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Abstract: Nanoelectronic quantum dot devices exploiting the charge-Kondo paradigm have been
established as versatile and accurate analogue quantum simulators of fundamental quantum impurity
models. In particular, hybrid metal–semiconductor dots connected to two metallic leads realize
the two-channel Kondo (2CK) model, in which Kondo screening of the dot charge pseudospin
is frustrated. In this article, a two-channel charge-Kondo device made instead from graphene
components is considered, realizing a pseudogapped version of the 2CK model. The model is solved
using Wilson’s Numerical Renormalization Group method, uncovering a rich phase diagram as a
function of dot–lead coupling strength, channel asymmetry, and potential scattering. The complex
physics of this system is explored through its thermodynamic properties, scattering T-matrix, and
experimentally measurable conductance. The strong coupling pseudogap Kondo phase is found
to persist in the channel-asymmetric two-channel context, while in the channel-symmetric case,
frustration results in a novel quantum phase transition. Remarkably, despite the vanishing density of
states in the graphene leads at low energies, a finite linear conductance is found at zero temperature at
the frustrated critical point, which is of a non-Fermi liquid type. Our results suggest that the graphene
charge-Kondo platform offers a unique possibility to access multichannel pseudogap Kondo physics.

Keywords: Kondo effect; graphene; electronic transport; quantum dots

1. Introduction

The Kondo effect [1] was originally discussed in the context of local magnetic impu-
rities such as Fe, embedded in non-magnetic metallic hosts such as Au. By progressively
decreasing the temperature T, experimental measurements revealed an unexpected re-
sistivity minimum, attributed to enhanced electronic scattering from the impurity local
moments [2]. The low-energy physics of such systems is explained by the deceptively
simple Kondo model, which features a single spin- 1

2 local moment exchange coupled to
a featureless bath of metallic, non-interacting conduction electrons. The “Kondo effect”
refers to the universal physics of this model, appearing at T ∼ TK with TK an emergent
low-energy scale called the Kondo temperature, in which the impurity spin is dynamically
screened by a surrounding many-body entanglement cloud of conduction electrons [3].

Since then, variants of the basic Kondo effect that arise when magnetic impurities
are embedded in unconventional host materials have been studied. Examples include
ferromagnets [4] and superconductors [5], as well as topological materials such as topo-
logical insulators [6] or Dirac/Weyl semimetals [7]. However, local moments in graphene
have attracted the most attention [8,9]. In neutral graphene, the Dirac point is at the Fermi
level [10], and so, a spin- 1

2 impurity couples to a bath of conduction electrons with a
density of states (DoS) featuring a low-energy pseudogap ρ(ω) ∼ |ω|r with r = 1. This
has dramatic consequences for the resulting Kondo physics [9] due to the depletion of
the low-energy degrees of freedom in graphene, which can participate in screening the
impurity spin.
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Deeper insights into strongly correlated electron physics and Kondo physics have
been gained from tunable circuit realizations of fundamental models in nanoelectronics
devices, made possible by remarkable recent advances in nanofabrication and character-
ization techniques [11,12]. This provides a route to probing and manipulating quantum
matter at the nanoscale in a way that would be impossible in bulk systems. In particular,
semiconductor quantum dots (QDs) have been shown to behave like artificial atoms [13],
with the extreme quantum confinement producing a discrete level structure and strong
electron–electron interactions. Coupling such quantum dots to metallic electrodes at quan-
tum point contacts (QPCs) gives rise to the Kondo effect at low temperatures [14–16], with a
single local moment trapped on the dot facilitating spin-flip scattering of lead conduc-
tion electrons. In such devices, entanglement spreads across the QD and the leads in a
macroscopic “Kondo cloud” [17,18], producing the famous Kondo resonance in electrical
conductance [19]. The quantum transport properties of QDs can be tuned in situ by apply-
ing gate voltages to control the QPC transmissions and dot potential. A bias voltage can
drive the system out of equilibrium.

Quantum dot devices also allow more complex quantum impurity models to be real-
ized experimentally by controlling the microscopic interactions. As such, they constitute a
versatile platform to study a rich range of physics [12], including quantum phase transitions
(QPTs) [20,21], emergent symmetries [22,23], and non-Fermi liquid (NFL) physics [24–27].
The two-channel Kondo (2CK) model [28] is a famous example, which embodies the frus-
tration of the Kondo screening of a single impurity by two distinct channels of metallic
conduction electrons and displays all these features [29]. The standard 2CK model Hamil-
tonian reads,

Ĥ2CK = Ĥleads + J1Ŝ · ŝ1 + J2Ŝ · ŝ2 , (1)

where Ĥleads = ∑ασk εkc†
ασkcασk describes two leads α = 1, 2, each with spin σ =↑, ↓

electrons with momentum k. In the original formulation of the 2CK model, the dispersion
εk is taken to be linear at low energies such that the electronic DoS of the leads at the
impurity position is flat. The metallic flat band approximation is typically employed for the
free conduction electrons, ρ(ω) ∼ ∑k δ(ω− εk) ≡ ρ0Θ(|ω| − D), describing a flat density
of states ρ0 inside a band of half-width D. In Equation (1), Ŝ is a spin- 1

2 operator for the
impurity and ŝα is a spin- 1

2 operator for the spin density in lead α at the impurity position,
such that Ĥ2CK possesses SU(2) spin symmetry. The metallic 2CK model supports a QPT,
with an NFL critical point at J1 = J2 [29]. Signatures of the critical point in this model have
been observed experimentally in semiconductor quantum dot devices [24,25].

More recently, a new nanoelectronics paradigm has emerged, based on charge-Kondo
quantum dots [30–34]. In the standard setup, a large QD is coupled at QPCs to source
and drain leads. These devices realize anisotropic multichannel Kondo models through
Matveev’s mapping [35,36] of the macroscopic charge states of the large QD to an effec-
tive pseudospin that is flipped by electronic tunnelling at the QPCs. This approach has
led to unprecedented control over the frustrated 2CK state and has uncovered the full
renormalization group (RG) flow diagram through transport measurements [30].

Motivated by these developments, in this paper, we consider combining the two-
channel charge-Kondo setup of [30] with the pseudogap Kondo physics of graphene in [9],
to realize a novel two-channel pseudogap charge-Kondo effect. We envisage a charge-
Kondo device made from graphene components (see Figure 1), such that the dot charge
pseudospin is coupled to two channels of conduction electrons, each with the characteristic
linear pseudogap DoS of graphene. This work is a theoretical exploration of such a
system and its phase diagram. We characterize the phases and phase transitions through
thermodynamic quantities and focus on experimentally relevant physical observables such
as the conductance. However, we do not claim to address the practical complexities that
will inevitably arise in the experimental realization of a graphene charge-Kondo device.

We note that the generic properties of fully spin- and channel-symmetric two-channel
pseudogap Kondo models were discussed in [37], although the r = 1 linear pseudogap case
relevant to graphene was not analysed in detail and a device realization was not proposed.
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Furthermore, our charge-Kondo implementation leads to crucial differences in the model
and transport measurement setup, which have not previously been considered. These
differences and our new results are highlighted in the following.

Figure 1. Schematic of the two-channel graphene charge-Kondo quantum dot system. A net current
flows from source to drain graphene leads through the large graphene dot in response to a bias
voltage. A gate voltage Vg controls the dot filling. The black bar denotes the decoherer.

2. Model, Methods, and Observables

We consider a two-channel charge-Kondo device in which both the quantum dot
and the leads are made from graphene, as illustrated in Figure 1. We note that graphene
quantum dots have been the topic of active experimental study recently [38–40]. We
envisage a large dot tunnel coupled to leads α = 1, 2 at QPCs with transmission τα, which
can be controlled in situ by gate voltages. A plunger gate voltage Vg controls the dot
potential, and hence the dot filling. A decoherer is interjected between the leads via an
Ohmic contact on the dot (black bar in Figure 1), which gives rise to a long dwell time
and an effective continuum dot level spectrum (this was achieved in the experiments
of [30] using a metallic component). This results in two effectively independent electronic
reservoirs around each of the two QPCs; these form the two independent channels in the
2CK model. However, tunnelling events onto and off of the dot are correlated by the large
dot charging energy, Ec. The whole device is operated in a strong magnetic field so that the
electrons are effectively spinless (that is, the Zeeman splitting is the largest energy scale in
the problem).

The model Hamiltonian for the device illustrated in Figure 1 is given by

Ĥ = Ĥleads + ∑
α=1,2

∑
kk′

[
Jα(Q̂+c†

αDkcαLk′ + c†
αLk′cαDkQ̂−) + Wα(c†

αLkcαLk′ + c†
αDkcαDk′)

]
+ Ec(N̂D − Ng)

2 , (2)

where Ĥleads = ∑ασk εkc†
ασkcασk describes the distinct conduction electron reservoirs

around each QPC labelled by α = 1, 2 and with σ = L, D corresponding to lead or dot
electrons (rather than physical spin ↑,↓). For graphene components, we used the disper-

sion ε±k = ±t
√

1 + 4 cos2 a
2 kx + 4 cos a

2 kx cos
√

3a
2 ky for the two bands, assumed here to be

independent of α and σ, with nearest neighbour tunnelling matrix element t ≈ 2.8 eV and
lattice constant a ≈ 2.46 Å [10]. The resulting DoS ρασ(ω) ≡ ρ(ω) has a bandwidth D = 3t
and possesses a linear pseudogap ρ(ω) ∼ |ω| for |ω| � t.

The terms proportional to Jα describe electronic tunnelling at the QPCs between
leads and dot. The tunnelling matrix elements Jα are related to the bare (unrenormal-
ized) QPC transmissions via [41] τα(ω) = 4π2ραL(ω)ραD(ω)J2

α/[1 + π2ραL(ω)ραD(ω)J2
α ]

2,
which are in general energy-dependent for structured leads. States of the isolated dot with
a macroscopic number of electrons ND are denoted |ND〉, with corresponding dot num-
ber operator N̂D = ∑αk c†

αDkcαDk ≡ ∑ND
ND|ND〉〈ND|. Tunnelling at the QPCs changes

the dot charge, which we describe [35] using the charge raising and lowering operators
Q̂± = ∑ND

|ND ± 1〉 〈ND|. The dot has a finite charging energy that depends on the filling
via the term proportional to Ec. The filling can be adjusted by tuning Ng in Equation (2),
which was controlled in the experiment by the gate voltage Vg = V0

g − 2EcNg/e. We
define δVg = −2Ec(Ng − N0

D − 1
2 )/e such that the macroscopic dot charge states |N0

D〉 and
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|N0
D + 1〉 are degenerate at δVg = 0. Potential scattering at the QPCs is described by the

term proportional to Wα.
Provided kBT, eδVg � Ec, only the lowest two dot charge states |N0

D〉 and |N0
D + 1〉 are

accessible and relevant for transport. In this case, the dot charge operators become effective
pseudospin- 1

2 operators, Q̂+ → Ŝ+
D = |N0

D + 1〉〈N0
D| and Q̂− → Ŝ−D = |N0

D〉〈N0
D + 1|.

Thus, Ŝ+
D flips the dot charge pseudospin from ⇓ to ⇑, while Ŝ−D flips it back. We also

introduced the pseudospin operator Ŝz
D = 1

2 (|N0
D + 1〉 〈N0

D + 1| − |N0
D〉 〈N0

D|). Finally, we
performed a trivial relabelling σ = {L, D} → {↑, ↓} such that the electronic operators
become cαLk → cα↑k and cαDk → cα↓k. With this, we arrive at the effective pseudogap
two-channel charge-Kondo (2CCK) model studied in this paper:

Ĥ2CCK = Ĥleads + ∑
α=1,2

∑
kk′

[
Jα(Ŝ+

Dc†
α↓kcα↑k′︸ ︷︷ ︸
Ŝ+

D ŝ−α

+ c†
α↑k′cα↓kŜ−D)︸ ︷︷ ︸

ŝ+α Ŝ−D

+Wα ∑
σ

c†
ασkcασk′

]
+ eδVgŜz

D . (3)

This model is a variant of the famous 2CK model, Equation (1)—but with a few
important differences. Firstly, the DoS of the conduction electrons described by Ĥleads is
not metallic, but has a low-energy r = 1 pseudogap. Secondly, tunnelling at the QPCs
gives an effective anisotropic exchange coupling between the dot charge pseudospin and
the conduction electrons. The SU(2) symmetry of Equation (1) is broken in Equation (3)
since the z-component of the coupling is missing. However, we found that this effective
spin anisotropy is RG irrelevant in the two-channel pseudogap Kondo problem (just as for
the single-channel [2,42] and two-channel [29] metallic case, as well as the single-channel
pseudogap case [43]). Only the spin flip terms are important for the Kondo effect, and these
are captured by the effective model. It should also be emphasized that the effective exchange
couplings Jα originate from the QPC tunnellings; there is no underlying Anderson model, so
the Jα need not be perturbatively small. In fact, since they are related to the QPC transmissions,
they can become large simply by opening the QPCs [30]. This is important because Kondo
physics is only realized in the pseudogap model at relatively large bare coupling strengths.
Thirdly, the gate voltage δVg appears as an effective impurity magnetic field. Finally, we
have an additional potential scattering term Wα. This is traditionally omitted in Equation (1)
because potential scattering is RG irrelevant in the metallic Kondo problem [2]. However,
we must keep it because potential scattering is known to be important in the single-channel
pseudogap Kondo model [43]. Indeed, we find that it is strongly RG relevant in our two-
channel pseudogap variant, Equation (3).

Another important difference in terms of the experimental realization is the nature of
the transport measurement. As illustrated in Figure 1, a series current of spinless electrons
is measured between the physical source and drain leads through the dot, in response to a
bias voltage. However, in the mapped spin model, this is an unconventional measurement:
we effectively apply a bias between leads α = 1, 2, but only to the σ =↑ conduction
electrons. Even though there is no charge current possible between leads in the original
2CK model Equation (1), the charge-Kondo setup Equation (3) allows an effective spin
current to be measured.

The AC linear response electrical conductance through the device is defined as

GC(ω, T) =
〈 Î2↑〉
Vbias

∣∣∣∣
Vbias→0

(4)

due to an oscillating bias described by Ĥbias = −eVbias cos(ωt)N̂1↑ with AC frequency ω.
Here, Îα↑ = −e d

dt N̂α↑ is the current operator for lead α (and σ =↑), while N̂α↑ = ∑k c†
α↑kcα↑k.

We obtain the AC linear conductance from the Kubo formula [44]:

GC(ω, T) =
−Im〈〈 Î1↑; Î2↑〉〉ω,T

ω
≡ 2πG0ωIm〈〈N̂1↑; N̂2↑〉〉ω,T , (5)
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where 〈〈· ; ·〉〉 denotes a retarded real frequency correlation function evaluated at equi-
librium and G0 = e2/h is the conductance quantum (h̄ = 1). The second equality in
Equation (5) follows from the equations of motion and is found to greatly improve the
accuracy of the numerical calculations [45]. Note that the system is not in proportionate
coupling, and so, correlated electron transport coefficients cannot be expressed in terms of
a Landauer-type formula [46] involving the dot spectral function.

In addition to the conductance, we explored the phase diagram and RG fixed points
(FPs) of the model using physical thermodynamical observables. We define the dot con-
tribution to a thermodynamic quantity Ω at temperature T as ΩD(T) = Ω(T)−Ω0(T),
where Ω(T) is calculated for the full lead–dot–lead system, while Ω0(T) is calculated
only for the free conduction electrons (without the dot pseudospin). For the entropy
SD(T), we used S(0) = −∂F(0)/∂T, with F(0) = −kBT ln Z(0) the free energy. Recently,
this entropy has been extracted experimentally in similar quantum dot devices by ex-
ploiting a Maxwell relation connecting the entropy change for a process to measurable
changes in the dot charge [33,47]. For the magnetic susceptibility kBTχD(T), we evaluated

kBTχ(0) = 〈(Ŝz
tot)

2〉(0) − (〈Ŝz
tot〉

(0)
)2 at zero field (δVg = 0), with Ŝz

tot the z-projection of the
total spin of the system. The role of particle–hole asymmetry will be assessed through the
conduction electron “excess charge” Nα = 〈N̂α〉 − 〈N̂α〉0 with N̂α = ∑σ N̂ασ. The dynamics
of the system are characterized by the channel-resolved T-matrix, which describes how
conduction electrons are scattered from the dot pseudospin. The T-matrix equation reads,

Gαβ(ω, T)−G0
αβ(ω) = G0

αα(ω)Tαβ(ω, T)G0
ββ(ω) , (6)

where Gαβ(ω, T) and G0
αβ(ω) are, respectively, the full and free retarded electronic Green’s

functions at the dot position. Due to decoherence between the QPCs (resulting in separately
conserved charge in each channel in Equation (3)), we have Gαβ,G0

αβ,Tαβ ∝ δαβ, and the

T-matrix equation becomes channel-diagonal. Furthermore, − 1
π ImG0

αα(ω) = ρ(ω) is the
free graphene DoS. In the following, we consider the spectrum of the T-matrix for channel
α, defined as tα(ω, T) = − 1

π ImTαα(ω, T).

Numerical Renormalization Group

The two-channel pseudogap charge-Kondo model, Equation (3), is solved using Wil-
son’s Numerical Renormalization Group (NRG) technique [3,48,49], which provides nu-
merically exact access to the physical quantities discussed in the previous section.

The first step is the logarithmic discretization of the conduction electron DoS and sub-
sequent mapping of Ĥleads to Wilson chains [3,48]:

Ĥleads → Ĥdisc
leads = ∑

α,σ

∞

∑
n=0

tn

(
f †
ασn fασn+1 + f †

ασn+1 fασn

)
. (7)

The dot then couples to the end of the Wilson chains, at site n = 0. The logarithmic
discretization is parameterized by Λ, with the continuum description being recovered
as Λ → 1 (in this work, we used a standard choice of Λ = 2.5). The key feature of
the Wilson chain is the behaviour of the hopping parameters tn. For the metallic flat
band, tn ∼ Λ−n/2 at large n [3]. This exponential energy-scale separation down the chain
justifies a numerical scheme based on iterative diagonalization and truncation: starting
from the dot, successive sites of the Wilson chain are coupled into the system, and this
intermediate Hamiltonian is diagonalized. Only the lowest MK eigenstates at iteration n
are used to construct the Hamiltonian at iteration n + 1. High-energy states discarded at
a given iteration do not affect the retained low-energy states at later iterations because
of the ever-decreasing couplings tn. This constitutes an RG procedure since the physics
of the system at successively lower energy scales is revealed as more Wilson orbitals are
added. The computational complexity is constant as new Wilson orbitals are added (rather
than exponentially growing) because the same number MK of states is kept at each step.
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Importantly, it was shown in [50] that although the detailed structure of the Wilson chain
coefficients is modified in the pseudogap DoS case, the energy scale separation down the
chain is maintained, and hence, the NRG can still be used in this case. We used the exact
graphene DoS in this work rather than a pure pseudogap and kept MK = 6000 states at
each iteration. Dynamical quantities were calculated using the full-density-matrix NRG
approach [49,51], established on the complete Anders–Schiller basis [52].

3. Results and Discussion

Having introduced the model and methods, we now discuss our NRG results in detail,
starting with an overview of the phase diagram, RG flow diagram, and fixed point analysis.
In the following, we confine our attention to the charge-degeneracy point δVg = 0. We also
introduce the channel-asymmetry parameter ∆ = J2/J1 ≡W2/W1 and discuss the physics
in the space of J ≡ J1, W ≡ W1, and ∆. Note that ∆ = 0 corresponds to the situation in
which channel α = 2 is decoupled on the level of the bare model, while for 0 < ∆ < 1,
both channels are coupled to the dot, but channel 1 couples more strongly. ∆ = 1 describes
the frustrated two-channel situation. We confine our attention to regime 0 ≤ ∆ ≤ 1, but it
should be noted that ∆ > 1 simply corresponds to stronger coupling for channel 2, and the
results follow from the duality 1↔ 2 and ∆↔ 1/∆. We also assumed W > 0.

3.1. Overview and Phase Diagram

The schematic RG flow diagram in the space of (J, W, ∆) shown in the left panel of
Figure 2 was deduced from non-perturbative NRG results and gives a good overview of
the physics of Equation (3). In the right panel, we show the quantitative phase diagram in
the (J, W) plane for different ∆, with the exact phase boundaries obtained with the NRG.

Figure 2. Left: RG flow diagram for the pseudogap 2CCK model Equation (3), in the space of effective
exchange coupling J, potential scattering W, and channel asymmetry ∆. Stable (unstable) FPs denoted
as blue (red) squares. ∆ = 0 (1) is the pure single-channel (frustrated two-channel) model. For an
explanation of the FPs, see the text. Right: Full NRG phase diagram for different ∆. The enclosed
region in each case is the Kondo-screened ASC phase (frustrated FASC for ∆ = 1); the exterior region
is the unscreened LM phase. The inset shows the asymptotic behaviour of phase boundaries; see
the text.

We first briefly recapitulate the results for the single-channel (1CK) case obtained here
for ∆ = 0 (see Figure 2: front plane in RG diagram on the left and turquoise line in the phase
diagram on the right). The basic physics are well known from previous studies of the r = 1
pseudogap Anderson and Kondo models [9,43,50,53–56], although note that our graphene
charge-Kondo setup gives a spin-anisotropic model, and we used the full graphene DoS
rather than a pure pseudogap. At W = 0, there is no Kondo effect: the symmetric strong
coupling (SSC) FP is unstable, and a finite potential scattering is required to screen the dot
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pseudospin. In this case, the system flows to weak coupling and eventually to the free local
moment (LM) FP with asymptotically decoupled conduction electrons. At finite W, an
LM phase with an emergent particle–hole symmetry can be realized, in which the dot and
leads decouple at low temperatures (that is, W, J → 0 under RG). However, at sufficiently
strong bare W, the model supports a QPT to an asymmetric strong coupling (ASC) Kondo
state, in which the dot pseudospin is screened and a single hole forms in the bath (that
is, W, J → ∞ under RG). However, the coupling J must overcome a critical threshold
value (for Equation (3) Jmin

CR ' 1.81D). For J < Jmin
CR , no Kondo state is possible at any

W. For J ≥ Jmin
CR , and the ASC FP is stable for W−CR(J) < W < W+

CR(J). In the lower
branch, we find W−CR(J) ∼ 1/J at large J � Jmin

CR , such that infinitesimal particle–hole
symmetry breaking W → 0 is required at large bare coupling J → ∞. Thus, although SSC
is unstable, the system can flow arbitrarily close to it, before ultimately crossing over to
either ASC or LM. The transition between ASC and LM is first-order [43,55] and controlled
by a particle–hole asymmetric critical FP denoted ACR. The full NRG phase boundary for
our model at ∆ = 0 is shown as the turquoise line in the right panel of Figure 2 and shows
an interesting re-entrant behaviour back into the LM phase at large W (we are not aware
of a detailed discussion of this in the literature, even though the same behaviour arises in
the regular spin-isotropic pseudogap Kondo model). This is physically intuitive since J
and W work antagonistically: at very large W, the bath orbital f1σ0 becomes depopulated,
and hence, the exchange coupling to that site J gets “switched off”. Perturbative arguments
suggest that the residual coupling to the f1σ1 bath orbital is then Jeff ∼ t2

0 J/W2, which is
consistent with W+

CR(J) ∼ J for the upper branch of the phase boundary. This is indeed
confirmed by NRG calculations.

The main focus of this paper is the situation when the coupling to the second channel
is switched on, ∆ > 0, where we find several differences from the pure 1CK case. We
discuss 0 < ∆ < 1 first. Importantly, we found that the same LM and ASC phases
are accessible, with ∆ flowing to zero under RG flow upon reducing the temperature or
energy scale. Therefore, even though both channels are initially coupled to the dot (at high
temperatures, we have a free channel degree of freedom α = 1, 2), any channel asymmetry
leads asymptotically to the decoupling of the less strongly coupled channel α = 2 (this
can be regarded as “channel freezing” at low temperatures). In the ASC phase, the dot
flows to strong coupling with the more strongly coupled channel α = 1, while in the LM
phase, channel α = 1 also eventually decouples, leaving a free dot pseudospin and free
conduction electrons. This is indicated by the flow arrows towards the front plane in the
RG diagram, Figure 2 (left).

However, at finite ∆, the topology of the phase diagram changes—see Figure 2 (right).
We still have a finite threshold value of the coupling to realize ASC physics, Jmin

CR (∆) > 0
(which increases slightly from ' 1.81D at ∆ = 0 up to ' 2.47D as ∆ → 1). However, the
critical phase boundary now also develops a finite threshold value of the potential scattering
Wmin

CR (∆) > 0 (which reaches its maximum value ' D as ∆ → 1). Even at strong bare
coupling J → ∞, a finite W is required to access the ASC phase. In fact, Wmin

CR occurs at an
intermediate value of J; at large J, we find W−CR ∼ J in the lower branch. For even larger
W, we again have re-entrant LM behaviour, with an upper branch of the phase boundary.
For ∆ > 0, we therefore have large-J behaviour W−CR(J, ∆) = a−(∆)J for the lower branch
and W+

CR(J, ∆) = a+(∆)J for the upper branch. Interestingly, a+ ≈ 1 independent of ∆,
while a− increases with increasing ∆, as shown in the inset to the right panel of Figure 2.
However, a−(∆)/a+ < 1 for all ∆ (the ratio reaches its maximum≈ 0.2 as ∆→ 1), meaning
that the upper and lower phase boundaries never cross, and the ASC phase persists out to
infinite J and W. The finite Wmin

CR also implies that there is no crossover from SSC to ASC
for ∆ > 0.

Finally, we examined the channel-frustrated case ∆ = 1 (see the middle plane of
Figure 2 (left) and the purple line of Figure 2 (right)). Here, symmetry dictates a channel
degeneracy down to T = 0, and therefore no channel freezing. We found that the model
supports an LM phase in which both channels flow symmetrically to weak coupling and
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to particle hole symmetry. However, the ASC FP is unstable since the Kondo effect and
conduction electron hole in ASC occur in only one of the two channels. Instead, we have a
frustrated asymmetric strong coupling (FASC) phase, with a free channel degree of freedom
(a doubled version of the ASC FP, with the Kondo effect and conduction electron hole
forming in either channel α = 1 or 2). The critical point separating LM and FASC in the
∆ = 1 plane is denoted FACR. The frustrated FPs are delicate because they sit precisely
on the separatrix between RG flow to states with dominant channel 1 for ∆ < 1 and flow
to states with dominant channel 2 for ∆ > 1. Any finite perturbation |1− ∆| relieves the
channel frustration and leads ultimately to channel freezing on the lowest energy scales.
This QPT is also first-order; FACR is therefore tricritical since it sits at the boundary between
LM, FASC, and ASC.

In Table 1, we summarize the FPs discussed above in relation to Figure 2, classifying
them according to their physical properties. These properties are extracted from the limiting
behaviour of the full thermodynamic and dynamic observables presented in the following.

Table 1. Classification of FPs according to their physical observables, with * denoting unstable FPs.

Asymmetry Fixed Point SD(T = 0) TχD(T = 0) N1 t1(ω, T → 0) GC(ω, T → 0)

∀∆ LM line ln 2 1/4 0 |ω| ω2

0 ≤ ∆ < 1 ASC 0 0 −1 |ω| ω2

0 ≤ ∆ < 1 ACR * ln 3 1/6 −1/3 1/ω ln2(λCR/ω) 0

∆ = 1 FASC * ln 2 0 −1/2 |ω| ω2

∆ = 1 FACR * ln 4 1/8 −1/4 1/ω ln2(λCR/ω) const

3.2. Thermodynamics and Fixed Points

The temperature dependence of the dot contribution to entropy SD(T) and magnetic
susceptibility TχD(T) are obtained from the NRG [48] and presented in Figure 3 for
different channel asymmetries ∆. We focused on the behaviour near the critical points by
fixing W and tuning J across the transition. From this, information on the fixed points
is deduced.
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Figure 3. Dot contribution to thermodynamic quantities for the graphene 2CCK model obtained
by the NRG. Top row entropy SD(T); bottom row: magnetic susceptibility TχD(T). Left, middle,
and right columns correspond to ∆ = 0 (pure 1CCK), ∆ = 0.8 (asymmetric 2CCK), and ∆ = 1
(symmetric 2CCK), respectively. Shown for fixed W = 2D, varying J across the QPT according to the
colour scale, with solid lines for J > JCR in the ASC (FASC) phase and dashed lines for J < JCR in the
LM phase. Orange lines show the behaviour at the ACR (FACR) critical point.
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3.2.1. Frozen Channel Degree of Freedom: 0 ≤ ∆ < 1

We first consider the regime 0 ≤ ∆ < 1 (left and middle columns of Figure 3). Solid
lines show the behaviour in the ASC phase for J > JCR, dashed lines for the LM phase with
J < JCR, and the orange line at the critical point J = JCR.

In the LM phase, SD = ln(2) and TχD = 1
4 at T = 0 in all cases, characteristic of the

asymptotically free spin- 1
2 dot pseudospin. The excess conduction electron charge (not

shown) is zero in both channels, suggesting an emergent particle–hole symmetry. This is
confirmed by the analysis of the NRG many-particle level spectrum (finite size spectrum)
at the LM FP, which is identical to that of the free leads. The dot remains unscreened in LM
because of the depleted conduction electron DoS at low energies in graphene [9]. The FP
Hamiltonian in the LM phase is therefore given by

ĤLM = Ĥ2CCK with J1 = J2 = W1 = W2 = Vg = 0 (8)

In the ASC phase at T = 0, we see quenched dot entropy SD = 0 and TχD = 0 in
all cases, characteristic of Kondo singlet formation. However, the conduction electron
excess charge is N1 = −1 and N2 = 0 (for W > 0), implying hole formation in the more
strongly coupled channel α = 1 (W1 → ∞ under RG), while the less strongly coupled
channel α = 2 recovers an effective low-energy particle–hole symmetry (W2 → 0 under
RG). This suggests the screening mechanism in the generic two-channel case: as W1 grows
under RG, the f1σ0 Wilson orbital becomes depopulated, thereby generating an effective
coupling between the dot pseudospin and the Wilson f1σ1 orbital, Jeff ∼ t2

0 J1/W2
1 . However,

the DoS of the f1σ1 orbital is modified by the hole forming at the n = 0 site. With ρ(ω) ≡
− 1

π Im〈〈 f1σ0; f †
1σ0〉〉 ∼ |ω| at low energies, we find ρeff(ω) ≡ − 1

π Im〈〈 f1σ1; f †
1σ1〉〉 ∼ 1/|ω|

at low energies. Therefore, even though Jeff is perturbatively small, the effective DoS is
strongly enhanced. The effective dimensionless RG flow parameter j1 = ρeff Jeff grows
under RG and leads to Kondo screening of the dot. The Kondo scale for this process is
strongly enhanced because of the diverging effective DoS [57], and we find in practice
that throughout the ASC phase, TK ∼ D (since Jmin

CR > D). However, no hole forms in the
weakly coupled channel, and so, j2 = ρJ2 remains small due to the depleted bare DoS in
channel 2 and flows under RG to weak coupling. This argument shows that the Kondo
singlet must form in the same channel in which the hole forms. This was confirmed by the
analysis of the NRG level spectrum.

In general, we therefore have two distinct ASC phases and two distinct ASC fixed
points, depending on whether ∆ < 1 or ∆ > 1. For ∆ < 1, the hole–singlet complex forms
in channel α = 1, and channel α = 2 decouples (FP denoted ASC1), while for ∆ > 1 (ASC2),
it is the other way around. The ASCα FP Hamiltonian obtained when channel α is more
strongly coupled reads

Ĥα
ASC = Ĥleads + Jα

(
Ŝ+

D f †
α↓1 fα↑1 + Ŝ−D f †

α↑1 fα↓1
)
+ Wα ∑

σ

f †
ασ0 fασ0 with Jα, Wα → ∞ . (9)

We now consider the situation in the close vicinity of the QPT, by fixing W and tuning
J. At the critical point itself (orange line, J = JCR), we found SD = ln(3) and TχD = 1

6 at
T = 0. This suggests a level-crossing transition in which the critical FP ACR comprises
uncoupled sectors corresponding to LM and ASC. This gives an overall dot ground state
degeneracy of 2 + 1 = 3 states (2 for LM, 1 for ASC) consistent with the ln(3) entropy and a
magnetic susceptibility ( 1

4 + 1
4 + 0)/3 = 1

6 (corresponding to the average of (Sz)2 for these
three degenerate states). This is further supported by the conduction electron excess charge
N1 = − 1

3 , since a single hole appears in channel 1 for only one of the three degenerate
ground states (and N2 = 0 for the decoupled free channel 2). The first-order transition is
also consistent with the linear crossover scale T∗ ∼ |J − JCR|, describing the flow from ACR
to either LM or ASC due to a small detuning perturbation. This scale is evident in Figure 3
by the sequence of lines for different (J − JCR). Indeed, one can cross the QPT by fixing
J and tuning W through WCR, which also gives a linear scale T∗. We also checked this
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behaviour along the entire critical phase boundary lines (JCR, WCR) in Figure 2 for different
∆. We find,

T∗ = b|J − JCR|+ c|W −WCR| , (10)

where b ≡ b(JCR, WCR, ∆) and c ≡ c(JCR, WCR, ∆). This implies a universal scaling in terms
of a single reduced parameter T/T∗, independent of the combination of bare perturbations
that act. The FP Hamiltonian describing the critical point is,

Ĥα
ACR =

(
1 + τ̂z

2

)
ĤLM +

(
1− τ̂z

2

)
Ĥα

ASC . (11)

where the α label denotes the more strongly coupled lead with which the dot forms the
Kondo effect in ASC and τ̂z is a Pauli-z operator. In Equation (11), τz = +1 gives the doubly
degenerate LM ground state (ĤLM given in Equation (8)), while τz = −1 gives the ASC
ground state (ĤASC given in Equation (9)). At the ACR FP, the three many-body ground
states are degenerate and uncoupled (τ̂ has no dynamics). Since ACR is unstable, we also
consider the leading RG-relevant perturbations to the FP Hamiltonian, δĤα

ACR ∼ T∗τ̂z,
which has the effect of biasing towards either the LM or ASC ground states on the scale
of T∗.

The qualitative behaviour of the thermodynamics shown in Figure 3 for ∆ = 0 and
∆ = 0.8 is similar, but it should be noted that both channels are involved for ∆ 6= 0 at
finite temperatures. However, the less strongly coupled channel decouples asymptotically
because finite 0 < ∆ < 1 flows to ∆ = 0 under RG upon reducing the temperature or
energy scale (see Figure 2 (left)).

3.2.2. Frustrated Channel Degree of Freedom: ∆ = 1

We turn now to the frustrated case ∆ = 1, with pristine channel symmetry—see
Figure 3, right column. Although the T = 0 entropy is SD = ln(2) everywhere except on
the phase boundary (top right panel of Figure 3), the origin of the ground state degeneracy
is different in the two phases separated by it. In the LM phase (realized for J < JCR), we
again have a free dot pseudospin decoupled from two symmetric baths of free conduction
electrons; the ln(2) entropy here derives from the free dot pseudospin- 1

2 degree of freedom.
This is confirmed by the magnetic susceptibility in this phase, which reaches TχD = 1

4
(dashed lines, bottom right panel of Figure 3). The other phase (realized for J > JCR) is
described by the FASC FP: due to the channel symmetry, the ASC state can form in either
channel α = 1, 2. The ln(2) entropy in this case derives from the free channel degree of
freedom [37], which embodies the choice of forming the hole–singlet complex of ASC with
either of the two channels. This is reflected in the T = 0 value of TχD = 0 in the FASC
phase (solid lines, bottom right panel of Figure 3), since the dot pseudospin is Kondo
screened in both of the degenerate ground states. Furthermore, we found that the average
conduction electron excess charge in FASC is Nα = 1

2 for both channels—that is, a single
hole forms, with equal probability to be in either channel 1 or 2.

A Kondo strong coupling state involving both channels simultaneously is not stable.
To see this, consider two holes forming symmetrically in the f1σ0 and f2σ0 Wilson n = 0
orbitals (W1 = W2 → ∞) and effective Kondo couplings J1,eff = J2,eff → ∞ between the dot
pseudospin and the residual Wilson n = 1 orbitals f1σ1 and f2σ1, which have an effective
DoS ρeff(ω) ∼ 1/|ω|—a channel symmetric version of the usual hole–singlet mechanism
in ASC as described in the previous section. However, the dot entropy is not quenched in
this case, since the ground state of the complex is a spin-doublet. This effective doublet
state couples to the Wilson n = 2 orbitals f1σ2 and f2σ2. However, since the DoS of these
sites is again ∼ |ω|, the effective local moment cannot be screened, and the system flows to
the LM FP. The dot pseudospin can only be screened by an asymmetric ASC state. Channel
symmetry is restored by having two such degenerate states, one in each channel.
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The FASC FP Hamiltonian comprises a combination of Ĥ1
ASC and Ĥ2

ASC from Equation (9),
controlled by an emergent channel degree of freedom α̂:

ĤFASC =

(
1 + α̂z

2

)
Ĥ1

ASC +

(
1− α̂z

2

)
Ĥ2

ASC . (12)

Here, α̂z is a Pauli-z operator that selects ASC1 when αz = +1 and ASC2 when αz = −1.
Restricting to the symmetric ∆ = 1 plane, FASC is stable. However, there is an instability
with respect to breaking channel symmetry (not shown), since then, either ASC1 or ASC2

will be selected on the lowest energy scales. A finite perturbation |1− ∆| generates a flow
from FASC to ASC1 or ASC2; from the NRG, we found that this QPT is also first-order.
The low-energy scale determining the crossover is T∆ ∼ |1− ∆|. This can be captured
in the effective model by including the leading RG-relevant perturbation to the FASC FP,
δĤFASC ∼ T∆α̂z.

Finally, we considered the quantum critical point in the ∆ = 1 plane between LM and
FASC. Here, we found a level-crossing (first-order) transition, with entropy SD = ln(4) and
magnetic susceptibility TχD = 1

8 at the FACR FP [37], which derives from the composition
of uncoupled LM and FASC sectors. We have two spin- 1

2 states from the LM degenerating
with two spin-singlet states with a free channel degree of freedom in FASC. The excess
conduction electron charge is therefore Nα = − 1

4 per channel. We describe the FACR FP
with the Hamiltonian:

ĤFACR =

(
1 + τ̂z

2

)
ĤLM +

(
1− τ̂z

2

)
ĤFASC , (13)

where ĤLM is given in Equation (8) and ĤFASC in Equation (12), and we introduced the
operator τ̂z to distinguish the sectors, similar to Equation (11). As with ACR, the FP is
destabilized by RG-relevant detuning perturbations that favour either LM of FASC, which
collectively generate the scale T∗ given in Equation (10). This leads to an FP correction
δĤ∗FACR ∼ T∗τ̂z. This is shown by the sequence of lines in the right column of Figure 3.
However, FACR is also destabilized by relieving the channel frustration through the
perturbation |1− ∆|, which generates the scale T∆, since FACR contains an FASC sector
with this instability. Therefore, FACR has a second RG relevant correction δĤ∆

FACR ∼ T∆α̂z.
FACR is in this sense tricritical since it sits between LM, FASC, and ASC.

3.3. Dynamics and Transport

We now discuss the low-temperature behaviour of the scattering T-matrix and linear
response AC electrical conductance in the graphene 2CCK device—see Figure 4. We first
considered the T = 0 spectrum of the T-matrix as a function of energy in the top row of
Figure 4, for the channel asymmetric case ∆ = 0.8 (left) and frustrated case ∆ = 1 (right).
In all cases, we identified an emergent low-energy scale λ (which is ≈ 10−4D for the
parameters chosen), which characterizes the RG flow through a crossover behaviour in the
pseudogap dynamics [37,43].

Deep in the LM phase (blue solid and dotted lines), the bare potential scattering W
modifies the bare conduction electron pseudogap DoS of graphene ρ(ω) ∼ |ω|, to give
an effective DoS ρeff(ω) ∼ 1/|ω| (π/2 phase shift) up to logarithmic corrections. This
produces leading behaviour in the T-matrix tα(ω, 0) ∼ 1/|ω|, as seen in Figure 4 for
|ω| � λ. However, under RG, W → 0 in the LM phase; this flow is controlled by the
scale λ. Therefore, on the scale of λ, the effective DoS returns to ∼ |ω| (zero phase shift),
and hence, tα(ω, 0) ∼ |ω| for |ω| � λ. Since the emergent particle–hole symmetry in the
LM phase occurs in both channels for any ∆, we see the same behaviour for t1(ω, 0) and
t2(ω, 0) for both ∆ = 0.8 and 1.
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Figure 4. NRG results for dynamics and transport in the graphene 2CCK model at T = 0. Top row:
channel-resolved spectrum of the T-matrix tα(ω, 0). Bottom row: linear response AC electrical
conductance GC(ω, 0). Left: channel asymmetry ∆ = 0.8; right: frustrated case ∆ = 1. Model
parameters: J/D = 10 with W/D = 1 (LM); 12 (ASC); 12 (FASC); '8.605 (ACR); '8.572 (FACR).

In the ASC phase for ∆ = 0.8, the weakly coupled channel α = 2 shows the same
behaviour as LM since it decouples from the dot and gains particle–hole symmetry. For the
strongly coupled channel α = 1, we have the hole–singlet mechanism in which both the
effective W, J → ∞. Counterintuitively, we again see similar dynamical behaviour as for
LM. This is because, for |ω| � λ, we have a developing conduction electron hole, which
gives t1(ω, 0) ∼ 1/|ω|, while for |ω| � λ, the Kondo singlet forming with the n = 1
Wilson orbital effectively removes a second site from the bath. The remaining conduction
electrons experience a π phase shift from the modified boundary, and the effective DoS
is back to ∼ |ω|. Therefore, in ASC, we also have t1(ω, 0) ∼ |ω| for |ω| � λ. That we
have identical behaviour for ∆ = 1 (in both channels) confirms that FASC is indeed a
superposition of ASC1 and ASC2, as argued above.

On the lowest energy scales, we have tα(ω, 0) ∼ |ω| in both channels, at any ∆, and in
either phase. Given the bare DoS ρ(ω) ∼ |ω|, this confirms that both phases are regular
Fermi liquids, with well-defined (long-lived) quasiparticles [2,43,55].

More interesting is the behaviour at the critical point (F)ACR, since here, we have both
spin and charge fluctuations associated with the degenerate LM and (F)ASC ground states.
A new dynamical scale is generated, λCR ∼ λ2/D (≈ 10−8D for the chosen parameters),
which characterizes the low-energy RG flow [37,43]. We found from the NRG that in the
channel-asymmetric graphene 2CCK model (e.g., at ∆ = 0.8, as shown), the T-matrix of
the more strongly coupled channel α = 1 diverges at low energies. Specifically, t1(ω, 0) ∼
1/[|ω/λCR| × ln2(|ω/λCR|)] as |ω| → 0 (solid green lines in the top panels of Figure 4) [58],
indicating that ACR is an NFL FP. The dynamical crossover, and hence the minimum in
t1(ω, 0), occurs on the scale of |ω| ∝ λCR. However, the weakly coupled channel α = 2 has
FL correlations t2(ω, 0) ∼ |ω| as |ω| → 0 (dotted green lines), confirming that it decouples
from the critical complex formed from the dot and channel 1. In the frustrated case ∆ = 1,
both channels behave identically—and both exhibit the same NFL critical divergence at
low energies. This again suggests that FACR comprises two copies of ACR, one in each
channel. The enhanced conduction electron scattering at the critical point has implications
for the conductance, as now shown.
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In the bottom row of Figure 4, we plot the T = 0 dynamical AC conductance as a
function of AC driving frequency ω, for the same set of systems. The DC conductance
was obtained in the ω → 0 limit, which we considered first. In the charge-Kondo system,
series transport proceeds by the following mechanism: an electron tunnels from the source
lead onto the dot (say at QPC α = 1), thus flipping the dot charge pseudospin from ⇓ to ⇑.
A second electron then tunnels from the dot to the drain lead (at QPC α = 2), thus flipping
the dot charge pseudospin back to ⇓ and “resetting” the device, ready for the transport
of another electron. A bias voltage between the source and drain produces a net current
flow. The amplitude for such a process depends on the conduction electron density of
states ρ(ω) and the tunnelling rate at the QPCs. For graphene, we have ρ(ω) ∼ |ω| at
low energies, suggesting that the low-temperature DC conductance should vanish, since
there are not enough low-energy electrons in the graphene leads to tunnel through the
nanostructure. On the other hand, the tunnelling rate gets renormalized by the interactions
(the energy-dependent scattering at the QPCs is characterized by the T-matrices discussed
above). Indeed, strong renormalization of the bare QPC transmission at low temperatures
due to Kondo physics was measured experimentally in the metallic leads version of the
present system in [30].

The measured DC conductance of the graphene 2CCK involves a subtle interplay
between the conduction electron DoS and interaction-renormalized scattering rates. We
expect the T = 0 DC conductance to vanish in all channel-asymmetric systems because the
less strongly coupled channel always decouples on the lowest energy scales. Both leads
must remain coupled to ensure a finite series current. This is indeed seen in the ω → 0
limit of each of the curves in the bottom left panel of Figure 4 for ∆ = 0.8. However, in the
frustrated (channel-symmetric) case ∆ = 1, both channels remain coupled down to T = 0.
Although the scattering rates and bare DoS both vanish as ∼ |ω| in the LM and FASC
phases, implying a suppression of DC conductance, at the critical point FACR, the electronic
scattering diverges as |ω| → 0. We found from the NRG that these effects conspire to give
a finite linear DC conductance in this case—see the green line in the bottom right panel
of Figure 4.

For an AC bias, the conductance is measured as a function of the driving frequency ω.
Conductance resonances are expected when the AC frequency matches the QPC tunnelling
rate. At high energies, the pseudospin flip rate in the 2CCK model is given by the bare
J (or effective Jeff). We therefore expect to see a peak in the AC conductance when |ω| ∼
J, Jeff; this is observed from NRG results in the LM, ASC, and FASC phases in Figure 4.
However, at low energies |ω| � λ, the pseudospin flip rate is renormalized, and we found
GC(ω, 0) ∼ ω2 in these cases, independent of ∆. At the critical point ACR for 0 < ∆ < 1,
both charge and spin fluctuations give an enhanced AC conductance around |ω| ∼ λ.
However, channel α = 2 decouples for |ω| � λ, and so, the conductance also decays at
low frequencies. We found from the NRG a slow attenuation GC(ω, 0) ∼ −1/ ln |ω| in
this regime. However, in the channel-symmetric case ∆ = 1 at the critical point FACR,
GC(ω, 0) ∼ const. for |ω| � λCR. The finite dynamical conductance here persists down to
the DC limit. This is the smoking gun signature of the NFL-frustrated critical point in the
graphene 2CCK system.

4. Conclusions and Outlook

In this paper, we proposed a charge-Kondo quantum dot device made from graphene
components. The novel feature of such a system is that it realizes a linear-pseudogap
two-channel Kondo model in a tunable nanoelectronics circuit. This exotic system has a
complex phase diagram in the space of dot–lead coupling strength, potential scattering,
and channel asymmetry, which we analysed in detail using the NRG. In particular, we
uncovered a channel-frustrated Kondo phase, with a non-Fermi liquid quantum critical
point at the first-order quantum phase transition. Despite the depleted electronic density
of the neutral graphene leads at low energies, critical fluctuations give rise to diverging
scattering rates at the critical point, which produce a finite conductance even as T → 0.
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The model supports other interesting, but as-yet unexplored regimes. We confined
our attention to the dot charge degeneracy point δVg = 0; however, finite δVg appears in
the effective model like a magnetic field on the dot pseudospin. One could also investigate
the effect of doping/gating the graphene so that the Fermi level is not at the Dirac point.
This will give rise to a quantum phase transition between metallic 2CK and pseudogap
2CK. Other physical quantities could also be investigated, such as thermoelectric transport
upon including a temperature gradient between leads.

The pseudogap 2CCK model we studied theoretically here is likely a simplified
description of any real graphene charge-Kondo nanoelectronics device. There may be
complexities and subtleties in an experimental realization that were not included in our
model or analysis. For example, we assumed that the conduction electrons on both the
leads and dot have the same DoS. In particular, gate voltage tuning of the dot to achieve
charge-degeneracy, and the addition of the decoherer, may affect the dot electronic DoS.
However, we do not expect our basic results to be qualitatively modified by this because
the Kondo exchange interaction derives from energy-dependent QPC transmission τ(ω),
and hence involves the DoS of both the lead and dot. Therefore, even if only the lead DoS
is pseudogapped at low energies, an effective pseudogap Kondo model should still result.
To make a quantitative connection to experiments, such effects would have to be taken into
account, as well as the possible involvement of more than just two dot charge states (that
is, relaxing the condition T � EC). We believe the predicted conductance signature of the
frustrated quantum critical point should however still be observable in experiments.
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