigations showed that febrile temperature 
significantly increased the potency of azithromycin as com-
pared to physiological temperatures, while for chloroquine 
and hydroxychloroquine, potency was significantly reduced 
(TeBay et al. 2021). Further insights into the effect of tem-
perature on hERG block can be gleaned from experiments 
performed at subfebrile temperatures, which are far more 
common in the literature. Lacerda et al. reported that physi-
ological temperatures (35 °C) evoked only a slight change in 
potency for terfenadine and loratadine (increase or decrease 
respectively), with no significant changes observed for cisap-
ride and erythromycin when compared to ambient tempera-
ture (Lacerda et al. 2001). Contrary to this, other studies 
report significant effects of temperature on block of hERG 
by erythromycin (~ sevenfold increase in potency) (Kirsch 
et al. 2004) — a difference perhaps is a result of the different 
voltage protocols used between the two studies. In relation to 
this, Kirsch noted that at 22 °C, erythromycin did not reach 
steady state of block when employing a 2-s step pulse pro-
tocol with a 10-s interval, leading to an inaccurate estimate 
of  IC50, while at physiological temperature, the true steady 
state was reached, because of the faster onset of block. This 
raises an important point that is equally applicable to any 

studies assessing hERG potency — that there is no “gold 
standard” protocol and the observed degree of block can be 
protocol specific. As a result, this potentially confounding 
factor should be considered in any comparison between stud-
ies, such as those described in this review. Overall, then it 
is clear from the literature that the effect of temperature on 
potency is compound specific, meaning consideration of the 
proarrhythmic risk associated with administration of poten-
tially QT prolonging drugs to patients with fever needs to be 
made on a drug-by-drug basis.

How does temperature modify potency of block?

In a similar manner to kalaemic variation, experiments 
examining the temperature dependence of the potency of 
hERG block have suggested two potential mechanisms to 
explain temperature sensitivity: first, through modification 
of hERG channel function, particularly in relation to bind-
ing of state-dependent drugs, and, second, through direct 
effect on drug interaction with its binding site on the chan-
nel protein. In relation to the first of these, hERG electro-
physiology displays complex temperature dependence, 
with increasing temperature causing a negative shift in the 
voltage dependence of activation, in concert with a posi-
tive shift in the voltage dependence of inactivation (Van-
denberg et al. 2006), resulting in an overall increased occu-
pancy of the open state at physiological voltages (Fig. 2a). 
For compounds that exhibit state-dependent binding, these 
temperature-dependent shifts in state occupancy therefore 
have potential to affect the measured potency of block. In 
this regard, Yao et al. investigated the effects of temperature 
on hERG block by probing state-dependent inhibition with 
various voltage protocols and temperatures. For astemizole, 
overall decreased potency was observed at higher tempera-
ture, with the greatest degree of block observed with a non-
state selective protocol, suggesting that astemizole is able 
to block multiple states of hERG (Yao et al. 2005). Both 
terfenadine and ketoconazole similarly showed little prefer-
ence between protocols optimised for close- or open-state 
occupancy and, consistent with that, showed little change 
in potency at higher temperatures. Finally, while E-4031 
exhibited open-state preference during ambient temperature 
recordings, no change in potency was observed at higher 
temperatures (Yao et al. 2005). The relationship between 
channel state occupancy, temperature and channel block is 
therefore complex and requires further experiments across 
a wider selection of compounds to fully resolve.

The second possible explanation for the effect of tem-
perature on hERG potency — a direct impact of temperature 
on drug binding kinetics — has been probed using combi-
nations of fast perfusion systems, voltage protocols and in 
silico modelling. Using ultra-fast solution exchange systems, 
Windley et al. were able to directly measure both the onset 
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of block and washout of cisapride, showing that the kinetics 
of both drug binding and dissociation were temperature sen-
sitive and that complex characteristics of kinetics at higher 
temperatures could be explained by an accumulation of drug 
in an intermediate, non-blocking state (termed an encounter 
complex). Furthermore, they showed that in the context of 
the cardiac action potential, these temperature-dependent 
effects on drug binding kinetics were important in predict-
ing the degree of prolongation associated with hERG block 
(Windley et al. 2016). Following this, a study of a broader 
range of drugs including verapamil, cisapride, bepridil and 
terfenadine found that while increasing temperature accel-
erated the observed onset of block (τon) for all drugs, the 
temperature dependence of association and dissociation 
rates was compound specific (Windley et al. 2018). Fur-
thermore, while there was no significant effect of tempera-
ture on measured potency in steady-state block assays, the 
alterations to the kinetic parameters alone still resulted in 
variable temperature dependence of the predicted degree of 
action potential prolongation for each of the drugs (Windley 
et al. 2018). Overall, this data therefore supports the need to 
consider the influence of temperature on the kinetics of drug 
block, even in the absence of changes to potency, in relation 
to diLQTS. Furthermore, since the effects of temperature 
appear to be compound specific, pharmacological screening 
data for use for risk prediction in diLQTS should where pos-
sible be acquired at physiological temperatures.

Drug coadministration

While most in vitro studies focus on the effect of a single 
environmental factor on hERG potency, the reality in rela-
tion to QT prolongation in the clinical setting is more com-
plex. Patients are often administered multiple drugs with 
potential to prolong repolarisation, in the background of 
combinations of electrolyte disturbances and/or chronic 
disease states (Ayad et al. 2010; Digby et al. 2010). For 
example, in a study by Digby et al., subjects were prescribed 
on average 2.8 QT prolonging drugs in the background of 
diseases including hypertension and dilated cardiomyopathy 
(Digby et al. 2011). Similarly, in a study of 48 patients hos-
pitalised for TdP, the mean medication number per patient, 
including QT prolonging drugs in some instances, was 1.1, 
with electrolyte imbalances seen in 79% of patients (Lazzer-
ini et al. 2018). This data therefore highlights the importance 
of considering how drugs might interact with each other, 
either directly or indirectly in understanding QT prolonga-
tion in patients.

Regarding direct drug effects, the simplest consideration 
is that of an additive effect on hERG block. Most drugs that 
block hERG are thought to share a common binding site 
formed by a network of aromatic residues in the vestibule 

of the channel (Kamiya et al. 2008; Stansfeld et al. 2006). 
Given this common binding site, a patient taking multiple 
QT prolonging agents could simply be considered to have an 
increased load of hERG channel block — so increasing their 
potential for QT prolongation and TdP. In patients, these 
additive effects have most often been reported in associa-
tion with coadministration of antipsychotic drugs. Lin et al. 
reported a patient presenting with schizophrenia who was 
prescribed risperidone, amisulpride and haloperidol, lead-
ing to sudden cardiac arrest, where discontinuation of ami-
sulpride leads to a gradually normalised QTc interval (Lin 
et al. 2009). In the same study, the authors also described 
a second patient who developed a QTc interval of 510 ms 
when co-administered amisulpride and flupenthixol, with 
neither agent alone producing concerning QT prolongation 
(Lin et al. 2009).

Aside from additive effects on hERG block, coadminis-
tration of drugs can also result in increased torsadogenicity 
via effects on drug metabolism. Increasing concentrations 
of berberine or clarithromycin have been shown to sig-
nificantly inhibit activity of cytochrome P450 enzymes of 
the CYP3A family in vitro. Since this enzyme is a major 
metaboliser of many QT prolonging drugs, this reduction in 
CYP3A activity can lead to altered pharmacokinetics and 
hence a greater plasma concentration of either drug (Zhi 
et al. 2015). This link between inhibition of drug metabo-
lism and proarrhythmia has been observed across multiple 
studies including reports that ketoconazole, erythromycin, 
diltiazem, itraconazole and grapefruit juice — all inhibitors 
of cytochrome P450 enzymes — have resulted in increased 
serum concentration of terfenadine, halofantrine and cisap-
ride, leading to QT prolongation and TdP (Charbit et al. 
2002; Paris et al. 1994; Pohjola-Sintonen et al. 1993; Rajput 
et al. 2010; Thomas et al. 1998). This phenomenon has also 
been detected in larger cohorts where coadministration of 
ketoconazole with domperidone was found to triple the 
plasma concentration of domperidone, exacerbating QTc 
prolongation to clinically significant levels, over and above 
that observed for either agent alone (Boyce et al. 2012).

Systemic effects induced by other drugs have also been 
seen to modify the risk profile of QT prolonging compounds. 
For example, Roden et al. described cases where hypokalae-
mia caused by potassium-depleting diuretics were found to 
exacerbate quinidine-induced QT prolongation (Roden et al. 
1986), while incidences of hypomagnesemia caused by pro-
tein pump inhibitor usage, in combination with QT prolong-
ing medications such as ceftriaxone or disopyramide, were 
shown to trigger TdP (Lazzerini et al. 2018). Finally, another 
case described a patient treated with prednisolone for myas-
thenia gravis precipitating atrial fibrillation, which was in 
turn treated with disopyramide. The disopyramide admin-
istration resulted in worsening myasthenia gravis, leading 
to respiratory failure and serum disturbances including 
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alkalosis and hypokalaemia, which together precipitated 
TdP (Hirose et al. 2008). Together, these cases demonstrate 
that regardless of the mechanism of their interaction, the 
simultaneous presence of multiple hERG blocking agents, 
and their interaction with systemic factors such as electro-
lytes, have clear potential to increase proarrhythmic risk, 
and patients should be monitored appropriately when QT 
prolonging medicines are co-administered.

Conclusions

In order to understand or predict the occurrence of drug-
induced QT prolongation and TdP in patients, it is clear that 
risk allocation is far more complicated than a static label 
assigned to individual drugs. Rather, a range of pathophysi-
ological factors associated with disease states as well as 
coadministration with other drugs need to be considered 
when prescribing and managing the risk of therapeutics 
with potential to prolong the QT interval. While significant 
literature exists describing how factors such as pH, fever 
and kalaemic variation affect potency to block hERG, there 
are still gaps in our knowledge regarding the mechanisms of 
these effects, which may be better addressed via studies on 
more extensive drug libraries that are now feasible as a result 
of the increased use of high-throughput automated patch-
clamp screening platforms. Furthermore, incorporation of 
data from these large-scale screens into population models 
of cardiac electrophysiology (TeBay et al. 2021; Varshneya 
et al. 2021) will help us better understand the relationships 
between a drug’s ion channel blocking potency, the effect 
of environmental modifiers, genetic background and risk of 
TdP.
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