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Studies describing the expression patterns and biomarkers for the tumoral process

increase in number every year. The availability of new datasets, although essential, also

creates a confusing landscape where common or critical mechanisms are obscured

amidst the divergent and heterogeneous nature of such results. In this work, we

manually curated the Gene Expression Omnibus using rigorous filtering criteria to select

the most homogeneous and highest quality microarray and RNA-seq datasets from

multiple types of cancer. By applying systems biology approaches, combined with

machine learning analysis, we investigated possible frequently deregulated molecular

mechanisms underlying the tumoral process. Our multi-approach analysis of 99 curated

datasets, composed of 5,406 samples, revealed 47 differentially expressed genes in

all analyzed cancer types, which were all in agreement with the validation using TCGA

data. Results suggest that the tumoral process is more related to the overexpression of

core deregulated machinery than the underexpression of a given gene set. Additionally,

we identified gene expression similarities between different cancer types not described

before and performed an overall survival analysis using 20 cancer types. Finally, we were

able to suggest a core regulatory mechanism that could be frequently deregulated.

Keywords: regulatory networks, overall survival, machine learning, omics, bioinformatics, systems biology, cancer

1. INTRODUCTION

Despite the breakthroughs made every year, cancer is still the second leading cause of death
worldwide (Bray et al., 2018), and continuous efforts must be made to understand the molecular
mechanisms underlying this disease and engage new future treatment options. Taking a step
back from a preventive (i.e., personal screening) point of view, one of the significant issues to
understanding cancer biology is its inherent heterogeneous nature, as has been seen in various
cancer types (Shen et al., 2016; Hardiman, 2018; Ho et al., 2018; Joseph et al., 2018; Zhang et al.,
2018). It thus becomes difficult to identify the primary molecular drivers of the tumoral process and
to understand the differences between distinct cancer types without comparing their expression
patterns to examine their most prominent variations. Nowadays, there are multiple sources of
gene expression data, such as microarray and RNA-seq analysis, both of which provide valuable
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information that can be employed to create a more accurate
portrait of these molecular differences. Due to the massive
amount of works published each year identifying tumoral
expression patterns and biomarkers, however, that could be
biologically relevant in those contexts it is neither intuitive nor
clear. Consequentially, the most optimal approach to create
this expression panorama would be to combine both types
of data and design a multi-approach computational strategy
to extract relevant information, as different computational
strategies provide distinct results and interpretations. The use of
multiple types of data and different computational approaches to
understand the molecular mechanisms underlying the tumoral
process and comprehend what could lie beyond the heterogeneity
in cancer is already broadly accepted (Archer et al., 2016;
Doherty et al., 2019; Olivier et al., 2019). Additionally, a
distinct dataset-mining protocol would be fundamental to
assure proper comparison and valid results, which is a subject
that, unfortunately, is not adequately discussed and frequently
overlooked in most computational research.

Nowadays, pan-cancer studies are among the promising
approaches to find new genes that can have a potential role as
prognosis biomarkers or that have therapeutic uses. There are
numerous alternatives when conducting a pan-cancer study. For
example, they can follow a pure machine-learning approach,
exploring the combination of omics-data (Gonzalez-Reymundez
and Vazquez, 2020), the combination of different types of cancer
data (Chiu et al., 2019), or applying diverse protocols to answer
questions on specific data types, such as immunological (Polano
et al., 2019), mutations (Palazzo et al., 2019), methylation (Yang
X. et al., 2017; Saghafinia et al., 2018), proteomics (Akbani et al.,
2014), lncRNA (Li Y. et al., 2018), miRNA (Cheerla and Gevaert,
2017), or mRNA data (Demircioğlu et al., 2019). Likewise, they
can also be accompanied by network approaches (Chen et al.,
2018; Cava and Castiglioni, 2019), signaling pathway analysis
(Neapolitan et al., 2015), or networks associated with functional
pathways analysis (Cava et al., 2018). Pan-cancer studies are
conducted using various methods, all of which are valid in
their way and adapted to their own objectives. Nevertheless, in
this pursuance of mass analyzing cancer datasets, creating new,
rigorous, and integrative approaches is fundamental (Doherty
et al., 2019) to maintaining the stimulation of further discussions
and devising new analytical choices.

Abbreviations: B, bottleneck; BLCA, bladder carcinoma; BRCA, breast invasive

carcinoma; COAD, colon adenocarcinoma; CuMiDa, curated microarray

database; DEG, differentially expressed genes; ESCA, esophageal carcinoma;

FS-NEAT, feature selection-neuroevolution of augmenting topologies; GBM,

glioblastoma multiforme; GEO, gene expression omnibus; GO, gene ontology;

GSE, GEO series; H, Hub; HB, hub-bottleneck; HR, hazard ratio; HS, hub-switch;

HBS, hub-bottleneck-switch; HNSC, head-neck squamous cell carcinoma; KICH,

chromophobe renal cancer; KIRC, kidney renal clear cell carcinoma; KIRP, kidney

renal papillary cancer; LIHC, liver hepatocellular carcinoma; LGG, low grade

glioma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;

ML, machine learning; OV, ovarian serous cystadenocarcinoma; PAAD,

pancreatic adenocarcinoma; PPI, protein-protein interaction; PRAD, prostate

adenocarcinoma; READ, rectum adenocarcinoma; REG-Net, regulatory network;

S, switch; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;

TAR-Net, transcription-associated networks; TCGA, the cancer genome atlas;

THCA, thyroid carcinoma.

In this work, we provide a multi-approach bioinformatic
study of both microarray and RNA-seq data, combined
this with a machine learning (ML) approach and systems
biology tools to access the main expression similarities and
differences of various cancer types. By manually curating the
Gene Expression Omnibus (GEO) [ncbi.nlm.nih.gov/geo/], and
individually examining the available cancer-related microarray
and RNA-seq experiments up to 2018, we gathered only the most
reliable and homogeneous datasets for further analysis. From 82
microarray experiments and 17 RNA-seq datasets, we were able
to devise a panorama explaining the distinct gene expression
patterns found in multiple tumoral types. Additionally, we
compared the classical approach of expression analysis with an
ML approach with 4,074 pooled samples to observe the specific
tumoral signatures obtained in both cases. Our multi-approach
revealed a possible frequently deregulated machinery in common
between all analyzed cancer types that was supported by multiple
approaches and validated using TCGA data. We have assessed a
possible prevalent molecular pathway that could be responsible
for the tumoral process, and we have provided an overall survival
analysis for additional discussion. We have highlighted that
this work aims to create and report results of a new, rigorous,
and reproducible multi-approach in silico approach. Comparing
differentmethods from the heterogeneous protocols employed by
pan-cancer studies falls beyond the scope of this work.

2. MATERIALS AND METHODS

2.1. Omics Data Obtainment
To obtain multiple omics datasets (GSEs) of microarray and
RNA-seq data, we manually mined all GSEs currently available
at the GEO database related to colorectal, gastric, bone, skin,
pancreatic, liver, bladder, lung, head/neck, renal, brain, prostate,
uterine, ovarian, and breast cancers. We also included thyroid
and parathyroid cancers within the head/neck category. The
criteria applied to select the most reliable and homogeneous
datasets were as follows: (i) exclusion of studies that employed
any type of pharmacological manipulation; (ii) exclusion of
studies that used interfering molecules, such as miRNAs,
siRNAs, or used gene therapies of any kind; (iii) elimination of
datasets that applied knockdown cultures or artificially induced
mutations; (iv) selection of studies with at least three control and
three experimental samples; (v) selection of studies performed
exclusively in Homo sapiens; (vi) removal of studies that used
xenograft techniques; (vii) selection of studies that only presented
a clear description of protocol or samples employed (i.e., at
least correctly labeled); (viii) selection of datasets that made
their raw data available, thus excluding all datasets that only
made accessible author’s treated data; (ix) removal of studies
performed in platforms not belonging to Affymetrix, Illumina, or
Agilent manufactures; (x) exclusion of samples in metastasized
tissues; and (xi) exclusion of leukemia studies. The same rigorous
filtering criteria were applied for microarray and RNA-seq
datasets. In the end, all studies up to the end of 2018 were
individually examined and manually curated. A total of 82
microarray datasets (including both single and dual channel
experiments) and 17 RNA-seq studies were selected for further
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analysis. A similar search protocol was employed to construct our
curated microarray database for machine learning benchmarking
and testing, named Curated Microarray Database (CuMiDa)
[http://sbcb.inf.ufrgs.br/cumida] (Feltes et al., 2019).

2.2. Preprocessing and Differential Gene
Expression Analysis of Microarray Data
The GEOquery package (Davis and Meltzer, 2007) for the
R platform was employed to download the raw data of the
selected microarray studies. If any samples displayed errors
or file corruption during preprocessing they were manually
excluded. Each of the 82 dataset were individually submitted
to background correction and normalization. In this sense,
the following packages were employed: (i) affy (Gautier et al.,
2004) for Affymetrix-derived datasets; (ii) lumi (Du et al.,
2008), beadarray (Dunning et al., 2007), and illuminaio (Smith
et al., 2013) for Illumina-derived datasets; and (iii) package
limma (Ritchie et al., 2015) for Agilent and other platforms.
After preprocessing, all microarrays datasets were analyzed by
the arrayQualityMetrics (Kauffmann et al., 2009) package to
access the sample quality information. In all cases, samples that
displayed a low quality in at least half of the parameters measured
by arrayQualityMetrics were excluded prior to differential gene
expression analysis. Finally, the packages limma and Biobase
(Huber et al., 2015) were employed during differential gene
expression analysis. Differentially Expressed Genes (DEGs) were
obtained by applying a filter of |log2FC| ≥ 1 with the Benjamini-
Hochberg for FDR correction of p < 0.05. Datasets were
individually analyzed. Jaccard indexes were accessed using the
GeneOverlap R package (Shen and Sinai, 2020).

2.3. Preprocessing and Differential Gene
Expression Analysis of RNA-Seq Data
The raw data of the 17 previously selected datasets were
submitted for quality analysis using FastQC application [http://
www.bioinformatics.babraham.ac.uk/projects/fastqc], and this
was followed by the trimming of low-quality bases, poly-N
sequences, remaining ribosomal RNA, and adapter sequences
using the Trimmomatic 0.35 software (Bolger et al., 2014). The
resulting data were mapped against the reference genome of
Homo sapiens (Ensembl version GRCh38.94) using the software
STAR v2.6.0a in combination with RSEM v1.3.1 to achieve
the transcript abundance quantification (Li and Dewey, 2011;
Dobin et al., 2013). To estimate the differential gene expression,
the transcript quantification resulting from RSEM was used as
input in the tximport and DESeq2 R packages (Love et al.,
2014; Soneson et al., 2015). Differential gene expression was
determined by considering FDR p < 0.05 and |log2FC| ≥

1. Datasets were individually analyzed. Jaccard indexes were
accessed using the GeneOverlap R package (Shen and Sinai,
2020).

2.4. Machine Learning Approach
To identify possible gene expression patterns in the chosen
datasets, we used our previously described neuroevolution-based
microarray analysis tool, N3O (Grisci et al., 2019). In short,
N3O uses the Feature Selection-Neuroevolution of Augmenting

Topologies (FS-NEAT) as the main algorithm (Miao and Niu,
2016), but it was adapted for high-dimensional data using new
structural operators. Additionally, N3O avoids overfitting by
using a modified L2 regularization in its fitness function and by
performing feature selection. For more on howN3Owas adapted
deal with microarray data, please see Grisci et al. (2019). N3O
was created to simultaneously classify microarray data and select
the subset of more relevant genes. We used the data available in
the CuMiDa database as input for N3O since all available gene
expression matrices in CuMiDa were already previously curated
and adapted to machine learning protocols—the 78 datasets in
CuMiDa are derived from the 82 datasets employed in this work,
but CuMiDa also has leukemia datasets, which were omitted
(Feltes et al., 2019). The reason to omit leukemia datasets is
explained further. As stated in the CuMiDa publication, many
classes (conditions) needed to be excluded because they did
not fit the minimum requirement for an ML protocol. This
happened because the success of an ML approach is directly
linked to a minimum and maximum amount of samples. The
datasets in CuMiDa have a minimum amount of six samples
per condition because fewer samples would severely impact the
performance of any ML algorithm. Any condition with fewer
than six samples therefore needed to be excluded prior to the
statistical treatment, as stated in the CuMiDa publication. Some
classes are consequently missing and were thus not taken into
consideration in the comparisons described in the next sections.
Moreover, all samples from the microarray analysis were pooled
together, by tissue type, separating normal tissues from tumoral
tissues, to be further analyzed together by N3O. Each pool was
batch effect corrected using limma. This analysis was performed
in parallel with the previous ones. Additionally, to further deal
with class imbalance, N3O uses an altered binary cross-entropy
function to compute the fitness of the neural network. The
cross-entropy is computed individually for each class and then
averaged; all classes therefore have the same contribution to the
fitness, independently of their sizes (Grisci et al., 2019).

Input matrices were adapted before serving as input on
N3O because of the inherited imbalance number of probes
provided by each platform. Since multiple probes can point
to a single gene and vice-versa, probes were chosen based on
the following criteria: (i) when multiple probes were assigned
to the same gene, the more specific ones (i.e., assigned to a
single gene) were prioritized; (ii) if more than one probe was
particularly assigned to one gene, the first occurrence was taken
into consideration, thus deleting the remaining duplicates (in
this case, we manually checked the probes in case the expression
values were significantly different before excluding them); and
(iii) to merge multiple platforms, the gene IDs that were not
intersected between the matrices were removed.

2.5. Systems Biology Analysis
To further analyze the major molecular pathways related to
the final selected targets, we conducted a systems biology
approach. To generate the primary protein-protein interaction
(PPI) networks, we employed the STRING 11 metasearch engine
(Szklarczyk et al., 2018). All targets, which will be mentioned
further, were simultaneously searched, and the networks were
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saturated until all inputted proteins were connected (or almost
connected). The parameters in STRING were as follows: (i)
degree of confidence of 0.400; (ii) only experiments and co-
expression search parameters enabled; and (iii) no more than 200
interactors on the first shell and no interactors on the second
shell. Afterward, networks were imported into the Cytoscape
3.7.1 software for analysis and manipulation (Shannon et al.,
2003). The topology of each network was analyzed in terms
of clustering, centralities, and gene ontology, aiming to find
the most topologically relevant nodes and molecular pathways
related to each PPI network. The Cytoscape plug-in CentiScaPe
2.2 (Scardoni et al., 2009) was employed to analyze the
following centralities: node degree, which calculates the number
of immediate connections of a given node; betweenness, which
calculates the number of shortest paths that pass through each
node; and eigenvector, a centrality measure that calculates how
regulatory a node is based on the node’s number of connections
and how well connected their neighbors are. Possible signaling
pathways were calculated using PathLinker (Huang et al., 2018).
The parameters in Pathlinker were as follows: (i) k: 500; (ii)
edge penalty: 1; (iii) edge weight: unweighted; (iv) treat network
as undirected option disabled; (v) allow sources and targets in
path option enabled; and (vi) connect sources to each other
option enabled.

2.6. Functional Enrichment and
Transcription Factor Prospection
For functional enrichment analysis, ClueGO 2.5.5 was employed
(Bindea et al., 2009). In ClueGO, the two-sided hypergeometric
test was used in combination with the Bonferroni family-wise
test with a significance of p < 0.05. Additional parameters
included the following: (i) GO evidence, all experimental; (ii)
Ontologies/Pathways, GO biological processes from UniProt;
and (iii) Selected Ontologies Reference Set enabled. Processes
under x10−5, after the Bonferroni test, were not taken
into consideration. General processes that did not represent
informative results (e.g., regulation of the biological process,
metabolism, positive/negative regulation of biological processes,
etc.) were also excluded. To further select the most representative
bioprocesses, we focused on a more accurate description of
a given biological activity, such as processes that indicated
a positive or negative regulation. When both “negative” and
“positive” regulation appeared in the GO list, we selected the
one with the highest significance. Finally, we only took into
consideration processes that appeared at least three times for each
category (e.g., DNA repair, cell cycle, etc.); processes with fewer
than three were judged as artifacts. Finally, the TRRUST v2 (Han
et al., 2017) database was used for prospecting the transcription
factors (TF) associated with the top regulatory genes from the
predicted signaling pathways analyzed by the previous Systems
Biology approach.

2.7. Overall Survival Analysis and Gene
Expression Validation
The overall survival analysis was performed using the Gene
Expression Profiling Interactive Analysis 2 (GEPIA 2) [http://

gepia.cancer-pku.cn/index.html] tool (Tang et al., 2017). The
data employed by GEPIA originates from the Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project.
Survival analysis based on gene expression levels was conducted
by using the log-rank test, represented in the form of Kaplan-
Meier plots. For the analysis, a p < 0.05 was considered, together
with the cox proportional hazard ratio and 95% confidence
interval information.

The analyzed genes were divided into two classes based on
the quartile expression. Patients above the upper quartile were
classed as the high expression group, and those below were
classed as the low expression group.

We performed pan-cancer screening for survival in 20 cancer
subtypes: (i) bladder carcinoma (BLCA); (ii) breast invasive
carcinoma (BRCA); (iii) colon adenocarcinoma (COAD); (iv)
glioblastoma multiforme (GBM); (v) low grade glioma (LGG);
(vi) head-neck squamous cell carcinoma (HNSC); (vii) kidney
renal clear cell carcinoma (KIRC); (viii) kidney renal papillary
cancer (KIRP); (ix) Chromophobe renal cancer (KICH);
(x) lung adenocarcinoma (LUAD); (xi) lung squamous cell
carcinoma (LUSC); (xii) ovarian serous cystadenocarcinoma
(OV); (xiii) rectum adenocarcinoma (READ); (xiv) prostate
adenocarcinoma (PRAD); (xv) thyroid carcinoma (THCA);
(xvi) esophageal carcinoma (ESCA); (xvii) liver hepatocellular
carcinoma (LIHC); (xviii) stomach adenocarcinoma (STAD);
(xix) pancreatic adenocarcinoma (PAAD); and (xx) skin
cutaneous melanoma (SKCM).

Furthermore, we used DriverDBv3, which employs data from
TCGA, to validate our gene expression results (Liu et al., 2020).

3. RESULTS AND DISCUSSION

3.1. Data Gathering, Differential
Expression, and Feature Selection
It is common for omics-based works to download several
expression datasets and analyze them using different methods,
by either employing already known tools or developing newer
ones. However, little is discussed regarding the quality of the
downloaded datasets or which datasets were combined. The
reality we face is that this approach combines several types
of experiments, composed of different experimental protocols,
creating an even more heterogeneous analytic environment for a
disease that is already heterogeneous by nature. Even the broadest
analysis, with thousands of samples, can consequently display
compromised results.

To partially overcome such bias, we manually curated the
entire GEO database for microarray and RNA-seq studies
from the oldest of each type, up to the end of 2018, using
rigorous filtering criteria. By excluding the most critical causes
of deviation, we aimed to amass the most homogeneous pack of
expression studies we could. The heterogeneous nature of cancer
will always be a biological variable by itself, however, and the fact
that all studies are performed by different groups is an intrinsic
divergence as well. We also excluded leukemia works, thus
focusing only on solid tumors. Taking this into consideration, we
rationalized that comparing results from leukemia datasets with
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those from solid tumors would not be feasible. We considered
thyroid cancer as part of the head/neck category since it is often
treated as part of this class in themedical field and in the scientific
literature (Arboleda et al., 2020). No cancer derived from skin
and uterine cancers fitted the entire filtering criteria (i.e., from
dataset filtering to preprocessing steps) for microarray datasets,
whereas no datasets for bone, bladder, pancreatic, brain, gastric,
and ovarian cancers could be selected for RNA-seq. Only one
study for RNA-seq (GSE88741) was performed exclusively in cell
lineages. Since this dataset was the only skin cancer dataset to pass
our quality filtering criteria, we maintained it to have at least one
representative of this cancer type. In the end, more than 30,000
studies were manually curated.

In the end, 82 microarray studies and 17 RNA-seq datasets
fitted all required criteria. The initial list was longer, with more
than 300 studies for microarray and 30 for RNA-seq. However,
in the course of the analysis, many displayed corrupted samples,
did not pass with the minimum amount of required samples (or
reads) after the quality analysis, or, as is the case of RNA-seq,
did not pass our read cut-off amount. Supplementary Tables 1,
2 lists all microarrays and RNA-seq datasets gathered in this
work and their information, respectively. We treated tumor
samples as one group and normal samples as another for
DEG analysis for each dataset. We chose this approach because
the motivation behind our study is to find global differences
or similarities rather than timely or specific gene expression
between cancer subtypes. After the expression analysis, we had a
total of 15,944 overexpressed and 16,045 underexpressed DEGs
among all microarrays and 24,047 overexpressed and 15,328
underexpressed DEGs from the RNA-seq analysis. To avoid
sacrificing the discovery of new potential frequently expressed
DEGs a |log2FC| ≥ 1 was chosen.

Additionally, to not solely rely on the classical DEG approach,
we employed an ML technique to select relevant features
from microarray studies. N3O was previously described in
its related publication (Grisci et al., 2019) and displayed
high accuracy values when compared to other gold-standard
ML approaches. The idea of applying N3O was not only
to combine a different strategy to our analysis protocol of
DEGs analysis but also to observe possible convergences of
selected features vs. obtained DEGs. Gene expression data
is composed by thousands of genes (features) and a small
number of samples, which can lead to the so called “curse of
dimensionality” problem, where the model can easily overfit,
which increases memory consumption, processing time, and
diminish interpretability (Verleysen and François, 2005). To
partially overcome such obstacle, we took several careful steps
in treating our input. In this sense, we initially downloaded
all data available in the CuMiDa database (Feltes et al., 2019),
our previously described database. CuMiDa was based on the
same datasets employed in this work but processed to be
exclusively used in ML protocols. Proper dataset handling to be
used as input for machine learning approaches were currently
discussed as one of the challenges and limitations to the
application of this approach in cancer research (Troyanskaya
et al., 2020). This further supports the employment of both the
CuMiDa database, which is composed of curated and newer

microarray data, and N3O, which was trained and tested using
these datasets.

Moreover, some datasets in the CuMiDa database were
redundant, meaning they were performed in more than one
platform. For those, we chose the platform with the highest
amount of DEG in the expression analyzes to carry out the ML
approach. This happened for GSE14520(U133B), GSE6919(U95B
and C), and GSE 6344(U133B). We also excluded the leukemia
datasets, and the dual-channel datasets (GSE62043, GSE8511,
GSE38241, GSE60329, and GSE22804) because they do not
make a distinction between normal and tumoral samples, which
cannot be used by supervised algorithms like the one employed
by N3O. Afterwards, we had to balance our features so they
could be properly analyzed considering that supervised learning
algorithms, such as the one employed by N3O, cannot analyze
an unfixed number of rows. This lack of balance is an inherent
problem in the field because different manufactures provide a
variable number of probes, which can also vary by platforms of
the same manufacture. Microarray tables were therefore merged
based on the Entrez Gene ID related to each probe, as described
in section 2. More information about the final input matrices can
be found in Supplementary Table 15.

All samples were pooled together, divided by healthy and
tumoral tissues, for each type of cancer, generating a total of
4,074 samples. This resulted in 12 different matrices, which were
individually analyzed. A total of 2,281 unique features (genes)
were obtained for all cancer. N3O was developed exclusively for
microarray data; it was thus not applied for the RNA-seq datasets.
The RNA-seq datasets were not analyzed by theML approach due
to the low number of samples in the final selected datasets, which
could compromise the final results in a ML protocol.

The combination of these results was employed for the future
analyzes described below. A summary of our methodological
steps can be found on Figure 1.

3.2. Gene Expression Panorama of Multiple
Cancer Types
Next, we sought to investigate the expression patterns
underlying the DEG obtained from the previous analyzes.
For the microarray results, overexpressed DEGs were matched
between all GSEs from all cancer types and analyzed in terms
of (i) quantity of most frequently expressed genes between
cancer types (Supplementary Tables 3, 4); (ii) Jaccard index
for the most frequently expressed genes between cancer
types (Supplementary Table 5). The same analyses were
performed for underexpressed genes (Supplementary Tables 6–
8) and, for DEG obtained from the RNA-seq analysis,
over- (Supplementary Tables 9–11) and underexpressed
genes(Supplementary Tables 12–14). All tables are in
Supplementary Material 2.

We first sought to determine which expression profiles were
similar between each cancer type. Since it is not reasonable
to assume that whole expression profiles could be identical
due to the highly heterogeneous nature of cancer, we believed
that Jaccard index values of 15% or higher were compelling
observations. In this case, microarray results were separated
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FIGURE 1 | Methodological steps used in this work. The work is divided into: (1) Data gathering and curation; (2) Microarray analysis; (3) ML analysis of microarray

data; (4) RNA-seq analysis; (5) Systems Biology approach; and (6) Overall Survival analysis.

from RNA-seq because RNA-seq studies tend to provide more
extensive DEG lists, when compared to microarrays, deviating
Jaccard index results.

Although it is expected that cancers in which we obtained
a higher pool of datasets would present a higher similarity,
such as breast, lung, liver, and colon cancer DEG expression
profiles, some profile similarities were not anticipated. For
example, overexpressed genes of bone, gastric, pancreatic, brain,
and prostate cancers showed no significant similarity values to
other types (Figure 2A). Although this was expected for bone
since it has only one dataset, as well for pancreatic cancer,
which has only two, prostate and gastric cancers were among
the richest dataset groups (Supplementary Tables 1, 5). Prostate
cancer might not have achieved our 15% similarity cut-off, but
it came close, reaching 14% for breast and lung cancer for the
underexpressed genes.

In contrast, one interesting highlight was the 16% similarity
between overexpressed genes in head/neck and lung cancers
(Figure 2A and Supplementary Table 5). Since head/neck were
not among the richest in terms of dataset pool, whereas lung
was, it is interesting that they have such a high similarity

index. This result is in agreement with previous observations.
By examining 3,527 tumoral samples of different cancer types,
using both DNA and RNA data, a study published in 2014
was able to find significant correlations between head/neck and
lung cancer, which they concluded to be more prone to similar
treatments (Hoadley et al., 2014). A significant relationship
between head/neck and lung cancer was also noted in a recent
genome-wide based study that analyzed six cancer types from
approximately 600,000 individuals. Amos et al. (2017), which
further supports our results.

When we evaluated the data from underexpressed genes
from microarray analyzes, the most salient results refers to
the high similarity achieved by bladder cancer when compared
to the other types. Bladder achieved similarity with breast
(19%), colorectal (15%), lung (21%), and ovarian (19%) cancers
(Figure 2B). Once again, although this is expected for groups
with a rich dataset pool, it is unusual for bladder cancer, which
has only two datasets. Although the relationship between, lung,
breast, colorectal and ovarian cancers were observed in previous
studies (Amos et al., 2017), no correlation was made so far
with bladder cancer, making this a novel result. Yet, in general,
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FIGURE 2 | Jaccard index values and GO analysis. (A) Jaccard index matrix showing the similarity values for the overexpressed genes derived from the microarray

analysis. (B) Jaccard index matrix showing the similarity values for the underexpressed genes derived from the microarray analysis. White labels were added just for

clarity. RNA-seq matrices were not shows because they displayed no significant values based on our cut-off of at least 15% similarity; they can be found on

Supplementary Material 2. The values can also be seen in Supplementary Tables 5, 8, 11, 14. PNC, pancreatic cancer; BON, bone [cancer]; BRN, brain [cancer];

RNL, renal [cancer]; GTC, gastric cancer; PRT, prostate [cancer]; LVR, liver [cancer]; CRC, colorectal cancer; LNG, lung [cancer]; BRC, breast cancer; HNC,

head/Neck cancer; OVR, ovarian [cancer]; BLD, bladder [cancer]. (C) Gene Ontology groups for the 47 DEG frequently expressed between all analyzed cancer types.

Details of which GO composed each group can be found in Supplementary Tables 16, 17.

overexpressed DEG showed more significant similarity indexes
than underexpressed DEG.

Unfortunately, due to the low dataset pool achieved for RNA-
seq, there were no significant similarities between the analyzed
cancer types (Supplementary Figure 2). However, there were
33 overexpressed and 14 underexpressed genes found to be
frequently deferentially expressed in all cancer types analyzed
in this work (Table 1). Please note that these genes were not
expressed in every single dataset, though they were those amidst
the most frequently expressed. DEG should appear in at least six
cancer types to be considered frequent for microarray analysis
since it had more datasets (total of 82 datasets and 13 cancer
types) and should appear at least three times for RNA-seq datasets
(total of 17 datasets and eight cancer types). It is not feasible
to assume that a given set of genes will be deregulated in all
existing cancer types from tissues derived from distinct patients.
Identifying the most frequently deregulated DEG, however, is a

more realistic approach to understanding the complex molecular
conundrum that is cancer.

One primary observation that can be drawn from these
results is that the tumoral process, in general, might be more
closely related to the overexpression of conserved molecular
machinery than to the underexpression of a given one.
This is reflected not only based in the higher similarities
found among the overexpressed genes but also in the higher
percentage (70.2%) of overexpressed genes present in the most
frequently expressed 47 DEG between all analyzed cancer
types. Another unexpected result was that bladder cancer
has the highest similarity to other cancers when it comes
to underexpressed genes. In contrast, head/neck displayed
higher similarity to lung cancer for overexpressed DEG. These
results are in agreement with the heterogeneous nature of
cancer but imply that some types are closer to others even if
their similarity is non-intuitive. The 47 frequently expressed
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TABLE 1 | Table listing the 47 most frequently expressed DEG found between all analyzed cancer types, and their topological properties in the PPI-networks,

when applied.

Gene Expression General function Topology

ANLN Over Actin-binding protein related to citokinesis and migration. HBS

ASPM Over Related to the mitotic spindle regulation. HBS

ATAD2 Over
ATPase related to multiple cellular functions, including activation of

oncogenes, like MYC.
HS

ATF3 Under Member of the cAMP responsive element-binding factors HBS

BIRC5 Over Involved in the inhibition of apoptosis. HBS

BUB1 Over
Plays a role in mitotic spindle-assembly, including the localization of CENPF

and CENPE.
HBS

BUB1B Over Plays a role in mitotic spindle assembly and the localization of CENPE. HBS

CDC25A Over Phosphatase involved in cell cycle progression. S

CDCA5 Over Protein associated with mitosis. HS

CDK1 Over Cyclin-Dependent Kinase deeply involved in cell cycle. HBS

CENPE Over Member of the centromere-kinetochore complex. HS

CENPF Over See CENPE. HS

CEP55 Over Centrosomal protein, associated to cytokinesis. HBS

CTHRC1 Over Putative roles in the negative regulation of collagen deposition. NA

CYBRD1 Under Member of the cytochrome b family, related to iron absorption. B

DEPDC1 Over Transcription corepressor, associated to apoptosis suppression and proliferation. HS

ECT2 Over Catalyzes the GDP-GTP exchange. Also involved in cytokenesis. HS

EZH2 Over Polycomb-group family, involved in gene silencing and DNA methylation. B

FERMT2 Under Involved in extracellular matrix adhesion and regulates cytoskeleton assembly. HB

GINS2 Over Associated with DNA replication. HS

HELLS Over Helicase involved in chromatin organization. HS

HHIP Under Hedgehog-interacting protein, which is related to several developmental processes. NA

HMMR Over Hyaluronic acid receptor, associated with metastasis formation. HS

KIF11 Over Kinesin family member, deeply related to spindle organization and mitotic progression. HBS

KIF20A Over See KIF11. HBS

KIF2C Over See KIF11. HBS

KLF4 Under Transcription factor associated with embryonic stem cell maintenance. HBS

LIFR Under Cytokine receptor, which is heavily associated with the Leukemia Inhibitory Factor. B

MAD2L1 Over Member of the mitotic spindle assembling complex. HBS

MCM6 Over Required for DNA replication initiation through several processes. HBS

METTL7A Under Putative methyltransferase. NA

MT1E Under Metallothionein, which alters the intracellular concentration of heavy metals. NA

MT2A Under See MT1E. NA

NDRG2 Under A hydrolase, which is related to Wnt-signaling. NTR

NEK2 Over Kinase that regulates several centrosome-associated events during mitosis. HBS

PBK Over Kinase involved in MAPKK activation. HBS

PLPP3 Under Phospholipid phosphatase involved in the synthesis of glycerolipids. NA

PRC1 Over Involved in the mitotic spindle organization. HBS

PRR11 Over Related with cell cycle progression. H

RCAN1 Under Inhibitor of calcineurin A. B

RRM2 Over Subunit of a ribonucleotide reductase. HBS

SELENOP Under Involved in selenium transportation. NA

SOX4 Over Transcription factor related to the regulation of embryonic development. NA

TOP2A Over DNA topoisomerase. HBS

TPX2 Over Associated with microtubules spindle assembly. HBS

UBE2C Over Member of the E2 ubiquitin-conjugating enzyme family. HBS

ZBTB16 Under Zinc-finger protein, associated to cell cycle progression. HBS

HBS, hub-bottleneck-switch; HB, hub-bottleneck; HS, hub-switch; H, hub; B, bottleneck; S, switch; NA, not applicable (This gene was not present in the network); NTR, no

topological relevance.
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FIGURE 3 | Gene expression panorama of the 47 frequently expressed genes, according to the DDBv3 database. The red-colored gradient indicates levels of higher

expression, whereas the green-colored gradient indicates levels of lower expression.

DEG identified were further investigated, as described in the
next section.

Furthermore, the GSEs employed in the previous analysis
were treated to specifically fit a machine learning protocol
to be used as input in N3O (Grisci et al., 2019). N3O does
not provide a DEG profile since this is a classification tool;
however, it allows for the detection of the most representative
genes in the tumoral process. By using a 10-fold validation
protocol, we obtained a list of the most frequent features,
taking into consideration only those present in at least three
cancer types (Supplementary Table 19). N3O results point to
genes of the same families as those identified by the DEG
analysis, such as KIF4A, or close variants, like GINS1, as well
for features that appeared as shared DEG among the cancer
types, such as TOP2A. The top feature, ABCA8, appeared in
five of 12 cancer types, being more prevalent in breast cancer.
The overexpression of ABCA8 was recently reported to be
a possible biomarker for breast cancer (Dvorak et al., 2017)
and poor outcome in epithelial ovary cancer (Hedditch et al.,
2014) in which ABCA8 was also listed as a feature. TOP2A,
which is amongst our 47 most frequently expressed genes, and
one of N3O’s top feature, was also elected to have a possible
prognostic value for lung cancer in a bioinformatic study using
both the investigation of multiple GEO datasets, as well as PPI-
networks (Ma et al., 2019).

This was not expected to be a feature that was common
between all cancer types (a very few if any) or between the
N3O findings and the classical DEG approach. N3O selected the
features that are the most representative for a given cancer, not
the vast majority, and the same feature appearing in 12 different
types would thus be unlikely. In contrast, a feature that frequently
appeared in more than one type could be a strong indication of
major regulatory role. These relationships were further explored
in the next section.

Finally, to validate the results obtained from our approaches,
we employed the DriverDBv3 database to match our results
to TCGA gene expression data. We selected the same cancer
types present in the overall survival analysis, as described in

section 2. As can be observed in Figure 3, all gene expression
results retrieved from the database are in accordance with our
own, further validating our approach and results. Another recent
study that analyzed different cancer datasets from GEO also
observed some genes in common between our 47 DEG, such
as ANLN, CDK1, ECT2, PRC1, NEK2, ASPM, RRM2, TOP2A,
BUB1B, and CTHRC1 (Xue et al., 2020). Likewise, another
pan-cancer study mentions a potential relevance for BIRC5,
RRM2, and MCM6, present amidst our 47 DEG, among their
findings (Cava et al., 2018).

3.3. Potential Regulatory Mechanisms
The most frequently expressed DEG was used as input to
construct two separate PPI networks, one for overexpression
and one for underexpression. We chose to expand the networks
taking into consideration only the most preeminent connections.
They were thus build using only the first shell proteins
in the STRING database, and employing edges based on
experiments and co-expression studies. This generated two
topologically distinct networks (Figure 4). Some proteins
did not connect to their respective networks, even after
saturation tests on the first shell: (i) SOX4 and CTHRC1
for overexpressed genes and (ii) HHIP, MT1E, METTL7A,
MT2A, SELENOP, and PLPP3 for underexpressed genes. We
chose not to expand the networks more than the major first
interactions because that usually overshadows the major
interacting partners and the main associated biological
processes. This resulted in two distinct networks, one for
the overexpressed genes, named Over-DEG-Net (Figure 4A),
and one for the underexpressed genes, named Under-DEG-
Net (Figure 4B). Each PPI network was then analyzed to
find the most topologically relevant nodes, which could be
considered the top regulatory proteins. In this sense, the
combination of the node degree, betweenness, and eigenvector
centralities were used. Nodes with above-average node-
degree scores are called Hubs; those with above-average
betweenness scores are named Bottlenecks, and we named the
ones with above-average eigenvector values “Switches”: nodes

Frontiers in Genetics | www.frontiersin.org 9 November 2020 | Volume 11 | Article 586602

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Feltes et al. Multi-Approach Bioinformatic Analysis

FIGURE 4 | Networks built using the 47 DEG frequently expressed between all analyzed cancer types. (A) Over-DEG-Net. The red nodes depict the 31 (from 33)

overexpressed genes frequently expressed between cancer types, whereas the green nodes show their first neighbors. The pink nodes are shared between the two

networks. Over-DEG-Net is composed of 231 nodes and 9,144 edges, displaying high connectivity. (B) Under-DEG-Net. The blue nodes depict the 8 (from 14)

underexpressed genes frequently expressed between cancer types, whereas the yellow nodes show their first neighbors. The network is composed of 115 nodes and

484 edges, displaying low connectivity. (C) The octagonal nodes refer to the Hubs-Bottlenecks-Switch (HBS) proteins from the overexpressed network. This

subnetwork is composed of 55 nodes and 1,428 edges. (D) The diamond nodes indicate the Hubs-Bottlenecks-Switch (HBS) proteins from the underexpressed

network. This subnetwork is composed of 18 nodes and 74 edges.

combining the three characteristics are thus referred to as
HBS (Figures 4C,D), which possess regulatory roles within the
cell (Scardoni et al., 2009).

Combining network topological studies using high-
throughput data to understand diseases is already established as
a useful approach to uncover its molecular complexity (Menche
et al., 2015). In this sense, the structure of a biological network is
the first evidence of how the underlying molecular mechanism
is behaving, where genes that are mostly linked to a disease
tend to form highly interconnected networks (Loscalzo and
Barabasi, 2011). This tendency is observed for the Over-DEG-
NET (Figure 4A), which comprises an incredibly connected
network. In this sense, the 33 overexpressed genes used as
input for the network construction were related to GOs deeply
associated to all cancers, like a positive induction of cell cycle,
deregulation of DNA repair, proteolysis, and kinase-related
signaling pathways (Figure 2C and Supplementary Figure 1,
Supplementary Table 16) (Hanahan and Weinberg, 2011;
Pickup et al., 2014; Sanchez-Vega et al., 2018). The highlight
of this result is that these genes were shared both microarray
and RNA-seq analysis from 99 curated datasets in 14 cancer
types, implying a possible frequently deregulated set of genes in

tumoral tissues not observed so far, which is also in agreement
with the observation made in the previous section. Even the
HBS in the overexpressed genes formed a highly interconnected
subnetwork (Figure 4C), which is in agreement with a conserved
regulatory core.

We observed that there was a clear difference between the
over and underexpressed genes shared between all analyzes in
terms of biological function. This reflected on the network
topology for the Under-DEG-Net (Figure 4B), which displayed
a scarce and weakly interconnected network. This result suggests
that the molecular machinery needed to drive the tumoral
process is more closely related to the overexpression and
deregulation of conserved cellular mechanisms than to highly
specific ones. This observation was echoed in the HBS for the
underexpressed genes, where little interaction between them
was achieved, indicating that the tumoral process does not rely
on the underegulation of core machinery but preferably on
the overexpression of conserved mechanisms. The GO analysis
was consistent with the expected for the tumoral process, with
this network showing GO related to the negative regulation
of angiogenesis and response to oxidative stress (Hanahan
and Weinberg, 2011; Sharma et al., 2019) (Figure 2C and
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Supplementary Figure 1, Supplementary Table 17). In general,
however, the GOs of Under-DEG-Net were not as informative
as the one in Over-DEG-Net, which could be a reflection of its
topological characteristics, as described previously.

The results obtained by N3O supports the previous
conclusion. The top 20 features, which appeared in common
between three or more cancer types, were used as input to
create the PPI-Network (N3O-Net) (Supplementary Figure 3).
Some targets did not show any connection to the network,
even after the saturation test, and these targets were ABCA8,
VEGFD, TRIM29, CA9, APOC1, FAP, CEACAM5, FOXF1,
MFAP2, POGLUT2, and AGR2. Network topology was similar
to the overexpressed genes network (Figure 4A), and 26 of
the 33 overexpressed genes were part of the N3O-Net. N3O
classifies the features which better represents a given class, in this
case, the tumoral tissue. N3O-Net is thus based on significant
classifiers of the tumoral tissues and their immediate neighbors.
In agreement with the previous observation, N3O-Net depicts
that the predominant drivers of the tumoral process are more
related to a conserved core of overexpressed genes than to the
underexpression of a given gene set since no underexpressed
DEG was present in this network, furthering confirming N3O
accuracy in identifying molecular markers.

N3O-Net was composed by a similar GO than the ones
found for the Over-DEG-Net (Supplementary Figure 1,
Supplementary Table 18). Another highlight of N3O-Net in
terms of GO was that, in comparison to Over and Under-
DEG-Net, it showed fewer artifacts, where most GO originally
identified were submitted to the least amounts of manual
filtering. This result echoes the nature of N3O results. Since N3O
identifies genes that better classify a given condition, we can
observe the most representative genes for the general tumoral
process, such as cell cycle, DNA repair, chromatin modifications,
and DNA metabolic processes, which explains why there are
more bioprocesses in common with Over-DEG-Net than
Under-DEG-Net.

Moreover, AURKA, which is one of the only three nodes in
common between the Under and Over-DEG-Net, appeared in
N3O-Net as a top feature. AURKA is deeply connected to the
tumoral process, being involved in DNA repair, cell division, ATP
production, and self-renewal of cancer stem cells (Li M. et al.,
2018; Bertolin and Tramier, 2019). These results confirm the
approach applied in this works and sustain the accuracy of the
targets identified by the different bioinformatic approaches.

To uncover more about this regulatory core, we used the 33
overexpressed genes fromOver-DEG-Net, the 14 underexpressed
genes from Under-DEG-Net, and the top-features identified by
N3O (i.e., found in at least three cancer types, with at least 5
hits, see see Supplementary Table 19) as input seeds to prospect
the transcription factors associated with them. This resulted in a
new network, named Transcription-Associated Networks (TAR-
Net) (Figure 5A), which was then analyzed to predict probable
regulatory/signaling pathways within it. This new network was
named Regulatory Network (REG-Net) (Figure 5B). REG-Net is
composed of the genes predicted as part of the signaling network,
the DEG, N3O’s top-features, and the transcription factors
associated with them. The interactions of TAR- and REG-Nets

represents the type of regulation performed by the transcription
factors. As it can be seen, not all DEG andN3O top features could
be retrieved in the transcription factor prospection.

TAR-Net enabled the identification of major transcription
factors that could regulate a possible core molecular pathway in
the tumoral process, which was subsequently filtered to predict
a potential regulatory core. The results of REG-Net sustain our
previous findings since all underexpressed DEG classified as
HBS appeared in this network, confirming their relevance in
disease. The same happened for the overexpressed DEG, with the
exception of EZH2, ECT2, CDC25A,HMMR, andATAD2, which
had lesser topological relevance.

We then focused on finding a new possible central mechanism
that could influence the tumoral process based on REG-Net.
Thus, we considered transcription factors as part of a “core
regulatory pathway,” only those connected to at least two DEG,
which resulted in a 32 node network (Figure 5C). Another
interesting result is the nature of the regulation predominating
in both TAR-Net and REG-Net. In this sense, aside from the
unknown edges, repression appears to be the main regulation
mechanism, followed by activation, which is the minority
(Figure 5D).

These connections, however, were not exclusive for tumoral
tissues, and due to the heterogeneous nature of cancer, the
regulatory edges observed in this networks could not be
preserved in the different tumoral types. Nevertheless, these
connections provide an overview of the major type of regulation
observed in these most frequently expressed DEG, as well as
shows that there are numerous unknown connections that can
still be explored in the context of cancer.

3.4. Overall Survival
The 47 DEGs identified to be frequently expressed, between
all analyzed cancer types, were submitted to an overall survival
analysis to investigate genes that were already associated with
poor prognosis. The idea is to provide further discussion by
selecting the top DEG that are already more frequently correlated
to poor prognosis. The overall analysis is based on existing
data, achieved by studying a different number of patients, from
different genders, and distinct nationalities. It must thus be
kept in mind that overall analysis results are subjected to these
variables. Discrepancies, which are expected, are discussed at the
end of the section. The overall analysis is not in any way a means
of validation; it is but additional data.

Among the 20 cancer subtypes in the overall analysis,
LIHC ranks sixth in terms of incidence and fourth at cancer-
related mortality (Siegel et al., 2019). In LIHC, 34 genes
(32 overexpressed and two underexpressed) out of 47 genes
were significantly associated with overall survival (Figure 6 and
Supplementary Table 20) but not all had a relevant hazard ratio
(HR). Even though a given could be associated with overall
survival, it might not have a relevant HR. In this sense, we
took into consideration HR ≥ 1 as an indicator of death risk
(Sashegyi and Ferry, 2017). In accordance with our data, the 31
overexpressed genes also had a relevant HR and were related to
poor survival, whereas the underexpressed genes (MTTL7A and
NDRG2) did not.
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FIGURE 5 | TAR-Net. (A) The initial network, composed by the DEG (Red and blue nodes, similar to the Over and Under-DEG-Nets), the nodes in common between

the Over and Under-DEG-Net (pink nodes), N3O’s top-features (orange nodes), and the transcription factors associated to them (gray nodes). The red edges

represent repression, whereas the green edges depict activation. The gray edges are unknown connections. Unconnected nodes were excluded prior to the analysis.

(B) REG-Net, composed only by the nodes predicted to be a regulatory network. This network is composed of 44 nodes and 97 edges. (C) Final subnetwork,

containing only the transcription factors and DEG that have at least two other connection. The subnetwork thus contains 32 nodes and 84 edges. (D) Graph depicting

the number of connections in TAR-Net and REG-Net.

Moreover, pancreatic cancer remains one of the neoplasias
most difficult to treat with a survival rate of only 9% (Siegel
et al., 2020) due to the lack of early symptoms presented in
the metastatic stage (Adamska et al., 2017). In total, 33 (29
overexpressed and four underexpressed) from the 47 genes
were significantly associated with overall survival (Figure 6 and
Supplementary Table 20). Although the 29 overexpressed genes
were related to poor survival in PAAD, three underexpressed
genes (HHIP, KLF4, and MT1E) showed relevant HR.

It is interesting to note that all 29 genes present in PAAD
were not only in common with LIHC, but 19 these genes, 65.5%
(ANLN, ASPM, BIRC5, BUB1, BUB1B, CDK1, CEP55, KIF11,
KIF20A, KIF2C, MAD2L1, MCM6, NEK2, PBK, PRC1, RRM2,
TOP2A, TPX2, and UBE2C), were HBS in our network analysis
(Table 1, Figure 4).

For the pan-kidney cohort (KICH, KIRC, and KIRP), Among
the 47 identified genes, 18 genes (ANLN, ASPM, BIRC5, BUB1,
BUB1B, CDCA5, CENPE, CEP55, DEPDC1, HMMR, KIF20A,
KIF2C, NEK2, PRC1, RRM2, TOP2A, TPX2, and UBE2C) were
in common between the three cancer types (Figure 6). The higher
expression level of all these genes was associated with worse
survival time and relevant HR, further validating our results.
Among these genes 14 (77.7%), were HBS. For BLCA, seven
genes showed relevant HR and were significantly associated with
overall survival. Except for METTL7A, all underexpressed genes
showed discrepancies with expected results (Figure 6).

Only one gene showed significance and relevant HR for GBM
patients, CEP55. In contrast, 42 genes showed poor survival in
LGG (Figure 6 and Supplementary Table 20). RRM2 is already
recognized as a prognostic biomarker in glioma (Sun et al.,
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FIGURE 6 | Summary of the overall analysis. The graph displays the 47 genes previously obtained. The gray squares represent genes that showed no statistical

significance, whereas the colored ones presented significant p-values. The color scheme illustrates the HR score from lowest to highest. Underexpressed genes were

colored blue, whereas overexpressed genes were painted red.

2019). There were some contradictions in LGG, however, as
ATF3, CYBRD1, FERMT2, HHIP, MT1E, MT2A, RCAN1, and
SELENOP showed relevant HR.

As for lung cancer, 36 genes were associated with overall
survival for LUAD patients, where 33 had relevant HR
(Figure 6 and Supplementary Table 20). Two discrepancies
were observed: KLF4 and NDRG2. It is essential to highlight
that a previous bioinformatics study also identified three of these
genes (TOP2A, UBE2C, KIF20A) as hub genes that could be
related to the prognosis of non-small cell lung cancer (Ni et al.,
2018). In addition to the 36 aforementioned overexpressed genes
in LUAD, only HELL, HHIP,MT2A, and ZBTB16 were associated
with survival in LUSC patients (Supplementary Table 20).

Two genes showed both statistical significance and relevant
HR in THCA, KIF2C, and LIFR, and four (CTHRC1,
HMMR, MT1E, and MT2C) in HNSC (Figure 6 and
Supplementary Table 20). LIFR, MT1E, and MT2C, which
are underexpressed in our analysis, displayed relevant HR and
statistical significance.

From the 18 genes related to overall survival in SKMC,
FERMT2 was the principal contrariety. Still, elevated BIRC5,
CDC25A, CDCA5, and UBE2C expression significantly
predicted the increased hazard of dying from SKCM. In contrast,
overexpression of METTL7A (HR = 0.56) and MT2A (HR
= 0.48) increased survival—all in agreement with our results
(Supplementary Table 20)—while in OV, CYBRD1 showed
similar results. BRCA patients with high expression of CTHRC1
had shorter lifespans (HR = 1.7) however. Moreover, STAD,
ESCA, COAD, and READ showed a mix of expected outcomes
with discrepancies that followed a similar pattern that those
discussed so far.

If we take into consideration the genes more frequently
associated with poor survival that are also HBS, ANLN, ASPM,
BIRC5, BUB1, BUB1B, CEP55, KIF20A, KIF2C, MCM6, NEK2,
TPX2, and UBE2C appear to be the most prevalent for a
worse outcome, which consistently supports previous results
(Loscalzo and Barabasi, 2011). In summary, these results support

our previous observations, where the overexpression of given
molecular machinery is more likely to be responsible for driving
the tumoral process than the underexpression of a given gene set.
The discrepancies observed in the overall analysis also strengthen
our observation that the underexpressed machinery is not the
most conserved in the tumoral tissue.

4. CONCLUSION: HOW DO WE
INVESTIGATE REGULATORY
MECHANISMS?

The pursuit to unravel molecular mechanisms that could be
linked to the tumoral process is challenging not only due to
the heterogeneous nature of the process but also thanks to the
vast amount of conflicting information in the scientific literature.
The same gene can be reported to have different functions in
the same cancer type. For example, PAX2 (Al-Hujaily et al.,
2015), Plexin 1 (Vivekanandhan and Mukhopadhyay, 2019),
FOXC1 (Yang Z. et al., 2017), and PI3K (Thorpe et al.,
2015) were all discussed to have divergent roles during the
tumoral process.

It would consequently be implausible to assume that there is
a global regulatory pathway to all cancer types, which will always
be deregulated in every distinct tumoral tissue. We can, however,
develop more accurate ways to assess possible core mechanisms,
which could come close to this yet ungraspable reality. The most
realistic approach, however, is to observe the frequency in which
amolecular deregulation occurs. This reality is made possible due
to the vast collection of expression datasets we have available.
However, even though we have access to this vast collection of
freely available studies, we still face a significant challenge: how
should they be analyzed?

One of the first steps to take on this quest is to ensure data
quality. It is a common misunderstanding, however, to assume
that this can be achieved without dataset manual verification
on several steps, especially when it comes to a disease such
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as cancer. In this work, we took various steps to not only
ensure data quality but also created the most unbiased data pool
we could achieve without compromising novelty and sampling.
After analyzing 99 manually curated datasets derived from
a rigorous filtering criteria by using a variety of integrative
approaches, we obtained a potential regulatory pathway that
could be associated with different cancer types. We detected 47
DEG that are frequently expressed between all cancer types
analyzed in this work, where most genes were already associated
to poor prognosis in different cancer types. Most DEG are
classified as HBS in the constructed networks, which strengthens
their role as drivers of a disease pathway. We also found a
significant correlation between underexpressed genes in bladder
cancer, where it achieved similarity with breast, colorectal, lung,
and ovarian cancers. Additionally, head/neck cancer also had
significant correlation between overexpressed genes to lung
cancer, which is in agreement with previously published results
(Hoadley et al., 2014; Amos et al., 2017).

Based on the gene expression, network, and overall survival
results, it is likely that the tumoral process is more intimately
associated with the overexpression of a frequently deregulated
machinery. Although it is known that the underexpression of
multiples genes is relevant to the tumoral process, it is less
probable that they are central drivers or associated with poor
prognosis in the short and long term. In this sense, we
devised a molecular model of the most predominant targets for
tumoral drivers.

Finally, although this work took the exhaustive effort to
manually curate the GEO database, by accessing each study one-
by-one, we understand that extra measures should be made
to automate this process for the most reliable datasets. Even
though not much can be done when it comes to analyzing
experimental protocols to see if they fit any criteria, some aspects
can be defined from scratch to ease manual labor. For example,
platform choice is a relevant aspect that can significantly narrow
down the initial search. In this work, we considered only the
Affymetrix, Illumina, and Agilent manufactures because they
are the major gene expression platforms. However, more filters
could be added to narrow down the search, such as dismissing
custom platforms or older versions of some choice platforms.
Another aspect is to omit studies that lack the RAW format.
Reanalyzing data should always be done from scratch to ensure
the employed approaches’ homogeneity and guarantee the data
was accurately preprocessed.

Furthermore, another quick filter is to exclude works that lack
at least three experimental and three WT samples. Numerous
GEO studies do not provide the minimum number of samples
for proper statistical analysis and can be eliminated from the

start. Still, manual curation will always be a laboring process.
The extent of the search is directly associated with the biological
background’s complexity and the study’s primary goal.
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