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Abstract: The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles
(PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were
synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98± 2 nm,
which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing
from 20± 2 mV to−5± 1 mV at the same pH range. The temperature profiles of PPN suspensions were
obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-
dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal
heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles
of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a
slight reduction in the temperature profiles. The model predicts a value of photothermal transduction
efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat
transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model
developed in this work could help identify the exposure time and concentration doses for different tissues
and cells (pH-dependent) in photothermal applications.

Keywords: polypyrrole nanoparticles; NIR laser irradiation; photothermal modeling; photothermal
transduction efficiency; overall heat transfer coefficient

1. Introduction

Nanoparticles based on conductive polymers have emerged as a promising material
for applications in targeted photothermal medical therapies [1,2]. In this therapy, nanopar-
ticles could be placed at different tissue-penetration depths and convert irradiated energy
from the near-infrared (NIR) region into thermal energy [3,4]. Several conductive polymers,
such as polyaniline, polypyrrole, etc., could be used for photothermal therapies due to their
biocompatibility and excellent photothermal conversion performance [5–8]. Within these
conductive polymers, polypyrrole is one of the most widely used for developing nanoma-
terials for biomedical applications [9]. Furthermore, polypyrrole-based nanostructures are
being studied because of their strong absorption in the NIR region (λ = 700–1200 nm) [2].
For instance, polypyrrole nanoparticles (PPN) could generate heat suitable to ablate cancer
cells through their effective photon-to-thermal energy transfer [10–12]. Moreover, PPN
could be used singly or combined with chemotherapy agents [11].

Furthermore, PPN shows high specificity and excellent anti-cancer effects in cellular
and animal experiments [13]. The elevated temperature could thus target cancer cells
while avoiding significant side effects on normal cells. The latter is based on the higher
heat tolerance of normal cells compared to cancer cells [14]. However, the photothermal
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application of polypyrrole-based materials is still in its early stages. Further research is
required to understand and improve its potential performance under diverse in vitro or
in vivo scenarios. In this context, one of the most common PPN preparation methods
is oxidative chemical polymerization, consisting of a facile one-step aqueous dispersion
polymerization that could be used with poly(vinyl alcohol) as stabilizing agent [15]. This
method allows, up to some degree, the tuning of PPN properties by changing the stabilizing
agent, varying the stabilizing agent concentration, and adjusting the molar ratios of the
oxidative agent and the pyrrole monomer [16].

The modeling of heat dissipation from suspended nanoparticles irradiated at different
wavelengths has been reported previously [17–19]. Roper et al. determined the efficiency
of transducing resonant continuous-wave irradiation to bulk heat by a gold NP suspension
by analyzing thermal energy transfer in a thermally isolated system with a macroscopic
linearized heat transfer model that incorporates radiation and conduction [20]. The cal-
culation of the photothermal transduction efficiency requires theoretical analysis of the
experimental data [20–23]. Huang et al. analyzed the temperature distribution with a
two-dimensional model for either fluid or tissue containing gold nanorods, based on the
Pennes’ bioheat equation, with an additional term to account for energy released by the
gold nanorods [24].

In this work, the chemical oxidative polymerization technique was used to prepare
PPN, and their properties at different pH values were studied. Furthermore, the spatiotem-
poral temperature distributions of NIR-irradiated PPN were experimentally evaluated under
different particle concentrations and pH values. An unsteady-state three-dimensional heat
transfer model that describes the temperature behavior of the suspensions by considering
conduction, photothermal heating from laser irradiation, and heat generation due to the
water absorption was developed. The model was validated with experimentally obtained
temperature measurements of PPN suspensions irradiated in the NIR region. This math-
ematical approach allows the prediction of the nanoparticle spatiotemporal temperature
distributions and could help improve the doses of bioactive NPs and times of light irradia-
tion at different pH values to reach the desired temperatures in photothermal therapies.

2. Materials and Methods
2.1. Materials

Pyrrole (reagent grade, 98%), iron (III) chloride hexahydrate (reagent grade, 97%,
FeCl3·6H2O), and polyvinyl alcohol (86.7–88.7% hydrolysis, Mw~31,000 a.m.u, PVA) were
purchased from Sigma Aldrich, Inc., St. Louis, MO, USA. The pyrrole monomer was
purified by distillation under vacuum and inert atmosphere conditions before use.

2.2. Synthesis of PPN

PPN were synthesized by the oxidative chemical polymerization of pyrrole using
ferric chloride as oxidant and PVA as stabilizer [15,25,26]. A schematic of the synthesis of
PPN is presented in Figure 1. A total of 20 mL of an aqueous solution of 7.5% of PVA (% w/v)
was kept under magnetic stirring at 500 pm, at 5 ◦C (Figure 1A). Then, 4.6 mmol of ferric
chloride ([FeCl3]/[monomer] = 2.3) was added to a PVA solution. The mixture reacts for
1 h to reach equilibrium, forming the PVA/iron cation complex (orange solution) (Figure 1B).
Then, 2 mmol of pyrrole monomer was added to the PVA/iron cation complex solution.
The solution turned black-green, indicating that polymerization started (Figure 1C), and
the polymerization process was allowed to react for 4 h with continuous stirring and at
5 ◦C. Then, PPN was washed by three centrifugation cycles at 22,096× g (14,500 rpm) for
35 min, where supernatant was discarded, and the precipitate was resuspended in deion-
ized water. Finally, PPN was collected and stored at 4 ◦C for further use. All experiments
were performed in triplicate.
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Figure 1. PPN synthesis scheme by chemical oxidation of pyrrole. (A) PVA solution at 5 ◦C;
(B) formation of PVA/iron complex, and (C) polymerization of pyrrole and formation of PPN.

2.3. pH Effects over PPN

The polymerization of pyrrole with FeCl3 and PVA results in acidic PPN suspensions.
Accordingly, the pH values of the PPN suspensions must be tuned to be used in biological
applications. Therefore, it is necessary to evaluate the influence of pH on the properties of
the PPN. The pH values studied were 4.2 (pH obtained from synthesis), 6, 7.4, 8, and 10;
adjusted using solutions of 0.1 M NaOH.

2.4. Characterization of PPN

Hydrodynamic size, polydispersity index (PDI), and zeta potential (ζ) were measured
using a Zetasizer (Zetasizer Nano ZS Malvern Instruments Ltd., Worcestershire, UK).
Hydrodynamic size measurements of PPN were performed by the Dynamic Light Scattering
technique (DLS). A refractive index of 1.33 and water as a dispersant were used in the
analysis. Each sample was measured three times with at least 10 runs at 25 ◦C for the size
and ζ analysis. The ζwas obtained by using the laser Doppler electrophoresis technique.
The morphology of PPN was observed with a field transmission electron microscopy (TEM)
JEOLTEM-2010F with an operating voltage of 200 kV (JEOL, Ltd., Tokyo, Japan). For TEM
observations, a drop of the sample solution was spread on a smooth film of a carbon-coated
copper TEM grid and dried. After that, 1% phosphotungstic acid was applied on the grid
for 1 min; the excess was absorbed using filter paper. All samples were subsequently dried
in a vacuum before observation. The optical absorption spectra of PPN were acquired in
a UV6300PC spectrophotometer (VWR, Radnor, PA, USA). The characteristic absorption
band of PPN in the NIR region was verified. A standard curve of PPN suspensions was
built at 808 nm to determine the PPN concentration. All experiments were performed
in triplicate.

2.5. Photothermal Evaluation of PPN

The temperature variations of PPN suspensions irradiated with an NIR laser beam
with an output power of 1.5 W centered at 808 nm (Changchun New Industries Optoelec-
tronics Tech Co., Ltd., Model No. PSU-III-LED, Changchun, China) were measured. PPN
suspensions were placed into a rectangular quartz cuvette cell and irradiated with the NIR
laser. The experimental setup for the analysis and data acquisition is shown in Figure 2.
The temperature variations were measured using a K-Type thermocouple connected to
a multimeter that acted as a data acquisitor. Suspensions of PPN from 0 to 30 µg/mL
and the pH of nanoparticle suspensions from 4.2 to 10 were analyzed. As a control, the
temperature of a nonirradiated cuvette cell with water was measured simultaneously to
calculate the temperature increments of the suspensions; that is, to adjust to the ambient
temperature variations.
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Figure 2. Scheme of heating experiments with the laser irradiation, indicating the dimensions of
the quartz cuvette cell and the suspension volume (left), and a frontal view with the approximate
position of the laser spot and the thermocouple (right).

2.6. Spatiotemporal Temperature Distribution Analysis

The spatiotemporal temperature distribution of irradiated PNP suspensions was
mathematically analyzed by modeling PPN suspensions inside a quartz cuvette. The
modeled PNP suspension volume is comprised of two regions: the laser region, where the
laser irradiates and the heat is produced, then the suspension region, where the heat is
transported only by heat conduction. The energy equation in the laser region is:

ρCP
∂T
∂t

= k∇2T + η
I
V

(
1− 10−OD

)
+ SW (1)

where the term on the left side is the thermal energy accumulation. The first term on the
right-hand side is the heat conduction, and the second term represents the photothermal
heating from laser irradiation. This second term η I

V
(
1− 10−OD) consists of heat generation

due to the PPN. Furthermore, the heat generation due to the water absorption is considered
in the third term of the right side (Sw). The energy equation for the suspension region is

ρCP
∂T
∂t

= k∇2T (2)

The equation shows the accumulation term on the left-hand side, and on the right-hand
side, only the conduction term appears.

In these equations ρ (kg/m3) is the density and CP (J/kg·K) is the heat capacity
of the suspension, respectively, k is the thermal conductivity (W/m·K), η counts for the
photothermal transduction efficiency, I (W) is the laser power, V (m3) stands for the
irradiated volume, OD is the optical density of the suspension and SW (W/m3) is the water
heat generation in the irradiated volume.

To solve Equations (1) and (2), the following boundary condition was applied to the
cell walls and the air/suspension interface:

q = U
(

Tf − T
)
+ εσ

(
T4

∞ − T4
)

(3)

where q is the heat flux at the system boundaries (W/m2), U is the overall heat transfer
coefficient (W/m2·K), Tf is the temperature of media surrounding the cell (air) (K), T is the
suspension temperature (K), ε is the emissivity of either the cell wall or the air/solution
interface, σ is the Stefan–Boltzmann constant, and T∞ is the temperature of the radiation
sink on the exterior of the domain (K). The overall heat transfer coefficient U incorporates
the thermal resistance of the cell wall and the external free convection thermal resistance.
Furthermore, the bottom of the quartz cuvette was considered adiabatic, resulting in the
following boundary condition:

q = 0 at z = 0 (4)
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The main physical parameters used in the mathematical model were obtained from the
experimental setup and the literature [27], as presented in Table 1. The model was numeri-
cally solved using Ansys Fluent R3 [20,21] using a hexahedral mesh of 85,536 elements. A
semi-implicit method for pressure-linked equations was used with a time step of 0.4 s and
3750-time elements.

Table 1. Main physical parameters used in the mathematical model.

Parameter Description Unit Value

ρ Dispersion density kg/m3 998.2
CP Heat capacity at constant pressure J/kg·K 4182
k Thermal conductivity W/m·K 0.6

Ilaser Laser power W 1.5
Vlaser Irradiated volume m3 6.25 × 10−8

Tf Temperature of surrounding media (air) K 297.15
T∞ Temperature of the domain exterior K 297.15
εcell Emissivity of the cell walls − 0.925 *

εwater Emissivity of the air/solution interface − 0.96 *

* The emissivity of glass at 300 K is between 0.90 and 0.95; the emissivity of water at 300 K is 0.96 [27].

Determination of Model Parameters: η, U, and SW

The values of parameters η, U and SW were obtained by fitting the model temperature
predictions to the experimental measurements during laser heating. A two-step approach
was followed: first, the order of magnitude η and U was obtained by analyzing a hypothet-
ical case of the adiabatic cell and using a heat transfer correlation, respectively. The second
step consisted of minimizing the sum of squares of differences between the experimental
and predicted temperature increments using the heat model.

The order of magnitude of η was determined from the maximum temperature in the
irradiated system (analyzed by considering a hypothetical case of an adiabatic cell), where
all the energy absorbed by the system is accumulated, resulting in the maximum possible
temperature at the given laser power and time of irradiation. The value of η defined as
baseline must satisfy two conditions at a specific PPN concentration. The first condition is
that the temperature increment in the adiabatic case be higher than the experimental one.
The second condition is that the initial heating rate be faster than the experimental heating
rate (Figure S1).

The order of magnitude of U was obtained using a correlation for free convection on a
vertical surface. The properties of air used were estimated from an average temperature
between the temperature of the surrounding media and the temperature measured by the
thermocouple in the heating plateau (Figure S2).

The second step for determining η and U was implemented as follows: a set of values
of U for each concentration and a single value of η equal to or greater than the baseline
values were used to solve the model. Then the model was solved using the parameters
and conditions described above. Next, the sum of squares was calculated for the values
following Equation (5). The process was repeated at least three times to find the values of
η and U and the minimum sum of squares. The term SW was obtained by fitting the heat
model to the experimental data at a concentration of 0 µg/mL nanoparticles.

σ2 =
n

∑
i=1

(
∆Texp − ∆Tsim

)2

n− k
(5)

2.7. Statistical Data Analysis

The statistical analysis for PPN hydrodynamic size, PDI, and ζ measurements was
performed by the software OriginPro (ver. 9). Results were analyzed by ANOVA followed
by Tukey’s HSD test (α = 0.05). The differences were considered statistically significant
when the p-values were minor or equal to 0.05.
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3. Results and Discussion
3.1. Characterization of PPN Synthesis

PPN was synthesized by chemical oxidizing polymerization with hydrodynamic av-
erage sizes of 98 ± 2 nm from three independent preparations, verifying the method’s
reproducibility. Furthermore, the DLS results show a narrow size distribution with a
PDI of 0.04 ± 0.02 (as shown in Figure 3A). Different sizes can be obtained by varying
the concentrations and molecular weight of PVA and the molar ratio between FeCl3 and
pyrrole monomer [16]. Furthermore, using a different stabilizer in the chemical oxidizing
polymerization could influence the PPN sizes. The literature has reported polyvinylpyrroli-
done (PVP) as a stabilizer, resulting in PPN sizes ranging from 151.5 to 93.5 nm in the
function of the PVP concentration increment [28]. The ζ distribution of PPN that resulted
from the synthesis shows a single peak with a narrow width and a positive value, as
seen in Figure 3B. This value, obtained from three independent preparations of PPN, was
20.0 ± 2.1 mV, indicating good nanoparticle stability due to electrostatic particle repulsion
and preventing further particle aggregation [29]. The positive charge of these PPN is
attributed to the presence of amino groups in the polypyrrole polymeric chain [30]. Other
authors using a similar synthesis method of PPN report ζ values of 14.0 ± 0.4 mV for
particles of 106 ± 1 nm [31]. The slight differences in the ζ values may be due to the
concentrations of PVA used in the synthesis since the PPN surface covered by this stabilizer
changes with the concentration used in the synthesis. Then, as the PVA concentration
increases in the synthesis, the PPN surface-exposed hydroxyl groups increase, producing
variations in the PPN surface charge.
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(A) Diameter size distribution from DLS measurements. Means ± SD, n = 3. (B) ζ distribution.
Means ± SD, n = 3. (C) TEM image of PPN with an insert of a single particle. (D) Histogram of the
size distribution of PPN from TEM images (analysis with a number of particles >700).

The PPN morphologies and sizes can be observed in Figure 3C,D, respectively. The
PPN has a uniform quasi-spherical morphology, with diameters of ~60 nm, as shown in
Figure 3C and the insert. These morphologies and sizes agree with previous literature
reports [32]. Furthermore, the excellent monodispersity can be confirmed by the narrow
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histogram distribution presented in Figure 3D, obtained from TEM pictures using the
free software ImageJ version 1.53e. The difference in the sizes obtained from the DLS
technique and the TEM analysis, as known, is related to the hydrodynamic size of PPN
in the suspension (DLS) and the actual size of dried particles (TEM). Furthermore, in
the literature, it was found that PPN synthesized with different methods showed similar
amorphous structures [33,34].

The optical properties of the aqueous PPN suspensions were analyzed by UV-vis
spectroscopy. The UV-vis absorption spectra were recorded at different PPN concentra-
tions in the wavelength range of 300–1000 nm, as shown in Figure 4. PPN exhibits the
typical π–π* transition band of the polypyrrole around 420 nm, in agreement with the
literature [35,36]. At the same time, the observed band above ~650 nm is attributable to the
sizeable π-conjugated structure of polypyrrole chains [37]. As expected, the absorbance
increased proportionally to the PPN concentration. Similarly, Zha et al. reported that the
absorbance increases linearly as the concentration of PPN in water is elevated, indicating
the excellent dispersity of the aqueous PPN solution [15]. Furthermore, a calibration curve
was obtained from this linear behavior, with a resulting extinction coefficient (ε) of 0.0559
a.u./(µg/mL·cm) and a determination coefficient (R2) of 0.994 (Figure S3). It should be
mentioned that the absorption spectra of PPN also depend on the nature of the solvent [38].
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3.2. pH Effects over PPN

The pH effect over the hydrodynamic particle size, ζ, and optical spectra of PPN
suspensions are presented in Figure 5. The pH values of PPN suspensions were: 4.2, 6.0,
7.4, 8.0, and 10.0. In this range of pH, the PPN size presents a quadratic behavior with
respect to the pH of the suspension (Figure 5A). However, the size differences are not
significant between the pH values except for a pH of 10, where a significant difference
resulted, compared with all the other pH values. This behavior is similar to the PDI values
obtained, the results of which indicate monodisperse particles (PDI < 0.1) at pH values
below 10 (Figure 5A). As observed for the size results, the only significant difference in PDI
was at a pH of 10, compared with all the other PDI values. The ζ results for the different
pH suspensions could be described with a quadratic relationship, as presented in Figure 5B.
The ζ values for suspensions with pH of 4.2 and 6.0 do not present significant variations,
with values around 20 mV. However, when the pH value of the suspension increases to
7.4 and 8.0, the ζ decreases to values of 9.8 ± 0.4 and 9.3 ± 1.1 mV, correspondingly, with
significant differences for the pH values of 4.2 and 6.0.

Nevertheless, the ζ differences between pH 7.4 and 8.0 are not significant. The ζ values
of suspensions of PPN at pH 10 resulted in −4.7 ± 1.3 mV, with substantial differences
from all the other ζ values. The changes in the ζ of PPN are related to the deprotonation
process that suffers the polymeric chain of PPN as the pH rises [39,40]. This deprotonation
affects the surface charge due to changes in the PPN surface composition. Other authors
have reported that iron nanoparticles coated with polypyrrole change from a positive ζ
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value to a negative one at a pH higher than 9 [41,42]. The significant differences observed
in size and PDI measurement results could be attributed to the change in the surface charge
character of the PPN, from positive to negative, indicating that some disturbance was
obtained by passing throughout the isoelectric point of PPN (~pH of 9.4).
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Figure 5. PPN properties at different pH values. (A) Diameter size distributions and PDI of PPN;
Squares represent nanoparticle diameter sizes, the continuous line represents the quadrating fitting
to the diameter size, and circles represent the polydispersity index. Means ± SD, n = 3. (B) ζ of
PPN; squares represent nanoparticle ζ, and the continuous line represents the quadrating fitting.
Means ± SD, n = 3. (C) Optical absorption spectra of PPN suspensions; insert shows the color of
suspensions at different pH values, ranging from 4.2 to 10.

The optical spectra of PPN at different pH values are presented in Figure 5C, with
wavelength scans ranging from 300 to 1000 nm. The characteristic optical spectra bands
of PPN suspensions are similar for all the pH values. However, when the pH of the PPN
suspension increases, a shift to a shorter wavelength is produced in the spectra of PPN.
Furthermore, a change in the color of the PPN solutions is observed, from a black-green
color in acidic conditions to a light blue in alkaline conditions (insert of Figure 5C). These
wavelength shifts are related to the surface charge of the PPN, as described in Figure 5B.
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As the PPN is deprotonated (pH rises), the hydroxyl groups cover the surface, and a shift
to shorter wavelengths is observed.

3.3. Determination of Model Parameters: η, U, and SW

The order of magnitude values of η (adiabatic cells) and U were 0.65 and 7 W/m2·K,
respectively. These values were used to initiate the minimization of the sum of squares
of differences between the experimental and predicted temperature increments. The re-
sulting value of η was considered constant for all the nanoparticle concentrations. This
consideration is justified by the low PPN polydispersity (monodisperse particles), the ho-
mogeneous nanoparticle morphology, and the range of particle concentrations used [21,43].
The parameter U changed proportionally to the nanoparticle concentration. This effect
could be explained by the coefficient U’s dependence on the media’s temperature after
irradiation [27].

The resulting value η, from the minimization of the sum of squares, was 0.68. This
value is greater than other similar systems of PPN prepared using PVP and the same
oxidant [2,5] and similar to gold nanoparticles of similar sizes [44]. Other works using
FeCl3 as oxidant have shown remaining Fe at the PPN surface in the form of iron oxides,
improving the electrical conductivity and optical properties of the particles by the formation
of a semiconductor–semiconductor heterojunction [45]. For instance, these remaining
oxides could also improve the η value. The values of U for different PPN concentrations in
the suspension are shown in Table 2. Furthermore, a value of 4.7 × 105 (W/m3) was fitted
to SW by simulation of the particle-free suspension. These values agree with other values
reported in the literature [46,47].

Table 2. Maximum temperature increments and the corresponding values of U as a function of the
PPN concentration.

PPN Concentration (µg/mL) ∆Tmax (K) U (W/m2·K)

30 27.7 24
15 24.9 22
7.5 17.8 19

3.75 11.7 17
1.875 6.1 15

3.3.1. Photothermal Effect of PPN at Different Concentrations

The photothermal effect of PPN at different concentrations under laser irradiation
and the respective heat transfer model fittings are presented in Figure 6. The heating
analysis as a function of PPN concentration was evaluated at a fixed pH value of 7.4 to
simulate biological conditions. The concentrations of PPN evaluated were 30, 15, 7.5,
3.75, 1.875, 0 µg/mL, equivalent to the absorbances of 1.677, 0.839, 0.419, 0.210, and 0.105,
respectively (Figure 6A–E). The spatiotemporal temperature distributions of irradiated
PNP suspensions show the same heating profile, but different temperature increments are
reached proportionally to the nanoparticle concentration increase. The profiles started with
a period of rapid heating until a plateau was reached, indicating a steady state. Results
show a direct dependency between the PPN concentration and the temperature increment
obtained, with maximum temperature increments of 27.6, 24.8, 17.7, 11.7, and 6 ◦C for
30, 15, and 7.5, 3.75, and 1.875 µg/mL, respectively. Furthermore, a slight temperature
increment for the 0 µg/mL solution is presented after irradiation, confirming that most of
the temperature increments are due to the laser interactions with the PPN. Comparable
results have been reported in the literature for the spatiotemporal temperature distributions
of other irradiated materials, such as gold nanoparticles [48], gold nanorods [24], carbon
nanotubes [49], iron oxide nanoparticles [50], etc.
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data, and the continuous solid lines represent the model fitting. Means ± SD, n = 3.

The mathematical analysis for the spatiotemporal temperature distributions of irradi-
ated PNP at different concentrations shows good agreement with the experimental data.
The model predicted the temperatures with an average absolute error below 1 ◦C, compared
to the experimental data, as shown in Figure S4. The best agreement is found at higher PPN
suspension concentrations. However, with lower nanoparticle concentrations, the model
underestimates at the early stages of heating, overestimating the temperature change when
reaching the thermal plateau. Furthermore, a linear correlation between the overall heat
transfer coefficient and temperature increment is shown in Figure 7, contrasting with the
non-linear dependency predicted by the correlation used as a starting point (Figure S2).
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3.3.2. Photothermal Effect of PPN at Different pH

The photothermal effect of PPN at different pH was performed at an average nanopar-
ticle concentration of 28.5 µg/mL. Figure 8A–E present the measured temperature profiles
and their model predictions at solution pH values of 4.2, 6.0, 7.4, 8.0, and 10, respectively.
The mathematical analysis at different pH values agrees well with the experimental data.
The model predicted the temperatures with an average absolute error below 1 ◦C com-
pared to the experimental data (Figure S5). The heating profiles in Figure 8 present similar
behavior within them, observing a gradual temperature increase until a steady temperature
is reached.
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Figure 8. Laser irradiation effects of PPN suspensions as a function of the pH. Temperature profiles
of PPN suspensions and model fitting at pH values of (A) 7.4, (B) 6.0, (C) 7.4, (D) 8.0, and (E) 10.
Circles represent the experimental data of PPN suspensions, and the continuous solid lines represent
model fitting. Means ± SD, n = 3. (F) The efficiency of transducing resonant irradiation of light to
heat (η) for a PPN suspension of 28 µg/mL as a function of the pH. Circles represent the η value
obtained, and the dotted line the linear adjustment.

Furthermore, a small increment in the suspensions’ maximum temperature occurs
when pH increases. This increment in the maximum temperature is not related to the
absorbance of the suspensions but to variations in the efficiency of transducing resonant
irradiation of light to heat. As a result, the model predicts that this efficiency increases
linearly with the pH values of the suspension (Figure 8F). This finding is supported by the
ζ value measurements presented in Figure 5B, in which a decrease in the ζ value occurs as
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the pH increases, indicating that the nanoparticle surface charge affects the transduction
of light.

The predicted temperature contours for a concentration of PPN of 3.75 µg/mL and
pH 7.4 are presented in Figure 9. At a glance, no matter which contour is selected, the
laser region is the hottest spot in the contour, unlike the suspension/air interface in the
suspension region, which remains almost at room temperature during the experiment. The
temperature of ~51 ◦C is reached in the laser region, with an exposure time of 25 min. The
contour analysis helps to understand and control the maximum temperature reached in the
irradiated volume as a function of time, which is necessary for all biological applications to
avoid undesirable effects, for example, necrosis, damage surrounding healthy tissue, and
the possible effects of prolonged laser exposure.
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4. Conclusions

Polypyrrole nanoparticles (PPN) were synthesized by oxidative chemical polymer-
ization, resulting in an appropriate size, good stability, and strong absorption in the NIR
region, suitable for applications in photothermal therapies. The zeta potential (ζ) of PPN
could be tuned from positive to negative values by controlling the pH of the suspensions
while maintaining similar sizes. A three-dimensional mathematical model that considers
the extinct radiation of suspensions of PPN and the photothermal transduction efficiency
was developed. A direct approach was proposed to determine the order of magnitude
of the photothermal transduction efficiency and the overall heat transfer coefficient. The
heat transfer model shows good agreement between the experimental and the predicted
temperature changes. Furthermore, a linear dependency of the overall heat transfer coef-
ficient with the temperature was found. For PPN of 60 nm dispersed at a pH of 7.4, the
photothermal transduction efficiency had a value of 0.68.

Additionally, a linear dependency was found between the photothermal transduction
efficiency and the pH of the suspensions. The model could predict temperature zones
with potential photothermal therapy use around the laser region regarding nanoparticle
concentration and power. The current approach for modeling the conversion of NIR light
into heat by using nanoparticle suspensions could contribute to the analysis and design of
systems/devices for photothermal ablation of cells and tissues.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym14153151/s1, Figure S1: Temperature gradients at the thermocouple
position (6.25, 6.25, 16 mm) for the adiabatic cell for different photothermal transduction efficiency
(η). The experimental data correspond to a concentration of PPN of 30 µg/mL and a pH value of 7.4;
Figure S2: Calculated temperature gradients for different values of overall heat transfer coefficient (U).
The solid dots correspond to the experimental heating data at a concentration of PPN of 30 µg/mL and
a pH value of 7.4; Figure S3: PPN calibration curve at a wavelength of 808 nm. The mass extinction
coefficient (ε) of PPN is 0.0559 a.u./

( µg
mL ·cm

)
. Mean ±SD, n = 3; Figure S4: Comparison of simulated

temperature gradients and experimental temperature gradients for the different concentrations of PPN
at a pH value of 7.4; Figure S5: Comparison of simulated temperature gradients and experimental
temperature gradients for the different pH values at a concentration of PPN of 30 µg/mL.
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