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Abstract One life-threatening outcome of cardiovascular disease is myocardial infarction, where

cardiomyocytes are deprived of oxygen. To study inter-individual differences in response to

hypoxia, we established an in vitro model of induced pluripotent stem cell-derived cardiomyocytes

from 15 individuals. We measured gene expression levels, chromatin accessibility, and methylation

levels in four culturing conditions that correspond to normoxia, hypoxia, and short- or long-term re-

oxygenation. We characterized thousands of gene regulatory changes as the cells transition

between conditions. Using available genotypes, we identified 1,573 genes with a cis expression

quantitative locus (eQTL) in at least one condition, as well as 367 dynamic eQTLs, which are

classified as eQTLs in at least one, but not in all conditions. A subset of genes with dynamic eQTLs

is associated with complex traits and disease. Our data demonstrate how dynamic genetic effects

on gene expression, which are likely relevant for disease, can be uncovered under stress.

Introduction
Cardiovascular disease (CVD), which ultimately damages heart muscle, is a leading cause of death

worldwide (WHO, 2018). CVD encompasses a range of pathologies including myocardial infarction

(MI), where ischemia or a lack of oxygen delivery to energy-demanding cardiomyocytes results in cel-

lular stress, irreparable damage, and cell death. Genome-wide association studies (GWAS) have

identified hundreds of loci associated with coronary artery disease (Nikpay et al., 2015), MI, and

heart failure (Shah et al., 2020), indicating the potential contribution of specific genetic variants to

disease risk. Most disease-associated loci do not localize within coding regions of the genome, often

making inference about the molecular mechanisms of disease challenging. That said, because most

GWAS loci fall within non-coding regions, these variants are thought to have a role in regulating

gene expression. One of the main goals of the Genotype-Tissue Expression (GTEx) project has been

to bridge the gap between genotype and organismal level phenotypes by identifying associations

between genetic variants and intermediate molecular level phenotypes such as gene expression lev-

els (GTEx Consortium et al., 2017). The GTEx project has identified tens of thousands of expression

quantitative trait loci (eQTLs); namely, variants that are associated with changes in gene expression

levels, across dozens of tissues including ventricular and atrial samples from the heart. However, the

eQTLs reported by GTEx explain a modest proportion of GWAS loci, and while increasing the diver-

sity of tissues and sample sizes will enable further insight, orthogonal approaches also need to be

considered.
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It is becoming increasingly evident that many genetic variants that are not associated with gene

expression levels at steady state, may be found to impact dynamic programs of gene expression in

specific contexts. This includes specific developmental stages (Cuomo et al., 2020; Strober et al.,

2019), or specific exposure to an environmental stimulus such as endoplasmic reticulum stress

(Dombroski et al., 2010), hormone treatment (Maranville et al., 2011), radiation-induced cell death

(Smirnov et al., 2012), vitamin D exposure (Kariuki et al., 2016), drug-induced cardiotoxicity

(Knowles et al., 2018), and response to infection (Alasoo et al., 2018; Barreiro et al., 2012;

Çalışkan et al., 2015; Kim-Hellmuth et al., 2017; Manry et al., 2017; Nédélec et al., 2016). The

studies of context-specific dynamic eQTLs highlight the need to determine the effects of genetic var-

iants in the relevant environment. Therefore, if we are to fully understand the effects of genetic varia-

tion on disease, we must assay disease-relevant cell types and disease-relevant perturbations. Most

of the aforementioned studies were performed in whole blood or immune cells, which means that

there are many cell types and disease-relevant states that have yet to be explored.

With advances in pluripotent stem cell technology, we can now generate otherwise largely inac-

cessible human cell types through directed differentiation of induced pluripotent stem cells (iPSCs)

reprogrammed from easily accessible tissues such as fibroblasts or B-cells. One of the advantages of

iPSC-derived cell types as a model system is that the environment can be controlled, and thus we

can specifically test for genetic effects on molecular phenotypes in response to controlled perturba-

tion. This is particularly useful for studies of complex diseases such as CVD, which result from a com-

bination of both genetic and environmental factors.

The heart is a complex tissue consisting of multiple cell types, yet the bulk of the volume of the

heart is comprised of cardiomyocytes (Donovan et al., 2019; Pinto et al., 2016), which are particu-

larly susceptible to oxygen deprivation given their high metabolic activity. iPSC-derived cardiomyo-

cytes (iPSC-CMs) have been shown to be a useful model for studying genetic effects on various

cardiovascular traits and diseases, as well for studying gene regulation (Banovich et al., 2018;

Benaglio et al., 2019; Brodehl et al., 2019; Burridge et al., 2016; de la Roche et al., 2019;

Ma et al., 2018; McDermott-Roe et al., 2019; Panopoulos et al., 2017; Pavlovic et al., 2018;

Ward and Gilad, 2019).

In humans, coronary artery disease can lead to MI (Dzau et al., 2006) which results in ischemia

and a lack of oxygen delivery to energy-demanding cardiomyocytes. Given the inability of cardio-

myocytes to regenerate, this cellular stress ultimately leads to tissue damage. Advances in treatment

for MI, such as surgery to restore blood flow and oxygen to occluded arteries, have improved clinical

outcomes. However, a rapid increase in oxygen levels post-MI can generate reactive oxygen species

leading to ischemia-reperfusion (I/R) injury (Giordano, 2005). Both MI and I/R injury can thus ulti-

mately influence the amount of damage in the heart. iPSC-CMs allow us to mimic the I/R injury pro-

cess in vitro by manipulating the oxygen levels that cardiomyocytes are exposed to in vivo.

We thus designed a study aimed at developing an understanding of the genetic determinants of

the response to a universal cellular stress, oxygen deprivation, in a disease-relevant cell type, mim-

icking a disease-relevant process. To do so, we established an in vitro model of oxygen deprivation

(hypoxia) and re-oxygenation in a panel of iPSC-CMs from 15 genotyped individuals

(Banovich et al., 2018). We collected data for three molecular level phenotypes: gene expression,

chromatin accessibility, and DNA methylation to understand both the genetic and regulatory

responses to this cellular stress. This framework allowed us to identify eQTLs that are not evident at

steady state, and assess their association with complex traits and disease.

Results
We differentiated iPSC-CMs from iPSCs of 15 Yoruba individuals that were part of the HapMap proj-

ect (Banovich et al., 2018). To obtain a measure of variance associated with the differentiation pro-

cess, and to more effectively account for batch effects, we replicated the iPSC-CM differentiation

from three individuals three times, yielding 21 differentiation experiments in total. The proportion of

iPSC-CMs in each cell culture was enriched by metabolic purification (see Materials and methods).

On Day 20, cardiomyocyte differentiation cultures from each individual were split into sub-cultures

for each of the four subsequent oxygen conditions and for assessment of cardiomyocyte purity (Fig-

ure 1—figure supplement 1). iPSC-CMs were matured by electrical pulsing and maintenance in cell

culture for 30 days. On Day 30 (+/- 1 day), the median cardiomyocyte purity from one representative
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sub-culture across individuals was 81% (40–97% range), determined by flow cytometry as the pro-

portion of cells that were positive for the cardiac-specific marker, TNNT2 (Figure 1—figure supple-

ment 2; Supplementary file 1; see Materials and methods).

We studied the response of the iPSC-CMs to hypoxia and re-oxygenation (Figure 1A). To do so,

we first cultured the iPSC-CMs at oxygen levels that are close to physiological oxygen levels (10%

oxygen - Condition A) for 7 days. We then subjected the iPSC-CMs to 6 hours of hypoxia (1% oxy-

gen - Condition B), followed by re-oxygenation for 6 hours (10% oxygen - Condition C), or 24 hours

(10% oxygen - Condition D) as previously described (Ward and Gilad, 2019). Oxygen levels were

reproducibly controlled in cell culture (Figure 1B, Supplementary file 1). In order to determine

whether the cardiomyocytes were affected by the changes in oxygen levels, we measured the enzy-

matic activity of released lactate dehydrogenase throughout the experiment, as a proxy for cytotox-

icity. We also measured released BNP, a clinical marker of heart failure (Maeda et al., 1998). As

expected, both cytotoxicity (p=0.01, Figure 1—figure supplement 3A–B) and BNP (p=5�10�6, Fig-

ure 1—figure supplement 3C) levels increased following hypoxia and long-term re-oxygenation.

With this system established, we sought to understand the contribution of the global gene regu-

latory response to the molecular and cellular response to hypoxia and re-oxygenation. To do so, we

collected global gene expression data (using RNA-seq; n = 15 individuals), chromatin accessibility

data (using ATAC-seq; n = 14), and DNA methylation data (using the EPIC arrays; n = 13;

Figure 1C) in each condition. With these data we studied both the gene regulatory response to oxy-

gen perturbation, as well as the interaction of the response with the underlying genotype of the

assayed individuals.
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Figure 1. Study design to test the response of iPSC-derived cardiomyocytes to hypoxia and re-oxygenation. (A) Experimental design of the study.

Cardiomyocytes differentiated from iPSCs (iPSC-CMs) from 15 Yoruba individuals were cultured in normoxic conditions (10% oxygen - condition A,

brown) and subjected to 6 hr of hypoxia (1% oxygen - condition B, blue) followed by 6 and 24 hr of re-oxygenation (10% oxygen - conditions C [coral]

and D [red]). Immunocytochemistry of a representative cardiomyocyte culture where green: TNNT2; blue: nuclei. (B) Peri-cellular oxygen levels of each

condition. Each data point represents one individual undergoing the oxygen stress experiment. (C) Molecular phenotypes collected from each

individual in each condition.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Experimental design.

Figure supplement 2. Purity of cardiomyocyte cultures.

Figure supplement 3. iPSC-CMs elicit a response to cellular stress.
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Gene expression changes in response to hypoxia and re-oxygenation
We first sought to identify those genes important for regulating the response by analyzing the gene

expression (RNA-seq) data. We processed samples in batches as described in Supplementary file 1

and mapped and filtered sequencing reads to prevent allelic mapping biases (Figure 2—figure sup-

plement 1; Supplementary file 1; see Materials and methods; van de Geijn et al., 2015). We

observed that one sample (18852A) was a clear outlier when comparing read counts for 18,226 auto-

somal genes across all samples, and thus excluded it from further analysis (Figure 2—figure supple-

ment 2). We filtered out genes with low expression levels (see Materials and methods) to yield a

final set with data from 12,347 expressed genes (see Materials and methods). We performed a num-

ber of correlation-based analyses using the data from the technical replicates (Figure 2—figure sup-

plement 3), and confirmed that the quality of the data is high and that, in line with our flow

cytometry data, our iPSC-CMs express a range of cardiomyocyte marker genes across conditions

including MYH7 and TNNT2 (Figure 2—figure supplement 4).

We took advantage of the fact that we have replicate experiments from three individuals to cor-

rect the data for unwanted variation (see Materials and methods; Risso et al., 2014). Following this

procedure, our samples clustered both by oxygen level and individual (Figure 2—figure supple-

ment 5). To identify genes that respond to hypoxia and re-oxygenation, we first tested for differen-

tial expression between pairs of conditions using a linear model with a fixed effect for ‘condition’, a

random effect for ‘individual’, and four unwanted factors of variation, learned from the data, as cova-

riates. At an FDR of 10%, we identified thousands of genes that are differentially expressed between

conditions (A vs. B = 4,983, B vs. C = 6,311; B vs. D = 6,792; A vs. D = 2,835; Figure 2 and Fig-

ure 2—figure supplement 6A). In order to identify a single set of genes which respond to hypoxia

across conditions, we used Cormotif (Wei et al., 2015) to jointly model pairs of tests. This approach

led to the classification of 2,113 genes (17% of all expressed genes) as responding to hypoxia, which

we term ‘response genes’ (Figure 2, Figure 2—figure supplement 6B–C), and 9,949 genes that do

not change their expression level throughout the experiment which we term ‘non-response genes’.

Response genes are enriched for genes previously identified to respond to hypoxia in a Caucasian

population of individuals (Chi-squared test; p<2.2�10�16; Ward and Gilad, 2019), and are highly

enriched for gene ontologies in transcription-related processes (see Materials and methods, modi-

fied Fisher’s exact test; p=1�10�19).

Dynamic eQTLs are revealed following hypoxia
Having established that oxygen stress initiates a transcriptional response affecting thousands of

genes, we sought to identify eQTLs, either before or after oxygen stress. Using the combined haplo-

type test (CHT), an approach that leverages allele-specific information in small sample sizes

(see Materials and methods; van de Geijn et al., 2015), we identified 1,886 SNPs which associate

with gene expression (eSNPs) in at least one condition resulting in 1,573 genes with eQTLs (eGenes)

in at least one condition (q-value <0.1; A: 613; B: 564; C: 564 and D: 464; Figure 3A–B;

Supplementary file 2). Given that cardiomyocytes were split from a single differentiation culture for

each condition, we do not expect cell composition to bias the identification of eQTLs in each condi-

tion. Indeed, the distribution of eQTL effect sizes is similar across conditions (Figure 3—figure sup-

plement 1A), and the eQTL effect size values are correlated across conditions (Figure 3—figure

supplement 1B). In addition, we included the same number of individuals in each condition, RNA

extraction batches included all conditions from a given individual, RIN scores are similar across con-

ditions, and the number of sequencing reads are similar across conditions (Supplementary file 1).

Together, these results suggest that our overall power to detect eQTLs is similar across conditions.

We refer to the 613 eGenes identified in condition A as ‘baseline eGenes’.

Our goal was to identify dynamic eQTLs, which are either revealed or suppressed as the cells

transition between conditions. Due to the small sample size of our study, we have incomplete power

to detect eQTLs in any condition; thus, a naive comparison of eQTLs classified as ‘significant’ across

conditions will result in an over-estimation of the number of dynamic eQTLs. Indeed, the p-values of

genes whose expression levels are not significantly associated with a SNP in any condition deviate

from the expected uniform distribution (Kolmogorov–Smirnov test; p<2.2�10�16; Figure 3—figure

supplement 2A). To address this challenge, we first considered eQTLs identified using a q-value <0.1

in at least one condition, and visualized the p-value distributions of the corresponding eQTL
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associations in all other conditions. These p-value distributions are expected to be uniform if we had

complete power to detect eQTLs in any condition (because in that theoretical case, even a naive

comparison of eQTLs classified as ‘significant’ across conditions will result in the identification of

true condition-specific eQTLs). Due to incomplete power, this is clearly not the case (KS test;

p<2.2�10�16; Figure 3—figure supplement 2B); however, this distribution allowed us to choose a

lenient secondary p-value-based cutoff, where values deviate from the uniform distribution, to clas-

sify dynamic QTLs (p=0.15; Figure 3—figure supplement 2B).
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Figure 2. Thousands of gene expression changes occur following hypoxia and re-oxygenation. (A) Volcano plots representing genes that are

differentially expressed (DE) between pairs of conditions (orange dots). (B) Bayesian information criterion (BIC) at increasing numbers of Cormotif

correlation motifs following joint modeling of pairs of tests. Genes with a posterior probability of being differentially expressed p>0.5 across all tests

are defined as ‘response genes’ and those with p<0.5 as ‘non-response genes’. Inset shows the proportion of all expressed genes that are classified as

response genes (green), and non-response genes (magenta). (C) Expression levels of JUN, a response gene, during the course of the experiment. (D)

Expression levels of ACTN1, a non-response gene.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. RNA integrity is similar across conditions.

Figure supplement 2. Correlation of read counts across samples.

Figure supplement 3. Correlation of gene expression measurements across samples.

Figure supplement 4. Cardiomyocyte marker genes are expressed in iPSC-CMs.

Figure supplement 5. RNA-seq samples cluster by oxygen level and individual.

Figure supplement 6. Hypoxia and re-oxygenation induces a gene expression response.
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We specifically focused on two dynamic scenarios. First, we defined suppressed eQTLs, as eQTLs

that are identified in condition A at a q-value <0.1 but not in any of the other conditions, with a

p-value greater than 0.15 (37 instances; Figure 3C). Second, we defined induced eQTLs as eQTLs

identified in conditions B, C, or D at a q-value <0.1, but not in A, with a p-value greater than 0.15

(330 instances; Figure 3C). This set of 367 dynamic eQTLs corresponds to 328 unique dynamic

eGenes (see Materials and methods) and includes ZNF845 and RFC2 (Figure 3E) as well as

PPARGC1, C8orf82 and CELF1 (Figure 3—figure supplement 3). While our choice of the particular

statistical cutoffs is somewhat arbitrary, we can evaluate the false discovery rate associated with our

chosen cutoff. Based on the p-value distributions of the corresponding eQTL associations in all other

conditions, we estimate that our approach to classify dynamic eQTLs is associated with a false dis-

covery rate of 48%. The relatively high FDR associated with our choice of statistical cutoffs does not

indicate that these loci are not eQTLs; rather it means that if we had a larger sample size, roughly

Figure 3. Hundreds of dynamic eQTLs are revealed following hypoxia and re-oxygenation. (A) QQ plot illustrating an enrichment of associations

between genetic variants and gene expression levels in each condition. Numbers represent the number of eGenes in each condition. (B) Union of

eQTLs identified in each condition. Each row represents a SNP that is an eQTL in at least one condition. Color represents the strength of the

association p-value. (C) Heatmap illustrating the 367 SNPs that are classified as dynamic eQTLs including 330 induced eQTLs and 37 suppressed

eQTLs. (D) An example of a shared eQTL, HEPB2. (E) Examples of each of the two dynamic eQTL categories. Top panel: genes that become an eQTL

following hypoxia – induced eQTLs e.g. ZNF845. Bottom panel: genes that are an eQTL in normoxic condition A but not following hypoxia –

suppressed eQTLs e.g. RFC2. (F) The proportion of all genes, baseline eGenes (all those identified in condition A), and induced eGenes that are also

response genes, and transcription factor genes curated by Lambert et al. Asterisk denotes a statistically significant difference between gene categories

(*p<0.05).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. eQTL effect sizes in each condition.

Figure supplement 2. eQTL and dynamic eQTL identification.

Figure supplement 3. Dynamic eQTL examples.
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half of our dynamic eQTLs should have been classified as eQTLs in more conditions, potentially in all

of them. As expected, using a more stringent p-value cutoff of 0.9, we find fewer dynamic eQTLs

(19) and a lower false discovery rate of 7%.

We next wanted to determine whether the dynamic eQTLs we identified in iPSC-CMs are also

eQTLs in primary heart tissue. To do so, we compared our 367 dynamic eSNPs and eSNPs regulating

the same gene in all four conditions (‘shared eQTLs’, n = 20) to eQTLs identified in left ventricle

heart tissue and 49 tissues assayed from hundreds of individuals in the GTEx study

(GTEx Consortium et al., 2017). Thirty-two of 326 dynamic eSNP-eGene pairs tested in GTEx are

eQTLs in heart tissue (9.8%), and 140 are eQTLs in at least one other assayed tissue (42.9%) demon-

strating that many of these genes have context-dependent inter-individual variation in expression.

Six of 19 shared eSNP-eGene pairs tested in GTEx are eQTLs in heart tissue (31.6%), and six are an

eQTL in at least one other tissue (31.6%). Shared eSNPs are therefore more likely to be eSNPs in

heart tissue than dynamic eSNPs (Chi-squared test; p=0.01). To further investigate eQTL concor-

dance, we compared the eQTL effect size of our dynamic and shared eQTLs to the eQTL effect size

in heart tissue determined by the GTEx consortium. Shared eQTLs overlapping heart tissue eQTLs

(n = 6) have a higher concordance of effect than dynamic eQTLs overlapping heart tissue eQTLs

(n = 32; Spearman correlation = 0.73 vs. 0.12) suggesting that our perturbation study has revealed

novel eQTL effects.

Dynamic eGenes are enriched for response genes and transcription
factors
To determine whether induced eGenes coincide with expression changes of the same genes follow-

ing hypoxia, we integrated the results of our eQTL and differential expression analyses. For this anal-

ysis, we compared eGenes identified in condition A, baseline eGenes, with the set of induced

eGenes. In line with our previous findings, baseline eGenes, as well as left ventricle (LV) and atrial

appendage (AA) eGenes found in primary heart tissue (GTEx), are depleted for response genes (Chi-

squared test; p<0.02, Ward and Gilad, 2019). However, we found a significant enrichment in

response genes amongst induced eGenes (57 of 277 genes; Chi-squared test; p=0.01, Figure 3F)

when compared to baseline eGenes, suggesting that induced eQTLs often impact the regulation of

genes that respond to hypoxic stress.

Given that thousands of genes are differentially expressed in response to hypoxia, and many of

these genes correspond to transcription-related processes, we next investigated the role of 1,639

genes annotated as transcription factors in humans, which may drive the transcriptome changes we

observe (Lambert et al., 2018). We found a significant enrichment of genes annotated as transcrip-

tion factors amongst the genes responding to oxygen stress compared to non-response genes (327

of 1,639 annotated human TFs, chi-squared test; p<2�10�16; Figure 3F). Given that stress affects

transcription factor gene expression, we asked whether induced eGenes are also enriched for tran-

scription factor genes. Indeed, genes annotated as transcription factors are enriched in induced

eGenes compared to baseline eGenes (32 TFs; p=0.004), including MITF and PPARA, both of which

are TFs that have been previously implicated in hypoxic response (Feige et al., 2011;

Narravula and Colgan, 2001). TFs amongst induced eGenes are more likely to be response genes

than non-response genes (p=0.02); however, there is no difference in the proportion of response

genes amongst baseline eGenes annotated as TFs and induced eGenes annotated as TFs (38% vs.

39%). The enrichment we observe in TFs amongst our induced eGenes suggests that latent genetic

variation can have multiple downstream effects on gene expression including gene targets of TF

genes. This could provide a mechanism for the appearance of induced eGenes that are neither

response genes nor TF genes.

Chromatin accessibility changes following hypoxia and re-oxygenation
We next asked whether the hundreds of transcription factor expression changes following hypoxic

stress are accompanied by global chromatin accessibility changes. To examine this, we performed

ATAC-seq experiments in all four conditions to identify regions of open chromatin (we were only

able to collect these data from 14 of the 15 individuals; Figure 1—figure supplement 1, see

Materials and methods). We filtered the ATAC-seq reads to include only those reads that map

unambiguously to the nuclear genome (see Materials and methods, Figure 4—figure supplement
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1). We identified a set of open chromatin regions in each sample, and merged samples across indi-

viduals within each condition. Genomic regions identified as accessible in each condition were then

merged to yield a set of 128,672 open chromatin regions across conditions (with a median length of

312 bp). Regions with low read counts were filtered out, resulting in a final set of 110,128 regions.

Analysis of various metrics revealed the data to be of good quality (Figure 4—figure supplements

2–3).

We sought to identify chromatin regions that are differentially accessible across pairs of condi-

tions. Using a sensitive adaptive shrinkage-based approach with a False Sign Rate of 10% (Ste-

phens, 2017), we could not detect changes in accessibility between baseline and hypoxia across

110,128 regions; however, we identified 831 differentially accessible regions (DARs) between hyp-

oxia and short-term re-oxygenation (BC-DARs; 429 regions with increased accessibility and 402 with

decreased accessibility), and 71 DARs between hypoxia and long-term re-oxygenation (BD-DARs;

Figure 4A). Despite the fact that we do not identify any DARs between normoxia and hypoxia, there

is a strong anti-correlation in the effect size between the normoxia (A) and hypoxia (B) conditions,

and the hypoxia (B) and re-oxygenation (C) conditions across regions (Spearman correlation =

�0.62; sign test p=4.6�10�14; Figure 4B) suggesting minor changes in accessibility in response to

hypoxia that do not meet our significance threshold. Conversely, there is a strong correlation in

effect sizes between hypoxia and short-term re-oxygenation (BC-DARs), and hypoxia and long-term

re-oxygenation (BD-DARs; Spearman correlation = 0.74; Figure 4C), and 59 of the 71 BD-DARs are

amongst the 831 BC-DARs (83%), suggesting that most regions have returned to baseline levels of

accessibility by the first re-oxygenation condition. This includes a region within the intron of the

FOXO1 gene, a master regulator of the oxidative stress response (Figure 4D). We therefore consid-

ered the 831 BC-DARs, henceforth DARs, in further analysis. These DARs represent 0.8% of the total

number of accessible regions.

Linking chromatin accessibility changes with gene expression changes
We next sought to integrate our gene expression data with our chromatin accessibility data. We

found that when considering a 50 kb window around the TSS of expressed genes, DARs are enriched

near response genes compared to non-response genes (Chi-squared test; p=0.03). Of 2,113

response genes, 113 have a DAR within 50 kb of the TSS. This set includes an accessible region,

overlapping a HIF1a site, within 500 bp of the 3’ end of the classic hypoxia response gene, ADM

(Figure 4E).

We asked whether the changes in chromatin accessibility coincide with the appearance of

dynamic eQTLs. We found that DARs are no more likely to be near dynamic eGenes than shared or

baseline eGenes. In line with previous estimates of the proportion of eQTLs in open chromatin

regions, 24 baseline eQTL SNPs (613 total SNPs) and 19 dynamic eQTL SNPs (367 total SNPs) over-

lap with accessible chromatin regions (GTEx Consortium et al., 2017). One dynamic eQTL SNP

overlaps a DAR, near the actin filament binding protein gene, FGD4. This gene was also shown to

be differentially expressed between children with congenital heart defects where the defect leads to

a chronic hypoxic state (cyanotic disease), and children with a similar defect but where oxygen levels

are not affected (acyanotic disease; Ghorbel et al., 2010).

Genetic variants within transcription factor binding sites can influence chromatin accessibility at

these regions, leading to effects on gene expression. To directly test whether there are genetic

effects on chromatin accessibility, independent of gene expression, we sought to identify chromatin

accessibility QTLs (caQTLs) that is genetic variants located within the 128,672 accessible regions,

which coincide with different levels of accessibility based on genotype. We identified few caQTLs

per condition (q-value <0.1; A: 10, B: 1, C: 7, D: 6; Figure 4—figure supplement 4A). Six of these

caQTLs are classified as dynamic caQTLs that is induced or suppressed in response to hypoxia using

the same definitions as used for the dynamic eQTLs, and include regions at the TSS of the mRNA

decapping enzyme gene DCPS, and a region within 100 kb of the C1orf99 gene (Figure 4—figure

supplement 4B–C).
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Genomic features associated with differentially accessible regions
(DARs)
We next wanted to determine what distinguishes DARs from constitutively accessible regions

(CARs). To do so, we investigated three classes of genomic features: (1) promoter- and enhancer-

associated marks, (2) transcription factor binding locations, and (3) underlying DNA sequence fea-

tures. We found that DARs are more likely to overlap TSS than constitutively accessible regions (43%

overlap vs. 11% overlap; chi-squared test, p<2�10�16; Figure 5A) suggesting that DARs may be

involved in the gene regulatory response. Indeed, DARs are more likely to coincide with active his-

tone marks in left ventricle heart tissue than constitutively accessible regions (H3K4me3: 57% overlap

DARs vs. 24% overlap constitutively accessible regions; chi-squared test; p<2.2�10�16; H3K4me1:

86% overlap DARs vs. 52% overlap constitutively accessible regions; p<2.2�10�16; Figure 5B).
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Figure 4. Hundreds of chromatin accessibility changes occur following hypoxia and re-oxygenation. (A) Estimated effect size (Beta) following adaptive

shrinkage (ash) between each pair of conditions, and the numbers of chromatin regions that are differentially accessible (DARs) between pairs of

conditions. (B) Estimated Beta for each region when comparing A vs. B and B vs. C. (C) Estimated Beta for each region when comparing B vs. C, and B

vs. D. (D) Chromatin accessibility levels at a chromatin region within a FOXO1 intron. (E) Expression levels of the hypoxia-responsive gene ADM

following hypoxia, and chromatin accessibility levels at a DAR, overlapping an induced HIF1a-bound region, within 500 bp of the ADM gene.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Numbers of ATAC-seq reads are similar across conditions.

Figure supplement 2. ATAC-seq library quality control.

Figure supplement 3. ATAC-seq libraries cluster by individual and treatment.

Figure supplement 4. Identification of caQTLs.
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histone marks determined by ChIP-seq in human heart tissue (ENCODE Project Consortium, 2012). (C) The proportion of DARs and CARs that

overlap with HIF1a and HIF2a binding locations determined by ChIP-seq in a breast cancer cell line (Schödel et al., 2011). (D) The most significant

motif identified to be differentially enriched in DARs compared to all ARs that is putatively recognized by ZNF770, E2F3 and E2F4. We classify E2F4 as a

response gene and therefore determined the proportion of DARs and CARs that overlap with E2F4 ChIP-seq binding locations identified in a human

LCL line (Lee et al., 2011). (E) The proportion of DARs and CARs that overlap four major transposable element (TE) classes – LTR, LINE, SINE, DNA.

The proportion of DARs and CARs that overlap with CpG islands (CGIs) that is proximal to the TSS (+/- 2 kb from the TSS), and distal to the TSS.

Asterisk denotes a statistically significant difference between DARs and CARs (*p<0.05, **p<0.005, ***p<0.0005).
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To determine whether sequence-specific hypoxia-responsive transcription factors associate with

differentially accessible chromatin, we integrated DARs with published chromatin immunoprecipita-

tion followed by high-throughput sequencing (ChIP-seq) data for the well-studied hypoxia-inducible

factors HIF1a and HIF2a (Schödel et al., 2011). A total of 234 of the 356 HIF1a ChIP-seq binding

sites (66%), and 150 of the 301 HIF2a binding sites (50%) overlap with our set of 110,128 accessible

chromatin regions. We found that these HIF1a and HIF2a binding sites are more likely to overlap

the 831 differentially accessible regions than the 109,275 constitutively accessible regions (Fisher

test; p=0.03; Figure 5C).

We next took an unbiased approach to identify transcription factor binding motifs that are

enriched in DARs compared to all accessible regions using MEME-ChIP software (see Materials and

methods). We found two motifs to be enriched in DARs compared to all regions (Figure 5D). Motif

1 (p=2�10�2) is recognized by HTF4 and TFE2, both of which are non-response genes in our system.

Motif 2 (p=6.2�10�42) is posited to be recognized by ZN770, E2F3, and E2F4. Both ZN770 and

E2F4 are response genes in our system. DARs arise between the hypoxia and re-oxygenation condi-

tions, and E2F4 expression increases following re-oxygenation, suggesting that it may be involved in

the response. To test this hypothesis, we obtained a published ChIP-seq data set for E2F4

(Lee et al., 2011), and overlapped the 16,245 E2F4-bound regions with DARs and constitutively

accessible regions. E2F4-bound regions are significantly enriched in DARs compared to constitu-

tively accessible regions (Chi-squared test; p<2.2�10�16; Figure 5D). E2F4 is important for survival

following ischemia in neurons, and has been suggested to be an anti-apoptotic factor in cardiomyo-

cytes (Dingar et al., 2012; Iyirhiaro et al., 2014).

To identify additional sequence features that associate with DARs, we asked whether transpos-

able elements (TE), a potential source of regulatory sequence subjected to chromatin-level regula-

tion, are enriched in these sites (Du et al., 2016; He et al., 2019). We found that while three of the

main TE classes, LINEs, LTRs, and DNA elements are similarly enriched in DARs compared to consti-

tutively accessible regions; SINEs are specifically enriched in DARs (p=6.5�10�6; Figure 5E). There

is an enrichment of both Alu and MIR SINE family members in DARs (p=3�10�5 and p=0.006). AluS

elements, and the AluSq and AluSp sub-families, are particularly enriched within the Alu family

(p=0.007 and p=0.02 respectively). A different cellular stress, heat shock, has previously been shown

to remodel chromatin accessibility at Alu elements in cervical cancer cells (Kim et al., 2001).

As Alu and MIR TE sequences are notably CpG dense (Medstrand et al., 2002), we next asked

about the enrichment of CpG-dense CpG islands (CGIs) in our differentially accessible regions. We

found that CpG islands are enriched in DARs compared to constitutively accessible regions, whether

these regions fall within 1 kb of TSS, which are typically enriched for CGIs, or not (p<2.2�10�16;

Figure 5F).

DNA methylation state at stress-responsive genes and chromatin
regions
Genes with CGI promoters are thought to allow flexibility in TSS choice compared to genes without

CGI promoters (Carninci et al., 2006), and to allow for the rapid induction of gene expression in

response to stimuli (Ramirez-Carrozzi et al., 2009). We therefore asked whether this promoter fea-

ture is enriched in the stress response genes. Indeed, we find that response genes are more likely to

have CGI promoters than non-response genes (Chi-squared test; p=0.002).

Given the enrichment of CpG islands in gene promoters and chromatin regions that are respon-

sive to stress, we asked whether this feature corresponded to differences in CpG DNA methylation

levels in these same regions. We measured global DNA methylation levels at 766,658 CpG sites in

all conditions from 13 of our individuals (no data was collected from two of the 15 individuals),

together with 23 replicate samples from three individuals (see Materials and methods;

Supplementary file 1). We found the expected bimodal distribution of DNA methylation Beta-val-

ues across CpGs (Beta-values represent the ratio of intensities between the methylated and unme-

thylated alleles; Figure 6—figure supplement 1A). Additional analyses indicated the data to be of

good quality (Figure 6—figure supplements 1–2).

To determine whether steady-state DNA methylation levels mark genes or regions that will

change their expression level in response to stress, we investigated baseline DNA methylation levels

in the promoters of genes classified as response genes and non-response genes, as well as accessi-

ble regions and DARs. To do so, we assessed the DNA methylation level at CpGs within 200 bp
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upstream of the TSS in the baseline condition (condition A). The majority of the assayed CpGs were

hypomethylated with a median Beta-value of less than 0.2 across genes and regions (Figure 6A).

While there is no difference in median DNA methylation levels between response and non-response

genes, we found that the median DNA methylation level is lower in DARs compared to all accessible

regions (p<2.2�10�16). These data suggest that responsive chromatin regions may have specific epi-

genetic profiles which poise them for rapid response to stress.

DNA methylation levels are largely stable following hypoxia and re-
oxygenation
Given that DNA methylation levels can associate with gene expression levels, we asked whether any

CpGs are differentially methylated during the course of the oxygen perturbation experiment, which

induces thousands of gene expression changes. When considering all 766,658 CpGs we did not find

any differentially methylated CpGs across any pair of conditions (10% FDR; Figure 6B), and all p-val-

ues are estimated to be true null p-values (pi0 = 1 when estimated by q-value across all pairs of con-

ditions; Figure 6—figure supplement 3). We were also unable to detect any differentially

methylated CpGs when considering two estimates of DNA methylation levels: Beta-values or M-val-

ues (log2 ratio of intensities of methylated versus unmethylated alleles).

To increase the likelihood of identifying differentially methylated CpGs, we reduced the number

of statistical tests for identifying differentially methylated CpGs by restricting our test set of CpGs to

those within annotated regions of interest. Because of the CpG island enrichment in our response

gene promoters, we first selected CpGs present within CpG islands (143,587 of the 766,658 mea-

sured CpGs). Again, we found no differentially methylated CpGs between baseline (A) and hypoxia

(B), and hypoxia (B) and the short-term re-oxygenation condition (C). However, we identified four

differentially methylated CpGs (DMCpGs) between the baseline (A) and long-term re-oxygenation

condition (D; Figure 6C). This set includes a CpG in the intron of the EGR2 response gene, which

shows increased DNA methylation levels over time (Figure 6D). Methylation at CpG islands within

the intron of EGR2 has been shown to confer enhancer activity in cancer cells (Unoki and Nakamura,

2003). If we only select CpGs located within the promoters of the 2,113 response genes, we find

one DMCpG within the promoter of the FTSJ2 gene, a rRNA methyltransferase, that is differentially

methylated between the hypoxia (B) and long-term re-oxygenation (D) conditions. Selecting CpGs

located only within the 831 DARs reveals two DMCpGs between baseline (A) and hypoxia (B), and

one DMCpG between baseline (A) and long-term re-oxygenation (D). We therefore were only able

to identify a handful of differentially methylated CpGs during our experimental timecourse which eli-

cited thousands of gene expression changes.

To further investigate the apparent differences in response to hypoxia across our three molecular

phenotypes, we calculated the proportion of variance explained by ‘individual’, ‘condition’ and ‘rep-

licate’. We observed a lower proportion of variance explained by ‘condition’ in the DNA methylation

data (0.8%) and chromatin accessibility data (3%) compared to the gene expression data (6%, t-test,

p<2.2�10�16), and a corresponding increase in the residual variance (Figure 6—figure supplement

4). For the DNA methylation data in particular, there is a similar proportion of variance explained by

individual (44% for gene expression, 40% for DNA methylation, and 28% for chromatin accessibility)

and approximately an order of magnitude less variance explained by condition. These results sug-

gest that noise alone cannot explain the relatively small number of chromatin accessibility and DNA

methylation changes.

Dynamic eQTLs associate with traits and disease
Finally, we wanted to determine whether any of the dynamic eQTL SNPs or genes that we identified

might also be associated with complex traits or disease. To maximize the number of potentially phe-

notypically-relevant genomic loci, we performed three independent analyses. We first took an unbi-

ased, SNP-based approach by searching within a catalog of genetic variants associated with a

variety of traits assayed in thousands of GWAS for overlap with our dynamic eSNPs (Buniello et al.,

2019). By intersecting these two data sets, we found one induced dynamic eSNP (rs8053350) that is

also associated with a measured phenotype in GWAS – varicose veins (Supplementary file 1; Fig-

ure 7—figure supplement 1A-B).
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Figure 6. Minimal DNA methylation changes following hypoxia. (A) Mean DNA methylation levels (Beta-values) in the baseline condition (A) at CpGs

within 200 bp upstream of the TSS of non-response genes (NR-G) and response genes (RG), and within all accessible regions (ARs) and differentially

accessible regions (DARs; *p<0.05, ***p<0.0005). (B) Volcano plots representing the differential DNA methylation analysis across 766,658 CpGs. There

are no differentially methylated (DM) CpGs across any pair of conditions. (C) Numbers of differentially methylated CpGs, when restricting the test set to

include only CpGs within CpG islands, across pairs of conditions. (D) Gene expression and DNA methylation levels at a differentially methylated CpG

within an intron of the EGR2 response gene.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. DNA methylation array quality control.

Figure 6 continued on next page
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Given that our eQTL data are from the Yoruba population from West Africa and that most GWAS

studies are performed in European populations, which have an inherently different LD structure, we

may not expect to see strong overlap at the level of individual variants. We therefore next took an

orthogonal gene-based approach, using the same GWAS catalog, to specifically investigate the

genes implicated in three phenotypes associated with cardiovascular function or response to oxygen

deprivation: MI, heart failure, and stroke (see Materials and methods). If the expression of these

CVD genes is found to vary across individuals following hypoxia, it suggests that they may be impor-

tant for mediating disease risk. Indeed, we found that six of our dynamic eGenes are implicated in

these three disease states by GWAS gene mapping approaches (Supplementary file 1). This list

includes the DNA damage and apoptosis factor ZC3HC1, which is implicated in MI and stroke (Fig-

ure 7—figure supplement 1C–D). Importantly, ZC3HC1 is not an eGene in LV or AA, but the SNP-

gene pair is an eQTL in other tissues.

Lastly, we performed an in-depth SNP-based analysis using full summary statistics for coronary

artery disease (CAD) and MI from the CARDIoGRAMplusC4D Consortium (Stitziel et al., 2016;

Nikpay et al., 2015; Webb et al., 2017). We tested whether the lead eSNP from our set of dynamic

eQTLs is also associated with CAD or MI and identified two loci (Supplementary file 1). This set

includes the eSNP (rs12588981) for the dynamic eQTL EIF2B2 which is nominally associated with

CAD (GWAS association p=4.7�10�5) and is in high and statistically significant LD with the lead

GWAS variant (GWAS association p=9.9�10�8) at this locus (rs3832966; R2 = 0.96, p<0.001; Fig-

ure 7; Figure 7—figure supplement 2). Given that we have incomplete power to detect dynamic

eQTLs, we also used the same GWAS dataset to investigate whether any of the significant eQTL

SNPs in any condition are associated with CAD or MI. We determined that eSNP (rs8105092), which

regulates CARM1 in the hypoxic condition (condition B), is nominally associated with MI (GWAS

association p=1.79�10�5) and in moderate, yet significant LD, with the lead GWAS variant (GWAS

association p=2.8�10�9) at this locus (rs4804142; R2 = 0.32, p<0.001; Figure 7—figure supplement

3), and is not an eGene in LV or AA. A handful of the eQTLs that we highlight here were tested for

association with gene expression by the GTEx consortium, yet are not eQTLs in heart tissue. These

results suggest that perturbation studies in relevant cell types can give insight into the molecular

basis for the genetic association with complex traits and disease, which might not be gleaned from

the study of post-mortem tissues.

Discussion
Studying gene expression across individuals in response to stress can reveal latent effects of genetic

variation, which may contribute to higher-order phenotypes and disease. In order to understand the

effects of genetic variation in a disease-relevant cell type and a disease-relevant process, we differ-

entiated cardiomyocytes from a panel of genotyped individuals, and subjected them to hypoxia and

re-oxygenation. We found hundreds of eQTLs that are revealed or suppressed following hypoxic

stress (dynamic eQTLs), several of which have been associated with phenotypes measured in GWAS.

Steady-state and dynamic eQTLs may help understand CVD
Attempts have been made to identify genetic variants that associate with gene expression levels and

CVD phenotypes in easily accessible biological samples such as blood. However, less than half of

CVD/MI GWAS loci are associated with an eQTL in whole blood when thousands of individuals are

tested (Joehanes et al., 2017). To determine the effects of genetic variation on gene expression

specifically in the heart, more targeted studies have taken advantage of left ventricle tissue

(GTEx Consortium et al., 2017; Koopmann et al., 2014), left atrium tissue (Lin et al., 2014;

Sigurdsson et al., 2017), and right atrial appendage tissue (GTEx Consortium et al., 2017)

obtained during cardiac surgeries or post-mortem. Using fewer than a hundred individuals, a handful

Figure 6 continued

Figure supplement 2. DNA methylation levels cluster by individual.

Figure supplement 3. DNA methylation levels are stable across conditions.

Figure supplement 4. Variance associated with oxygen condition is lower in DNA methylation data compared to gene expression data.
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of identified eQTL SNPs correspond to SNPs associated with cardiac traits, thus linking specific

genes to organismal-level phenotypes. A compelling example is the association between MYOZ1

expression and atrial fibrillation (Lin et al., 2014; Sigurdsson et al., 2017). Across tissues, the GTEx

consortium reported that ~ 50% of eQTLs are also associated with variation in other measured com-

plex traits (GTEx Consortium et al., 2017), and Heinig et al. have shown that 20% of left ventricle

eQTLs relate to heart-associated loci (Heinig et al., 2017). However, these variants, identified in

healthy individuals, are unlikely to represent all genetic variants that have consequences on disease.

Indeed, Heinig et al. identified 100 dilated cardiomyopathy–specific eQTLs (not seen in healthy indi-

viduals) in a case-control study of 97 individuals with dilated cardiomyopathy and 108 healthy donors

(Heinig et al., 2017). Similarly, by collecting samples pre- and post-surgically-induced ischemia,

Stone et al. identified genetic associations that are only detected under stress (Stone et al., 2019).

Although these studies provide a set of gene targets for further investigation, there are many loci

that remain unexplained.

The heart is a complex tissue consisting of multiple cell types. The effects of some genetic var-

iants in specific cell types might well be masked when considering heterogeneous tissue samples. As

we are now able to direct iPSCs toward a cardiac fate, we can test for genetic effects on specific cell

types such as cardiomyocytes (Panopoulos et al., 2017). As one would expect, iPSC-CMs are better

suited to study cardiovascular traits than the immortalized B-cells or iPSCs from which they are

derived (Banovich et al., 2018). However, given the high degree of eQTL sharing across diverse tis-

sues (GTEx), identifying eQTLs in the disease-relevant terminal cell type at steady state may not give
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Figure 7. Dynamic eQTL for EIF2B2 overlaps a coronary artery disease GWAS locus. (A) EIF2B2 is a dynamic eGene. (B) Expression levels of EIF2B2

during the course of the experiment following aggregation of all individuals. (C) Locus zoom plots in each condition illustrating the tested SNPs in the

CARDIoGRAMplusC4D GWAS study (light blue), and the SNPs tested in our eQTL analyses in each condition (A: brown, B: blue, C: coral, D: red). All

tested SNPs within a 1 Mb region around the dynamic eQTL SNP on chromosome 14 are shown.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Dynamic eQTLs associate with SNPs and genes implicated in complex disease.

Figure supplement 2. EIF2B2 eSNP is in high LD with the lead GWAS variant associated with CAD at this locus.

Figure supplement 3. Hypoxic eQTL CARM1 associates with MI.

Figure supplement 4. Power to detect eQTLs and false positive rate to call dynamic eQTLs.
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substantial insight into disease biology. A significant advantage of using iPSC-CMs is that these cells

provide a system to interrogate gene expression dynamics.

Cellular stressors that perturb gene expression levels and the cell state can unmask additional

layers of regulatory variation (Alasoo et al., 2018; Barreiro et al., 2012; Çalışkan et al., 2015; Kim-

Hellmuth et al., 2017; Knowles et al., 2018; Manry et al., 2017; Nédélec et al., 2016). Intermedi-

ate developmental cell states can similarly provide insight into GWAS loci where eQTL analysis in

terminal cell types cannot (Strober et al., 2019). Further evidence for the notion that steady state

eQTLs may have limited applicability to disease states comes from our previous work, where we

used a comparative evolutionary approach to investigate the response to stress. We showed that

genes that respond to oxygen stress in iPSC-CMs from both humans and chimpanzees, and are

therefore likely relevant for disease, are depleted for eQTLs identified in heart tissue compared to

genes that do not respond in either species (Ward and Gilad, 2019).

In the current study, by subjecting iPSC-CMs from a panel of individuals to perturbation (oxygen

deprivation), we were able to identify a handful of potentially interesting trait-relevant loci. Using a

broad GWAS catalog, we found one of our dynamic eQTL SNPs (rs8053350) to be associated with

varicose veins, and the level of RNF166 expression (Fukaya et al., 2018). This SNP falls within an

intron of the PIEZO1 gene. Varicose veins are associated with a risk for developing deep vein throm-

bosis and other vascular diseases (Chang et al., 2018). When we performed an analogous analysis

focused on genes previously associated with three relevant traits – MI, heart failure and stroke, we

identified a novel heart eGene, ZC3HC1, encoding the NIPA protein, which is implicated in MI, coro-

nary artery disease, and ischemic stroke (IBC 50K CAD Consortium, 2011; Nikpay et al., 2015;

Schunkert et al., 2011). This dynamic eQTL SNP is also associated with bronchodilator responsive-

ness in chronic obstructive pulmonary disease (Hardin et al., 2016). Using full summary statistics

from a CAD and MI GWAS (Stitziel et al., 2016; Nikpay et al., 2015), we found minimal overlap

between significant GWAS loci and significant or dynamic eSNPs. This may be due in part to differ-

ences in genetic ancestry and LD structure between the predominant GWAS population (of Euro-

pean descent) and our eQTL study population (Yoruba). Nevertheless, we highlight two interesting

loci EIF2B2 and CARM1. While the EIF2B2 locus does not reach genome-wide significance in the

GWAS analysis, integration with our dynamic eQTL data highlights this region as being potentially

relevant to the disease. Indeed, EIF2B2, a GTP exchange protein, has been predicted to be a gene

target in CAD using summary data-based Mendelian randomization (Pavlides et al., 2016). CARM1,

also known as PRMT4, has previously been implicated in myocardial infarction and apoptosis in mice

(Wang et al., 2019).

Mechanisms behind response genes and dynamic eQTLs
Changes in gene expression can associate with other molecular-level phenotypes. The response to

hypoxia is mediated by the HIF1a transcription factor (Samanta and Semenza, 2017), but given that

there are hundreds of HIF1a binding locations and thousands of differentially expressed genes, reg-

ulation by this factor alone cannot directly explain all the transcriptional changes. We explored two

additional molecular phenotypes in the context of oxygen deprivation – the locations and level of

accessibility of open chromatin regions, and DNA methylation levels. We did not find either to con-

tribute substantially to the gene expression response we observed. There are minimal changes in

accessibility following hypoxia, which is in contrast to observations of studies that considered stimu-

lation of immune cell types (Alasoo et al., 2018; Calderon et al., 2019; Pacis et al., 2015). This

could reflect cell type specificity in response to stress, or the specificity of the cellular response to

different stressors. Indeed, despite large gene expression changes in response to various stimulants

in endothelial cells, there are a relatively small number of differentially accessible regions

(Findley et al., 2019). We speculate that the transcriptional response to oxygen stress could result

in the induction of transcription factors, which bind already accessible regions of open chromatin,

and that cells are primed for a quick response to this universal cellular stress. Indeed, it has been

shown that chromatin contacts exist between HIF1a binding sites and hypoxia-inducible genes in

the normoxic state (Platt et al., 2016). Conversely, it has been suggested that hypoxia results in the

induction of HIF1a, and significant changes in histone methylation (Batie et al., 2019). As we did

not measure histone marks in our system, these changes may occur in the absence of chromatin

accessibility changes, but we also cannot rule out the possibility that the choice of a single timepoint
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following 6 hr of hypoxia, or insufficient statistical power in our sample size, contributed to the mini-

mal differences in accessibility that we observed.

Using an approach designed to measure small effect sizes between conditions, we did identify a

set of 831 DARs between hypoxia and short-term re-oxygenation that are enriched for marks of

active chromatin, CpG islands, and TEs. These regions do not appear to explain many of the gene

expression differences we observed. Hypoxia and oxidative damage are likely to also affect the

genome in ways that do not directly impact gene expression. Indeed, the distribution of oxidative

DNA damage sites varies across the genome following stress such that TEs and active chromatin

regions are enriched for DNA damage, while promoters are depleted (Poetsch et al., 2018). We

found enrichment for TEs, specifically Alu SINE elements, in DARs. Interestingly, TEs, and DNA trans-

posons in particular, are also enriched in regions that become accessible in macrophages in

response to bacterial infection; suggesting sequence-specific effects of TEs in response to different

cellular stressors (Bogdan et al., 2020). Alu elements have previously been found to associate with

the response to stress in other contexts. Serum starvation induces binding of TFIIIC, which recruits

RNA polymerase III, to Alu elements (Ferrari et al., 2020), and heat shock increases chromatin

accessibility around Alu elements (Kim et al., 2001).

There are several studies, which suggest that DNA methylation levels are dynamic and change in

response to stressors such as hypoxia. We did not find any notable differences in DNA methylation

levels pre- and post-hypoxia and re-oxygenation, which suggests that like chromatin accessibility,

DNA methylation levels do not make large contributions to changes in gene expression levels or the

appearance of dynamic eQTLs in our system. Many of the DNA methylation changes that have been

described in response to hypoxia occur in chronic and intermittent hypoxia, and not acute hypoxia

as investigated in our study (Hartley et al., 2013; Robinson et al., 2012; Watson et al., 2014).

DNA methylation levels are also altered in response to other stressors such as bacterial infection

(Pacis et al., 2015); however, the importance of timing is highlighted by the fact that, in this system,

gene expression responses precede DNA methylation changes (Pacis et al., 2019). It is also impor-

tant to note that our study considers baseline oxygen levels to be 10% oxygen, which is closer to

physiological oxygen levels (5–13%) than atmospheric oxygen levels (21%; Brahimi-Horn and Pouys-

ségur, 2007; Carreau et al., 2011; Jagannathan et al., 2016). Most studies define normoxia as

21% oxygen saturation, and while this likely leads to larger effect size differences in known hypoxia

response genes following hypoxia, these comparisons may not give meaningful insight into the in

vivo state.

One can speculate about different mechanisms that might lead to the appearance or disappear-

ance of dynamic eQTLs. In the context of the immune response, it has been shown that the same

response variants affect both gene expression and chromatin accessibility (Alasoo et al., 2018). This

is in line with the general notion that changing cellular environments results in differences in chroma-

tin accessibility at transcription factor binding sites, which leads to gene expression changes. We

found that this does not appear to be a major mechanism in our system as there are minimal

changes in accessibility following hypoxia. We observed that there is an enrichment of response

genes amongst dynamic eQTLs suggesting that the change in environment results in a change in

expression levels that is dependent on the associated genotype. We also find enrichment for TFs

amongst response genes and dynamic eQTLs, suggesting that dynamic eQTLs can appear through

secondary trans effects.

Potential limitations of our model
To understand the effects of genetic variation on human heart tissue, and how this variation might

contribute to the MI and I/R injury etiologies of CVD, we carefully perturbed oxygen levels that car-

diomyocytes in culture are exposed to. This in vitro approach is by design a model system, and

therefore will likely not fully recapitulate the in vivo state. However, we previously found that out of

2,549 genes that respond to hypoxia in iPSC-CMs from humans and chimpanzees, only 16% are dif-

ferentially expressed between iPSC-CMs and heart tissue (Pavlovic et al., 2018; Ward and Gilad,

2019). This suggests that our in vitro system is applicable to heart tissue. There is still a possibility

that the dynamic eQTLs that we identify in our in vitro system are not physiologically relevant.

Our study comprised a small number of individuals (15), far fewer than what is typical for identify-

ing eQTLs. Our work is therefore a first step toward understanding the effects of genetic variation

on gene expression in response to stress. Nevertheless, with a small number of individuals we were
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able to identify a couple of hundred dynamic eQTLs that are revealed or suppressed under stress,

suggesting that this paradigm is worth exploring further in larger cohorts. Under the simplifying

assumption of a single causal variant, we determined that we have ~6% power to detect an effect

which explains ~38% of the heritability, and an equal false positive rate to call it a dynamic eQTL

(see Materials and methods; Figure 7—figure supplement 4). The median eQTL heritability over all

genes is 0.16, as previously reported by Gusev et al., 2016; Wheeler et al., 2016, which illustrates

the relative power of this study compared to the GTEx and Depression Genes and Networks studies

(Battle et al., 2014) for eQTL mapping. This suggests that the impact of stress on genotype-depen-

dent effects on gene expression will be even greater in studies which have higher power to detect

smaller effects of genotype. For perspective, early eQTL studies were similarly powered to our study,

using 70 individuals; yet these studies still led to important insights opening an avenue of research

focused on assaying the consequences of genetic variation by RNA-seq (Pickrell et al., 2010).

In summary, there have been few studies assessing the effects of genetic variation in response to

CVD-relevant perturbations in cardiomyocytes. Here, we profiled the response to oxygen depriva-

tion in cardiomyocytes from a panel of genotyped individuals. We find that eQTLs can appear and

disappear in response to oxygen deprivation, and that some of these eQTLs have effects on relevant

complex traits and disease.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(H. sapiens,
Female)

18499 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18505 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18511 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18520 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18852 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18855 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18858 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18870 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Female)

18912 iPSC 10.1101/gr.224436.117 Derived from
HapMap Yoruba LCL

Cell line
(H. sapiens,
Male)

19098 iPSC 10.1101/gr.224436.117 Derived from
HapMap
Yoruba LCL

Cell line
(H. sapiens,
Male)

19101 iPSC 10.1101/gr.224436.117 Derived from
HapMap
Yoruba LCL

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(H. sapiens,
Female)

19108 iPSC 10.1101/gr.224436.117 Derived from
HapMap
Yoruba LCL

Cell line
(H. sapiens,
Female)

19116 iPSC 10.1101/gr.224436.117 Derived from
HapMap
Yoruba LCL

Cell line
(H. sapiens,
Female)

19128 iPSC 10.1101/gr.224436.117 Derived from
HapMap
Yoruba LCL

Cell line
(H. sapiens,
Female)

19160 iPSC 10.1101/gr.224436.117 Derived from
HapMap
Yoruba LCL

Samples
We randomly selected individuals from the Yoruba YRI HapMap population. iPSCs were reprog-

rammed from lymphoblastoid cell lines from these individuals (Banovich et al., 2018). We used fif-

teen biological replicates (individuals), and three technical replicates (independent cardiomyocyte

differentiation and oxygen stress experiments) from three individuals. This number of individuals has

been shown to be sufficient to be able to identify eQTLs in small sample sizes (van de Geijn et al.,

2015). Experiments were designed and performed such that technical variables (such as sample

processing batch) were not confounded with the variable of interest (condition). All cell lines tested

negative for mycoplasma contamination.

Cardiomyocyte differentiation from iPSCs
iPSCs were maintained in a feeder-independent state in Essential 8 Medium (A1517001, Thermo-

Fisher Scientific, Waltham, MA, USA) with Penicillin/Streptomycin (30002, Corning, NY, USA) on

Matrigel hESC-qualified Matrix (354277, Corning, Bedford, MA, USA) at a 1:100 dilution. Cells were

passaged at ~70% confluence every 3–4 days with dissociation reagent (0.5 mM EDTA, 300 mm

NaCl in PBS), and seeded with ROCK inhibitor Y-27632 (ab12019, Abcam, Cambridge, MA, USA).

Cardiomyocyte differentiations were performed largely as previously described (Ward and Gilad,

2019), except the duration and concentration of the Wnt agonist and antagonist differed for this

panel of individuals, which included only human samples. Briefly, on Day 0, iPSC lines at 70–100%

confluence in 100 mm plates were treated with 12 mM GSK3 inhibitor CHIR99021 trihydrochloride

(4953, Tocris Bioscience, Bristol, UK) in 12 ml Cardiomyocyte Differentiation Media [500 mL

RPMI1640 (15–040 CM ThermoFisher Scientific), 10 mL B-27 Minus Insulin (A1895601, ThermoFisher

Scientific), 5 mL Glutamax (35050–061, ThermoFisher Scientific), and (5 mL Penicillin/Streptomycin)],

and a 1:100 dilution of Matrigel. 24 hr later, on Day 1, the media was replaced with Cardiomyocyte

Differentiation Media. 48 hr later, on Day 3, 2 mM of the Wnt inhibitor Wnt-C59 (5148, Tocris Biosci-

ence), diluted in Cardiomyocyte Differentiation Media, was added to the cultures. Cardiomyocyte

Differentiation Media was replaced on Days 5, 7, 10, and 12. Cardiomyocytes were purified by meta-

bolic purification by the addition of glucose-free, lactate-containing media (Purification Media) [500

mL RPMI without glucose (11879, ThermoFisher Scientific), 106.5 mg L-Ascorbic acid 2-phosphate

sesquimagenesium salt (sc228390, Santa Cruz Biotechnology, Santa Cruz, CA, USA), 3.33 ml 75 mg/

ml Human Recombinant Albumin (A0237, Sigma-Aldrich, St Louis, MO, USA), 2.5 mL 1 M lactate in 1

M HEPES (L(+)Lactic acid sodium (L7022, Sigma-Aldrich)), and 5 ml Penicillin/Streptomycin] on Days

14, 16, and 18. A total of 1.5 million cardiomyocytes were re-plated per well of a six-well plate on

Day 20 in Cardiomyocyte Maintenance Media (500 mL DMEM without glucose [A14430-01, Thermo-

Fisher Scientific], 50 mL FBS [S1200-500, Genemate], 990 mg Galactose [G5388, Sigma-Aldrich], 5

mL 100 mM sodium pyruvate [11360–070, ThermoFisher Scientific], 2.5 mL 1 M HEPES [SH3023701,

ThermoFisher Scientific], 5 mL Glutamax [35050–061, ThermoFisher Scientific], 5 mL Penicillin/Strep-

tomycin). iPSC-CMs were matured in culture for a further 10 days with Cardiomyocyte Maintenance

Media replaced on Days 23, 25, 27, 28, and 30.
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On Day 25, iPSC-CMs were transferred to a 10% oxygen environment (representative of in vivo

levels) in an oxygen-controlled incubator (HERAcell 150i CO2 incubator, ThermoFisher Scientific).

From Day 27 onwards, iPSC-CMs were pulsed at a voltage of 6.6 V/cm, frequency of 1 Hz, and pulse

frequency of 2 ms using an IonOptix C-Dish and C-Pace EP Culture Pacer to further mature the cells

and synchronize beating.

Flow cytometry
Purity of the cardiomyocyte cultures was assessed ~Day 30 as previously described (Ward and Gilad,

2019). Briefly, cells were stained with Zombie Violet Fixable Viability Kit (423113, BioLegend), and

PE Mouse Anti-Cardiac Troponin T antibody (564767, clone 13–11, BD Biosciences, San Jose, CA,

USA), and analyzed on a BD LSRFortessa Cell Analyzer together with negative control samples of

iPSCs, and iPSC-CMs that are incubated without the troponin antibody, or without either the tropo-

nin antibody or viability stain.

Hypoxia experiment
On Day 31/32, iPSC-CMs were subjected to the hypoxia experiment. At time = 0, condition A sam-

ples remained at 10% O2 (normoxia), while samples for conditions B, C and D were transferred to an

incubator set at 1% O2 (hypoxia). After 6 hr, conditions A and B were harvested, while plates C and

D were returned to normoxic oxygen conditions. Plate C was harvested 6 hr following the hypoxic

treatment, and Plate D was harvested 24 hr following the hypoxic treatment. Oxygen levels, experi-

enced by the cells in culture, were measured in cultures from each experimental batch using an oxy-

gen-sensitive sensor (SP-PSt3-NAU-D5-YOP, PreSens Precision Sensing GmbH, Regensburg,

Germany), optical fiber (NWDV29, Coy, Grass Lake, MI, USA), and oxygen meter (Fibox 3 Transmit-

ter NWDV16, Coy).

Material collection
Cell culture media for ELISA and cytotoxicity assays
Aliquots of cell culture media from each experiment were centrifuged at 10,000 rpm for 10 min at 4˚

C to remove cellular debris. The supernatant was stored at �80˚C until further use.

Nuclei for ATAC-seq
Cardiomyocytes from each well of a six-well plate were washed twice with cold PBS on ice before

collection by manual scraping in 1.5 ml PBS. A total of 200 ml of cells were pelleted by centrifugation

at 500 g for 5 min. Cell pellets were re-suspended in 50 ml cold ATAC-seq lysis buffer (10 mM Tris-

HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal CA630, dH2O). Nuclei were pelleted by centri-

fugation at 500 g for 5 min at 4˚C. Nuclei were re-suspended in 50 ml transposition mix (25 ml 2xTD

buffer, 2.5 ml Tn5 transposase, 22.5 ml nuclease-free dH2O) from the Nextera DNA sample kit (FC-

121–1031, Illumina). The transposition reaction was performed at 37˚C for 30 min. Transposed DNA

was purified with Qiagen MinElute Kit (28004, Qiagen, MD, USA), re-suspended in 12 ml elution

buffer, and stored at �20˚C.

Cell pellets for RNA-seq and DNA methylation arrays
Cells from each well of a six-well plate were washed twice with cold PBS on ice before collection by

manual scraping in 1.5 ml PBS. Cells were pelleted by centrifugation at 7,000 rpm for 8 min at 4˚C,

flash-frozen and stored at �80˚C.

RNA/DNA extraction
RNA and DNA were extracted from the same frozen cell pellets using the ZR-Duet DNA/RNA Mini-

Prep kit (D7001, Zymo, CA, USA) according to the manufacturer’s instructions. All four conditions

from three or four individuals were extracted in the same batch. RNA samples had a median RIN

score of 8.5 with similar median scores across conditions (A = 9.4, B = 8.7, C = 9.1, D = 9.2)

(Supplementary file 1, Figure 2—figure supplement 1). All samples had RIN scores greater than

eight except for two samples: 18852A RIN = 6, 18852D RIN = not determined. 18852A is an outlier

sample in Figure 2—figure supplement 2. Given that both of these samples come from an
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individual for which we have replicate samples, these particular samples were not selected for the

differential expression analysis and eQTL analysis that are only able to handle one biological

replicate.

RNA-seq library preparation
We prepared RNA-seq libraries from 15 individuals, and three replicates from three individuals

(18852, 18855, 18511). A toal of 500 ng of RNA were used to prepare sequencing libraries using the

Illumina TruSeq RNA Sample Preparation Kit v2 (RS-122–2001 and �2002, Illumina). Libraries were

pooled into five master mixes containing 12 or 16 samples. Each pool was sequenced 50 bp, single-

end on the HiSeq2500 or HiSeq4000 according to the manufacturer’s instructions.

DNA methylation array
We measured DNA methylation in 13 of the 15 individuals we collected gene expression data for

(we do not have data from any condition for individuals 18870 and 19116; Supplementary file 1). As

we did for the RNA-seq data, we collected three replicates for three individuals; except for individual

18852 which only had two replicates. Nine chips (eight samples per chip) with 60–1000 ng DNA

were bisulfite-converted and processed on an Illumina Infinium MethylationEPIC array at the Univer-

sity of Chicago Functional Genomics facility.

ATAC-seq
We performed ATAC-seq in 14 of the 15 individuals we had gene expression data for (we do not

have data from any condition for individual 18858; Supplementary file 1). One sample was collected

for each individual and condition. ATAC-seq libraries were prepared using the Illumina Nextera DNA

sample kit. Libraries were amplified for 10–16 cycles depending on the amplification rate of each

library. Each library was amplified in a PCR reaction containing 10 ml DNA, 10 ml dH2O, 15 ml NMP

(PCR master mix), 5 ml PPC (PCR primer cocktail), 5 ml index N5, and 5 ml index N7. PCR conditions

were set at 72˚C for 5 min, 98˚C for 30 s, 98˚C for 10 s, 63˚C for 30 s, 72˚C for 1 min, repeat steps 3–

5 4x and hold at 4˚C. The number of cycles per library was determined using a qPCR side reaction as

described in Buenrostro et al., 2013. Libraries were purified using Agencourt AMPure XP beads

(A63880, Beckman Coulter, IN, USA), and bioanalyzed to determine library quality. Twelve or 16

samples were pooled together to generate four master mixes. Each master mix was sequenced 50

bp paired-end on the HiSeq4000 according to the manufacturer’s instructions.

Lactate dehydrogenase activity assay
Lactate dehydrogenase activity (LDH) was measured in 5 ml cell culture media using the Lactate

Dehydrogenase Activity Assay Kit (MAK066, MilliporeSigma, MO, USA) according to the manufac-

turer’s instructions. Each sample was assayed in triplicate. LDH activity was measured as the differ-

ence in absorbance prior to the addition of the substrate, and 10 min after the initiation of the

enzymatic reaction, calculated relative to a standard curve. Measurements are standardized relative

to A, and reported as A (A-A), B (B-A), C (C-B) and D (D-B).

BNP ELISA
A total of 125 ml of cell culture media was assayed to quantify the level of secreted BNP using the

Brain Natriuretic Peptide EIA kit (RAB0386, MilliporeSigma). Each sample was assayed in duplicate

on two 96-well plates. BNP levels were quantified relative to a standard curve using 4- and 5-param-

eter logistic models using the R package drc. Measurements are standardized relative to A, and

reported as A (A-A), B (B-A), C (C-B), and D (D-B).

RNA-seq analysis
Reads were aligned to hg19 using subread align (Liao et al., 2013). The mapped reads were then

reprocessed to reduce reference bias for downstream analyses using the WASP pipeline (van de

Geijn et al., 2015). Briefly, reads overlapping polymorphisms segregating in our population were

remapped to the genome using the true read, and a version of the read with the alternative allele.

Only reads that mapped uniquely to the same locations with both possible alleles were kept. The

median number of reads across conditions was similar (A: 34,353,716; B: 33,493,298; C: 33,883,532;
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D: 38,147,083). The number of filtered reads mapping to genes was quantified using featureCounts

within subread (Liao et al., 2014). We obtained measurements for 19,081 genes. Sample 18852A

was an outlier when considering read count correlations between pairs of samples, and was there-

fore removed prior to subsequent analyses.

Differential expression analysis
We selected autosomal genes for downstream analysis (18,226). Log2-transformed counts per million

were calculated (Robinson et al., 2010), and genes with a mean log2cpm < 0 were excluded. We

used the fact that we have replicate data from three individuals to remove unwanted variation in our

data. We used the RUVs function in the RUVSeq package in R (Risso et al., 2014) to identify such

factors. By manual inspection, our data segregated by individual or condition after correction with

four factors. For the differential expression analysis, we excluded sample replicate one to avoid the

outlier sample and randomly selected replicate two, instead of replicate three, for individuals with

replicate samples. We used the RUV factors as covariates in our differential expression analysis using

the TMM-voom-limma pipeline (Law et al., 2014; Robinson et al., 2010; Smyth, 2004). We used

fixed effects for each condition (A, B, C, D), the RUVs factors as covariates, and a random effect for

individual, which was implemented using duplicateCorrelation. Genes with a Benjamini and Hoch-

berg FDR < 0.1 are classified as differentially expressed (Benjamini and Hochberg, 1995).

Gene expression trajectory analysis
To identify response genes, we used the Cormotif package in R (Wei et al., 2015) to jointly model

pairs of tests. We used TMM-normalized log2cpm values as input and considered the following pairs

of tests: A vs B, B vs. C, and B vs. D to determine which genes are changing their expression during

the course of the experiment. The best fit was determined to correspond to two correlation motifs

or clusters using BIC and AIC. We classified genes as response genes if the probability of differential

expression between conditions was >0.5 in all pairs of tests.

eQTL identification
To map eQTLs, we analyzed the same samples considered in the differential expression analysis.

Given the sample size in this study, we utilized the combined haplotype test (CHT) to identify eQTLs

(van de Geijn et al., 2015). This test models both allelic imbalance and total read depth at a region

to identify QTLs. We require 50 total counts and 10 allele-specific counts for each gene, and tested

variants 25 kb upstream and 25 kb downstream of the TSS, resulting in 1,040,874 shared tests (A:

1,215,476; B: 1,211,099, C: 1,224,612, D: 1,201,078). As previously reported, we found that null

p-values for the CHT were not calibrated in our data. To calibrate the p-values, we estimated the

null distribution of the CHT by permuting the data 100 times and fitting a Beta distribution to the

permuted p-values for each SNP-gene pair (previously proposed by Delaneau et al., 2017;

Ongen et al., 2016). We then computed an adjusted p-value for each SNP-gene pair by taking the

CDF of the fitted Beta distribution, evaluated at the reported CHT p-value.

To call significant eQTLs, we estimated q-values for the set of adjusted p-values for each pheno-

type, and took tests with q < 0.1. The number of eGenes in each condition was determined by tak-

ing the most significant SNP-gene association in each condition (i.e. the top SNP). We defined

dynamic eQTLs as either: (1) significant only in A (q<0.1 in A and permutation-adjusted p>0.15 in B

and C and D; suppressed eQTL); (2) significant in at least one of B, C, or D (q < 0.1) and not nomi-

nally significant in A (adjusted p>0.15; induced eQTL).

Power analysis
For QTL mapping, we assume a linear model

yi ¼ xibþ �i
�i ~N 0;s2ð Þ

where yi denotes the phenotype of individual i and xi denotes the genotype of individual i at a single

SNP of interest. We estimate an effect size b
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b̂~N b;
s2

n

� �

where n is the sample size. Let l¼ b=s be the standardized effect size. Then,

l̂~N l;
1

n

� �

and

Power l;a;nð Þ ¼F F�1 a=2ð Þþl
ffiffiffi

n
p� �

where a denotes the significance level and F denotes the standard Gaussian CDF. To simplify the

analysis, we consider a¼ 0:05=20000¼ 2:5� 10
�6 (i.e. Bonferroni correction; this is equivalent to con-

trolling the FDR when all tests are null, and is conservative otherwise). Assume there is a single

causal variant. Then, the phenotypic variance explained is:

h2 ¼ l2

l2 þ 1

We defined a dynamic eQTL as either significant only in A, or significant (after Bonferroni correc-

tion, in this analysis) in one of B, C, or D and not significant in A. To estimate the false-positive rate

of dynamic eQTL calling, we asked what was the probability of a SNP passing this definition, assum-

ing the standardized effect size l was identical in all four conditions. We then computed phenotypic

variance explained, power to detect an eQTL, and false-positive rate to call a dynamic eQTL for

every choice of standardized effect size l.

Overlapping response genes and eGenes with existing gene sets
Gene ontology analysis
Gene set enrichment analysis was performed on response genes, and a background set of all

expressed genes using the DAVID genomic annotation tool (Huang et al., 2009a; Huang et al.,

2009b). GO Terms related to Biological Processes were selected, and those with a Benjamini-Hoch-

berg controlled FDR < 0.05 were designated as significantly enriched. Each of the five significantly

enriched processes relates to transcription (‘DNA-templated transcription’, ‘DNA-templated regula-

tion of transcription’, ‘DNA-templated negative regulation of transcription’, ‘negative regulation of

transcription from RNA polymerase II promoter’, ‘positive regulation of transcription from RNA poly-

merase II promoter’). The most significantly enriched GO terms related to Molecular Functions

include ‘transcription factor activity, sequence-specific DNA binding’, ‘nucleic acid binding’ and

‘DNA binding’.

Transcription factors
A list of 1,637 annotated human TFs was obtained from Lambert et al., 2018, and intersected with

our gene sets.

GTEx eQTLs
Three hundred and sixty-seven dynamic eSNPs were interrogated for overlap with eQTL data from

left ventricle heart tissue and 49 other tissues assayed in GTEx v8 (http://www.gtexportal.org). A

total of 326 dynamic eSNPs were tested in GTEx. We determined whether each dynamic eSNP was

identified as a significant eQTL in left ventricle heart tissue or any other tissue. To define shared

eSNPs we identified the 61 eGenes present in all four conditions. We then identified the most signif-

icant eSNP for that gene in condition A and determined whether this SNP was significantly associ-

ated with the expression of that gene in conditions B, C, and D. This yielded 20 shared eSNPs, 19 of

which were tested by the GTEx consortium. We compared our dynamic eQTL and shared eQTL

effect sizes to the effect size in GTEx left ventricle heart tissue. In this analysis, for the dynamic

eQTLs we selected the condition with the largest effect size, and for the shared eQTLs we used the

effect size in condition A to compare to the GTEx effect size.
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ATAC-seq analysis
Paired-end sequencing reads were aligned to hg19 using bowtie2 with default settings

(Langmead and Salzberg, 2012). Reads were filtered using Picard Tools (https://broadinstitute.

github.io/picard/) to remove duplicate reads, and reads mapping to the mitochondrial genome.

Reads were then remapped using the WASP pipeline as described above. We retained a similar

median number of reads across conditions (A: 28,998,060; B: 33,662,261; C: 30,161,640; D:

34,534,416). Across conditions, there is no significant difference in the number of mapped reads,

number of regions identified, or fraction of reads mapped to open chromatin regions (Figure 4—fig-

ure supplement 2A–C). All libraries, across conditions, show the expected fragment size distribu-

tion, enrichment of reads at transcription start sites (TSS), and footprints at well-defined CTCF

motifs (Figure 4—figure supplement 2D–F). Correlation analysis of read counts between pairs of

samples revealed clustering by individual and condition (Figure 4—figure supplement 3). As

expected, the correlation of read counts between samples at the 10,633 regions overlapping the

TSS is higher than the correlation across all regions (median rho = 0.83 vs. 0.56). Pairs of samples

from the same condition are marginally more correlated in their accessibility profiles than pairs of

samples across all conditions (median rho = 0.84 vs. 0.83 at the TSS).

Identification of accessible chromatin regions
To generate a unified list of regions with accessible chromatin across conditions and samples, we

first used MACS2 (Zhang et al., 2008) to identify peaks within each sample independently. Next, we

used BEDtools (Quinlan and Hall, 2010) with the multiIntersectBed function to identify overlapping

peaks within each condition separately. Within each condition, we retained peaks with support from

more than three individuals and used the mergeBed function to create a condition-specific consen-

sus. We then combined and merged the bed files across the four conditions to make a final consen-

sus file containing all the filtered accessible regions. The number of reads mapping to accessible

chromatin regions was quantified using featureCounts within subread (Liao et al., 2014).

Identification of differentially accessible regions (DARs)
The 128,673 open chromatin regions associated with count data were filtered to include only those

regions on the autosomes, and those which had mean log2cpm values > 0 for each region. First, to

identify differentially accessible regions we used the same limma framework described above for the

RNA-seq data. To test for differences between conditions, a linear model with a fixed effect for con-

dition was used together with a random effect for individual. We did not identify any significantly dif-

ferentially accessible regions with a Benjamini and Hochberg FDR < 0.1. To identify regions with

small effect size differences between conditions, we used an adaptive shrinkage method imple-

mented in the ashr package in R (Stephens, 2017). We used the regression estimates (regression

coefficients, posterior standard errors, and posterior degrees of freedom) generated by limma to

calculate a posterior mean (shrunken regression coefficients), FDR, and False Sign Rate (FSR, proba-

bility that the sign of the effect size is wrong). We considered regions to be differentially accessible

at FSR <0.1. We denote regions that are not differentially accessible as constitutively accessible

regions.

Overlap of DARs with genomic features
TSS
Transcription start sites were obtained from the UCSC Table Browser (http://genome.ucsc.edu/cgi-

bin/hgTables) using ‘txStart’ from Ensembl genes (Karolchik et al., 2004). TSS were defined based

on the TSS of the 5’ most transcript on the sense strand and 3’ most transcript on the anti-sense

strand. TSS regions, and subsequent genomic features, were intersected with DARs and constitu-

tively accessible regions requiring a 1 bp overlap using bedtools intersect (Quinlan and Hall, 2010).

Histone marks
We obtained histone mark data (.bed files) for human heart tissue from the ENCODE consortium

(ENCODE Project Consortium, 2012; Davis et al., 2018) ENCODE portal, (https://www.encode-

project.org). We selected H3K4me3 (Experiment ENCSR181ATL), H3K4me1 (Experiment

ENCSR449FRQ), H3K36me3 (Experiment ENCSR799KLF), H3K27me3 (Experiment: ENCSR613PPL),
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and H3K9me3 (Experiment ENCSR803MVC) ChIP-seq data from heart left ventricle tissue from a 51-

year-old female individual (Biosample ENCBS684IAD).

Transcription factor binding locations
We obtained ChIP-seq data for the hypoxia-responsive factors HIF1a and HIF2a assayed in the

MCF-7 breast cancer cell line (Schödel et al., 2011), and E2F4 in the GM06990 lymphoblastoid cell

line (Lee et al., 2011). Genome co-ordinates of the 356 HIF1a-, 301 HIF2a- and 16,245 E2F4-bound

regions were converted from hg18 to hg19 using the liftOver tool in the Galaxy platform (http://gal-

axyproject.org/; Afgan et al., 2018).

Motif enrichment analysis in DARs
We obtained sequences for all accessible regions and differentially accessible regions using the Gal-

axy platform (Afgan et al., 2018). We used the MEME-ChIP tool within The MEME Suite

(Bailey et al., 2009; Machanick and Bailey, 2011) in Differential Enrichment mode to identify motifs

differentially enriched in DARs compared to all accessible regions using a hypergeometric

distribution.

TEs
We obtained repeat annotations from the RepeatMasker track (Jurka, 2000; Smith et al., 2010)

from the UCSC Table browser (Karolchik et al., 2004). We intersected the Repeatmasker track with

our accessible regions and reported those elements where 50% of their length overlaps a DAR or

constitutively accessible region. We stratified TEs by TE class: LINE, SINE, DNA, and LTR, and then

by TE family and type within the SINE class.

CpG islands
We obtained CpG island annotations from the UCSC Table Browser, and overlapped these regions

with DARs and constitutively accessible regions.

caQTL identification
The caQTLs were identified in the same manner as described for the eQTLs. However, in the caQTL

analyses, we limited tested SNPs to those falling within the 128,672 accessible regions, as opposed

to testing variants within 25 kb of the region as we did for eQTLs. Dynamic caQTLs were identified

as for dynamic eQTLs.

DNA methylation analysis
To allow for accurate quantification of DNA methylation levels we removed probes overlapping

SNPs with a minor allele frequency of >0.1, and only retained probes with a detection p-value

of >0.75 across samples. Beta-values (ratio of methylated probe intensity and overall probe intensity,

and bounded between 0 and 1) were quantile normalized using lumiN, and, when appropriate, con-

verted to M-values (log2 ratio of intensities of methylated probe versus unmethylated probe) using

lumi (Du et al., 2008).

The methylation level of CpGs coincides with the expected distribution based on their annotated

genomic location that is low levels of DNA methylation in CpG islands, and higher levels in CpG

island shores, and CpG island shelves respectively (Figure 6—figure supplement 1). Correlation

analysis across all pairs of samples, including replicate samples, reveals clustering primarily by indi-

vidual rather than condition (Figure 6—figure supplement 2).

To measure the DNA methylation level at gene set promoters, we selected CpGs 200 bp

upstream of the TSS (TSS200 defined on the array). We considered all CpGs when overlapping with

DARs.

Identification of differentially methylated CpGs (DMCpGs)
Differentially methylated CpGs were identified using the same limma framework as described for the

RNA-seq data. Analysis was run using both Beta-values and M-values.
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Variance partition of three molecular phenotypes
To identify the proportion of variance explained by individual, condition and replicate in the gene

expression, chromatin accessibility, and DNA methylation data, we used a linear mixed model with a

random effect for all of the variables. The variance was normalized to sum to one and the proportion

of variance attributed to each variable was calculated at each locus. We used a t-test to compare the

mean proportion of variance explained by the same variable between data types.

Integration with GWAS-implicated variants and genes
We intersected the Reference SNP cluster ID of our dynamic QTLs with the 158,654 SNPs in the

NHGRI-EBI GWAS Catalog available from the UCSC Table Browser (Buniello et al., 2019) in August

2019.

We also considered the ‘mapped genes’ results from GWAS from thee relevant traits: myocardial

infarction (EFO_0000612, 89 genes), heart failure (EFO_0003144, 164 genes) and stroke

(EFO_0000712, 255 genes), downloaded from the NHGRI-EBI GWAS Catalog in August 2019. Gene

lists were intersected with our response eGenes.

Full GWAS summary statistics for CAD and MI were obtained from the CARDIoGRAMplusC4D

Consortium (Stitziel et al., 2016; Nikpay et al., 2015). We tested if the lead eSNP of the dynamic

eQTLs, and all significant eQTLs in each condition is associated with CAD or MI. We created locus

zoom plots in each condition by plotting the -log10 p-values of the GWAS and eQTL SNPs in a 1 Mb

window around eSNPs. We calculated LD from the YRI population using the LDlink program

(Machiela and Chanock, 2015). We used the LDmatrix function to generate the LD matrix plots

choosing all tested SNPs 5 kb upstream and downstream from the eSNP or lead GWAS variant. To

generate the R2 value and p value of the LD between the eSNP and GWAS variant we used the

LDpair function.

Data access
All RNA-seq, ATAC-seq and DNA methylation data have been deposited in the Gene Expression

Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE144426.
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Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. 2011. High-resolution genome-wide
mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–e217. DOI: https://doi.org/10.1182/blood-2010-10-
314427, PMID: 21447827

Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AFR, Barbalic M, Gieger
C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardissino D, Ball SG,
Balmforth AJ, et al. 2011. Large-scale association analysis identifies 13 new susceptibility loci for coronary
artery disease. Nature Genetics 43:333–338. DOI: https://doi.org/10.1038/ng.784

Shah SH, Roselli A, Honghuang C, Sveinbjornsson L, Fatemifar G. 2020. Genome-wide association study provides
new insights into the genetic architecture and pathogenesis of heart failure. Nature Communications 11:163.
DOI: https://doi.org/10.1038/s41467-019-13690-5

Sigurdsson MI, Saddic L, Heydarpour M, Chang TW, Shekar P, Aranki S, Couper GS, Shernan SK, Muehlschlegel
JD, Body SC. 2017. Post-operative atrial fibrillation examined using whole-genome RNA sequencing in human
left atrial tissue. BMC Medical Genomics 10:25. DOI: https://doi.org/10.1186/s12920-017-0270-5, PMID: 28464
817

Smirnov DA, Brady L, Halasa K, Morley M, Solomon S, Cheung VG. 2012. Genetic variation in radiation-induced
cell death. Genome Research 22:332–339. DOI: https://doi.org/10.1101/gr.122044.111, PMID: 21844125

Smith A, Hubley R, Green P. 2010. RepeatMasker. 3.0. Genome Bioinformatics. http://www.repeatmasker.org/
Smyth GK. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray
experiments. Statistical Applications in Genetics and Molecular Biology 3:1–25. DOI: https://doi.org/10.2202/
1544-6115.1027, PMID: 16646809

Stephens M. 2017. False discovery rates: a new deal. Biostatistics 18:275–294. DOI: https://doi.org/10.1093/
biostatistics/kxw041, PMID: 27756721

Stitziel NO, Stirrups KE, Masca NG, Erdmann J, Ferrario PG, König IR, Weeke PE, Webb TR, Auer PL, Schick UM,
Lu Y, Zhang H, Dube MP, Goel A, Farrall M, Peloso GM, Won HH, Do R, van Iperen E, Kanoni S, et al. 2016.
Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. The New England Journal of
Medicine 374:1134–1144. DOI: https://doi.org/10.1056/NEJMoa1507652, PMID: 26934567

Stone G, Choi A, Meritxell O, Gorham J, Heydarpour M, Seidman CE, Seidman JG, Aranki SF, Body SC, Carey
VJ, Raby BA, Stranger BE, Muehlschlegel JD. 2019. Sex differences in gene expression in response to ischemia
in the human left ventricular myocardium. Human Molecular Genetics 28:1682–1693. DOI: https://doi.org/10.
1093/hmg/ddz014, PMID: 30649309

Strober BJ, Elorbany R, Rhodes K, Krishnan N, Tayeb K, Battle A, Gilad Y. 2019. Dynamic genetic regulation of
gene expression during cellular differentiation. Science 364:1287–1290. DOI: https://doi.org/10.1126/science.
aaw0040, PMID: 31249060

Unoki M, Nakamura Y. 2003. Methylation at CpG islands in intron 1 of EGR2 confers enhancer-like activity. FEBS
Letters 554:67–72. DOI: https://doi.org/10.1016/s0014-5793(03)01092-5, PMID: 14596916

Ward, Banovich, et al. eLife 2021;10:e57345. DOI: https://doi.org/10.7554/eLife.57345 32 of 33

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.1038/s41598-018-33478-9
https://doi.org/10.1038/s41598-018-33478-9
http://www.ncbi.nlm.nih.gov/pubmed/30333510
https://doi.org/10.1038/nature08872
https://doi.org/10.1161/CIRCRESAHA.115.307778
http://www.ncbi.nlm.nih.gov/pubmed/26635390
https://doi.org/10.15252/embr.201642198
http://www.ncbi.nlm.nih.gov/pubmed/27506891
https://doi.org/10.1186/s13059-018-1582-2
https://doi.org/10.1186/s13059-018-1582-2
http://www.ncbi.nlm.nih.gov/pubmed/30526646
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1016/j.cell.2009.04.020
http://www.ncbi.nlm.nih.gov/pubmed/19596239
https://doi.org/10.1038/nbt.2931
http://www.ncbi.nlm.nih.gov/pubmed/25150836
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1186/1465-9921-13-74
http://www.ncbi.nlm.nih.gov/pubmed/22938014
http://www.ncbi.nlm.nih.gov/pubmed/22938014
https://doi.org/10.1016/j.redox.2017.05.022
http://www.ncbi.nlm.nih.gov/pubmed/28624704
https://doi.org/10.1182/blood-2010-10-314427
https://doi.org/10.1182/blood-2010-10-314427
http://www.ncbi.nlm.nih.gov/pubmed/21447827
https://doi.org/10.1038/ng.784
https://doi.org/10.1038/s41467-019-13690-5
https://doi.org/10.1186/s12920-017-0270-5
http://www.ncbi.nlm.nih.gov/pubmed/28464817
http://www.ncbi.nlm.nih.gov/pubmed/28464817
https://doi.org/10.1101/gr.122044.111
http://www.ncbi.nlm.nih.gov/pubmed/21844125
http://www.repeatmasker.org/
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.2202/1544-6115.1027
http://www.ncbi.nlm.nih.gov/pubmed/16646809
https://doi.org/10.1093/biostatistics/kxw041
https://doi.org/10.1093/biostatistics/kxw041
http://www.ncbi.nlm.nih.gov/pubmed/27756721
https://doi.org/10.1056/NEJMoa1507652
http://www.ncbi.nlm.nih.gov/pubmed/26934567
https://doi.org/10.1093/hmg/ddz014
https://doi.org/10.1093/hmg/ddz014
http://www.ncbi.nlm.nih.gov/pubmed/30649309
https://doi.org/10.1126/science.aaw0040
https://doi.org/10.1126/science.aaw0040
http://www.ncbi.nlm.nih.gov/pubmed/31249060
https://doi.org/10.1016/s0014-5793(03)01092-5
http://www.ncbi.nlm.nih.gov/pubmed/14596916
https://doi.org/10.7554/eLife.57345


van de Geijn B, McVicker G, Gilad Y, Pritchard JK. 2015. WASP: allele-specific software for robust molecular
quantitative trait locus discovery. Nature Methods 12:1061–1063. DOI: https://doi.org/10.1038/nmeth.3582,
PMID: 26366987

Wang Y, Ju C, Hu J, Huang K, Yang L. 2019. PRMT4 overexpression aggravates cardiac remodeling following
myocardial infarction by promoting cardiomyocyte apoptosis. Biochemical and Biophysical Research
Communications 520:645–650. DOI: https://doi.org/10.1016/j.bbrc.2019.10.085, PMID: 31627895

Ward MC, Gilad Y. 2019. A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from
humans and chimpanzees. eLife 8:e42374. DOI: https://doi.org/10.7554/eLife.42374, PMID: 30958265

Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann
A, Sharaf O, Baugh JA. 2014. Hypoxia-induced epigenetic modifications are associated with cardiac tissue
fibrosis and the development of a myofibroblast-like phenotype. Human Molecular Genetics 23:2176–2188.
DOI: https://doi.org/10.1093/hmg/ddt614, PMID: 24301681

Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NG, Jansen H, Kanoni S, Nelson CP, Ferrario PG, König IR,
Eicher JD, Johnson AD, Hamby SE, Betsholtz C, Ruusalepp A, Franzén O, Schadt EE, Björkegren JL, Weeke PE,
Auer PL, et al. 2017. Systematic evaluation of pleiotropy identifies 6 further loci associated with Coronary
Artery Disease. Journal of the American College of Cardiology 69:823–836. DOI: https://doi.org/10.1016/j.jacc.
2016.11.056, PMID: 28209224

Wei Y, Tenzen T, Ji H. 2015. Joint analysis of differential gene expression in multiple studies using correlation
motifs. Biostatistics 16:31–46. DOI: https://doi.org/10.1093/biostatistics/kxu038, PMID: 25143368

Wheeler HE, Shah KP, Brenner J, Garcia T, Aquino-Michaels K, Cox NJ, Nicolae DL, Im HK, GTEx Consortium.
2016. Survey of the heritability and sparse architecture of gene expression traits across human tissues. PLOS
Genetics 12:e1006423. DOI: https://doi.org/10.1371/journal.pgen.1006423, PMID: 27835642

WHO. 2018. World Health Statistics 2018:Monitoring Health for the SDGs : World Health Organization. https://
apps.who.int/iris/handle/10665/272596.

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu
XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9:R137. DOI: https://doi.org/10.1186/
gb-2008-9-9-r137, PMID: 18798982

Ward, Banovich, et al. eLife 2021;10:e57345. DOI: https://doi.org/10.7554/eLife.57345 33 of 33

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.1038/nmeth.3582
http://www.ncbi.nlm.nih.gov/pubmed/26366987
https://doi.org/10.1016/j.bbrc.2019.10.085
http://www.ncbi.nlm.nih.gov/pubmed/31627895
https://doi.org/10.7554/eLife.42374
http://www.ncbi.nlm.nih.gov/pubmed/30958265
https://doi.org/10.1093/hmg/ddt614
http://www.ncbi.nlm.nih.gov/pubmed/24301681
https://doi.org/10.1016/j.jacc.2016.11.056
https://doi.org/10.1016/j.jacc.2016.11.056
http://www.ncbi.nlm.nih.gov/pubmed/28209224
https://doi.org/10.1093/biostatistics/kxu038
http://www.ncbi.nlm.nih.gov/pubmed/25143368
https://doi.org/10.1371/journal.pgen.1006423
http://www.ncbi.nlm.nih.gov/pubmed/27835642
https://apps.who.int/iris/handle/10665/272596
https://apps.who.int/iris/handle/10665/272596
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1186/gb-2008-9-9-r137
http://www.ncbi.nlm.nih.gov/pubmed/18798982
https://doi.org/10.7554/eLife.57345

