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Abstract: To assess the biology of the lethal endpoint in patients with SARS-CoV-2 infection, we
compared the transcriptional response to the virus in patients who survived or died during severe
COVID-19. We applied gene expression profiling to generate transcriptional signatures for peripheral
blood mononuclear cells (PBMCs) from patients with SARS-CoV-2 infection at the time when they
were placed in the Intensive Care Unit of the Pavlov First State Medical University of St. Petersburg
(Russia). Three different bioinformatics approaches to RNA-seq analysis identified a downregulation
of three common pathways in survivors compared with nonsurvivors among patients with severe
COVID-19, namely, low-density lipoprotein (LDL) particle receptor activity (GO:0005041), important
for maintaining cholesterol homeostasis, leukocyte differentiation (GO:0002521), and cargo receptor
activity (GO:0038024). Specifically, PBMCs from surviving patients were characterized by reduced
expression of PPARG, CD36, STAB1, ITGAV, and ANXA2. Taken together, our findings suggest that
LDL particle receptor pathway activity in patients with COVID-19 infection is associated with poor
disease prognosis.

Keywords: peripheral blood mononuclear cells; COVID-19; transcriptome; GO ontology; LDL
particle receptor activity; leukocyte differentiation; cargo receptor activity

1. Introduction

Coronavirus disease (COVID-19) is caused by infection with the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) from the HCoV family of coronaviruses [1].
The first cases of this disease were described in China in the province of Wuhan, but by
the end of January 2020, COVID-19 had been diagnosed in almost 12,000 people from
27 countries, and 259 patients had died. On 11 March 2020, the World Health Organiza-
tion announced the COVID-19 pandemic—by this time the disease had been detected
in 126 countries worldwide in more than 125,000 people [2]. For current information on
COVID-19 incidence, visit the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University (JHU), https://coronavirus.jhu.edu/map.html (accessed on 3 Decem-
ber 2021) Such a rapid development of the infectious process is associated with the airborne
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spread of SARS-CoV-2 and a short incubation period (in most cases, from 3 to 7 days
clinical signs of the disease are observed, primarily fever and impaired sense of smell) [3].

Angiotensin-converting enzyme 2, known as the ACE2 receptor protein, serves as a
target or entry point for SARS-CoV-2 [4–6]. The binding of the virus spike protein S1 to
this receptor leads to rapid internalization of the virus by ACE2-expressing cells, primarily
epithelial cells of the upper respiratory tract, alveolocytes, and enterocytes of the small
intestine [7]. Individual differences in the level of expression of ACE2 can influence the
risk of developing COVID-19 and the severity of the disease [8]. As ACE2 plays the role
of a negative regulator of the activity of the entire renin–angiotensin–aldosterone system
(RAAS), the partial dysfunction of ACE2 caused by the interaction with the viral protein S1
can lead to damage to various organs and tissues; from the lungs as the primary target of
damage to the nervous tissue [9].

New SARS-CoV-2 viral particles maturing in infected epithelial cells of the alveoli
through exocytosis enter the lung tissue, which results in the release of many proinflamma-
tory cytokines (cytokine storm), infiltration of the lung tissue by macrophages, neutrophils,
and T-cells, and the development of acute respiratory distress syndrome (ARDS). ARDS
is characterized by severe impairment of lung function with decreased blood oxygen sat-
uration [3,10]. The severity of the cytokine storm determines the clinical severity of the
disease, and a pronounced increase in the level of proinflammatory cytokines is associated
with the development of multiorgan damage to various organs and systems.

The further course of the pathological process in critically ill patients depends on
several factors, such as age, the presence of comorbid conditions, and the level of D-dimers
and lactate in peripheral blood [11]. The possibility that the genetic background can also
influence the outcome of COVID-19 is also proposed. Inherited susceptibility can explain
an individual response to viral infection in some human viral diseases [12]. One of the
best examples is herpes simplex virus encephalitis, which in up to 7% of cases is caused
by mutations in the genes for TLR3 or DBR1 [13]. COVID-19 is a completely new disease.
Many studies analyzing a genetic basis of predisposition to COVID-19 on exome and
genome levels are now being conducted [12]. However, definite genetic variants explaining
severe COVID-19 cases have not yet been elucidated.

One of the possible approaches to search for such factors is analysis of the transcrip-
tome and proteome of the peripheral blood of patients because each pathogen creates a
unique transcriptional landscape based on the individual genome. A few studies have been
published over the past year exploring proteomic and whole-transcriptomic RNA sequenc-
ing, including miRNAs and lncRNAs in various groups of patients with COVID-19 [14–16].
However, in all studies mentioned above the comparison was conducted between infected
patients and controls, without assessing the disease outcome.

For a more accurate understanding of the course of the pathological process in patients
with severe COVID-19, it is necessary to continue the search for factors that affect the course
of the pathological process and the possibility of a favorable outcome in critically ill patients.
To identify the genetic factors for potential recovery from severe COVID-19 requiring
intensive therapy and resuscitation, we have, for the first time to our knowledge, conducted
a study of RNA sequencing in patients at the time of admission to the intensive care unit
with a prospective assessment of the outcome of the disease in an acute period (30 days).
This study allowed the identification of genes differentially expressed in peripheral blood
mononuclear cells (PBMCs) of patients with severe COVID-19 with different outcomes.

2. Materials and Methods
2.1. Patients

From 1 November 2020 to 25 February 2021, 200 patients were admitted to the Inten-
sive Care Unit (ICU) of the Pavlov First State Medical University of St. Petersburg with a
diagnosis of COVID-19 according to NEWS\NEWS2 criterium [17,18], of whom 44 met
inclusion criteria. The inclusion criteria were Russian ethnicity, age between 40 and 80 years
with the absence of chronic comorbidities such as cancer, cerebrovascular diseases, heart
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failure, or renal failure. All patients were SARS-CoV-2 positive and had severe pneumonia.
SARS-CoV-2 infection was confirmed by reverse-transcriptase polymerase chain reaction.
Patients were followed up for 30 days: 14 patients died and 30 patients survived during
the period of observation. When selecting patients for transcriptome analysis, additional
inclusion criteria were applied: age 55–80 years and male sex. As a result, 8 patients with
severe COVID-19 were enrolled in the present study. The baseline demographic and clinical
characteristics of the patients are summarized in Table 1.

Table 1. Baseline demographic characteristics of the patients with COVID-19 at the time of admission.

ID
Patients

Discharged
Alive or Died Age Gender T ◦C Oxygen

Saturation
Respiration

Rate CT-SKAN * Therapy Day of
Death

38
34939 Dead 66 Male 37.1 65 26 4 Tocilizumab 400 mg

CVVH 1470 min 28

98
36367 Dead 72 Male 37.5 88 22 2 Ruxolitinib 10 mg pd 19

101
37339 Dead 63 Male 36.9 80 25 4 Tocilizumab 400 mg

CVVH 1520 min 30

114
37483 Alive 79 Male 36.7 92 22 3 Baricitinib 4 mg pd -

51
35875 Alive 72 Male 38.0 92 22 4 Tocilizumab 400 mg

CVVH 1440 min -

96
36891 Alive 59 Male 37.6 86 27 4 Tocilizumab 400 mg -

99
36444 Alive 63 Male 36.6 88 21 4 Tocilizumab 400 mg

CVVH min 1490 min -

126
37998 Alive 74 Male 36.8 89 22 4 Baricitinib 4 mg pd -

* CT-SKAN scores depending on the extent of consolidation or ground-glass opacities: 1—<25%; 2—25–50%; 3—50–75%; 4—>75%.

The study was conducted in accordance with the World Medical Assembly Declara-
tion of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. All
blood samples were collected at the time of admission with the informed consent of the
investigated patients. The study was approved by the Ethics Committee of the Pavlov First
State Medical University of St. Petersburg (Russia).

2.2. Isolation of Peripheral Blood Mononuclear Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from 8 mL EDTA-
anticoagulated venous blood by a Fi,coll-Paque gradient method (Ficoll-Paque PLUS,
GE Healthcare, Chicago, IL, USA) [19].

After centrifugation, PBMCs were collected from the interface and washed twice with
PBS (pH 7.4) to remove the platelet-rich plasma fraction. The PBMC cell pellets were
aliquoted and resuspended in TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA,
USA) and immediately frozen at −80 ◦C.

2.3. RNA Isolation, Library Preparation, and Sequencing

Total RNA was extracted from PBMCs of SARS-COV-2 infected patients using TRIzolTM

Reagent (Thermo Fisher Scientific, USA) following the manufacturer’s protocol. All RNA
samples were stored at −80 ◦C for subsequent analysis. RNA quality and quantity were
analyzed using a NanoDrop spectrophotometer system (Thermo Fisher Scientific) and
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) with the RNA
6000 Nano Kit according to the manufacturer’s instructions. All samples had an RNA
integrity number (RIN) >8. Then, total RNA was used to obtain polyA fractions using
oligoT magnetic beads Dynabeads mRNA Purification Kit (Ambion, Austin, TX, USA)
according to the manufacturer’s protocol. Further, libraries for massive parallel sequencing
were prepared from polyA RNA using a NEBNext Ultra II RNA Library Prep Kit (NEB,
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Ipswich, MA, USA) and NEBNext Multiplex Oligos for Illumina (Index Primers Set 1)
according to the kit instructions. The concentration of the libraries was determined using
Qubit dsDNA HS Assay Kit with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific). The
lengths of distribution fragments from the cDNA libraries were assessed on an Agilent 2100
Bioanalyzer (Agilent Technologies) using the Agilent High Sensitivity DNA Kit (Agilent
Technologies). Unpaired (50 bp reads) sequencing of these libraries was performed on the
Illumina HiSeq1500 platform using the TruSeq SBS Kit V3 sequencing reagents (Illumina,
San Diego, CA, USA). RNA-Seq data for each sample (raw and processed data) can be
accessed in the Gene Expression Omnibus, accession number GSE185863.

2.4. Data Processing and Analysis

RNA-seq data were analyzed to identify differentially expressed genes (DEGs) using
three pipelines according to the block diagram in Figure 1. Gene ontology (GO) analysis of
identified DEGs was performed to reveal enriched pathways.

2.4.1. Pipeline 1

Fastq files for each sample were aligned to the GRCh38 genome (Gencode, release 37)
using HISAT2 (v2.6.1b) [20] with default parameters. Quality control for each sample was
performed using FastQC (version 0.11.9) [21] and RSeQC (version 4.0.0) [22]. Counting
reads was done using featureCounts [23]. Differential expression analysis was done using
DESeq function from DESeq2 with default settings [24] in R (version 4.0.3). The following
design was used in the analysis: gene ~ age + group + RIN + time tissue collection (ttr).
Detected differential expression of genes was considered significant at a false discovery
rate (FDR) <0.05 and a fold change (FC) threshold >1.5. The significance threshold was set
to an adjusted p < 0.05.

2.4.2. Pipeline 2

Human reference genome assembly GRCh38 (hg38) and gene model annotation files
were downloaded directly from the Gencode website (https://www.gencodegenes.org/
human/) (release 37, accessed on 1 December 2021). Adapters were removed by Cutadapt
(version 3.4). HISAT2 (version 2.2.1) [20] was used with default parameters to build an
index of the reference genome and mapping reads to the genome. Quality control for
each sample was performed by FastQC (version 0.11.9) [21] and RSeQC (version 4.0.0) [21].
Counts of the number of sequencing reads mapping to each gene after the alignment
step were conducted using the htseq-count function from the HTSeq framework (version
0.6.1) [25]. Gene differential expression analysis of two groups (two biological replicates
per condition) was performed using the DESeq2 package (version 1.30.1) [24] in R (version
4.0.3). The following design was used in the analysis: gene ~ age + group + RIN + ttr.
Detected differential expression of genes was considered statistically significant at an
FDR < 0.05 and an FC threshold >1.5.

2.4.3. Pipeline 3

Ambiguous and low-quality bases were removed from the files obtained during the
FastQ sequencing. The bases were removed with AdapterRemoval V2 [26]. The trimmed
files were aligned to the human reference genome GRCh38 and GRCh38.92 gene annotation
using RSEM with rsem-prepare-reference and rsem-calculate-expression commands [27]
and the -star option was also used to generate STAR indices [28]. The resulting pseudo-
counts were normalized using the TMM algorithm implemented in the R “edgeR” package,
the calcNormFactors command [29] and the CPM algorithm implemented in the R “limma”
package, with the “voom” command [30]. To identify differential expression, the normal-
ized reads were processed using the commands “voom” (estimating the ratio of mean
to variance, determining weights for observations), “lmFit” (creating a linear model de-
scribing observations), and “eBayes” (determining model parameters) from the R “limma”
package [30]. In the linear model, the outcomes of the disease, age, time from the moment

https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/
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of tissue collection to isolation, and the RNA integrity index were considered. The missing
values were imputed using the R “mice” package, with the “predictive mean matching”
method [31]. DEGs were selected according to the following criteria: an FC threshold >1.5
and p-value moderated t test limma with FDR correction for multiple testing <0.05.

Figure 1. A comparative block diagram of pipelines for RNA-seq data processing and analysis.
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2.4.4. Go Enrichment Analysis

Gene Ontology (GO) enrichment analysis with biological processes terms of [32] was
performed using Clue GO version 2.5.5 [33] and Cluepedia version 1.5.5 [34] for Cytoscape
version 3.6.1 and was conducted for DEGs obtained using three pipelines. Significantly
enriched terms were selected using the one-sided hypergeometric test with FDR correction
(p < 0.01). Term groups were selected by ClueGO based on the number of common
genes/term (>40%). For enrichment, only terms of at least level 3 and no more than
level 8 were considered, with which at least 3 DEGs were associated and with which the
total number of DEGs associated was at least 4% of all genes associated with the term.
All genes for which at least three reads were identified were used as a background for
enrichment analysis.

3. Results
3.1. RNA-Seq Experiments

We obtained PBMCs from each patient with severe COVID-19: five patients who
survived (survivors) and three patients who died from infection in the ICU (nonsurvivors).
Variation across biological replicates was low with Spearman correlation values within like
replicates for the two groups ranging from 0.86 to 0.89.

3.2. Differential Gene Expression Analysis Using DESeq2 and Limma/Voom

After applying a statistical filter (FDR < 0.05 and absolute FC > 1.5), we identified a
total of 1038 DEGs (6.9% of the total expressed 15793; 448 upregulated and 550 downregu-
lated genes) using Pipeline 1; 866 DEGs (5.1% of the total expressed 16,991; 399 upregulated
and 467 downregulated genes) using Pipeline 2; and 516 DEGs (3.1% of the total expressed
16,278; 188 upregulated and 328 downregulated genes) using Pipeline 3 in survivors com-
pared with nonsurvivors among patients with severe COVID-19 enrolled in this study.
Lists of all DEGs of the three pipelines are available in Supplementary Table S1. It should be
noted that when searching for DEGs, we took into account all reads related to a particular
gene without isolating individual spliced mRNA variants.

3.3. Enrichment Gene Ontology (GO) Analysis

To identify biological pathways in COVID-19 systematically, we performed GO en-
richment analysis of significantly up- and downregulated genes for DEGs identified in
each pipeline. The functional modules were identified as the mutually overlapping gene
sets clustered together and named using GO hierarchical structure terms. A GO term
enrichment was conducted for these genes. We considered “metabolic process” terms
with p < 0.05 (Bonferroni corrected hypergeometric test) and all types of GO-term-to-gene
connections. Main modules in Pipeline 1 were identified, such as low-density lipoprotein
(LDL) particle receptor activity (GO:0005041), leukocyte differentiation (GO:0002521), cargo
receptor activity (GO:0038024); Pipeline 2: LDL particle receptor activity (GO:0005041),
leukocyte differentiation (GO:0002521), cargo receptor activity (GO:0038024), lipoprotein
particle receptor activity (GO:0030228), positive regulation of cell adhesion (GO:0045785),
leukocyte activation (GO:0045321). In Pipeline 3, the identified processes were divided
into two large clusters that were not connected with each other: cluster A (LDL particle
receptor activity (GO:0005041), leukocyte differentiation (GO:0002521), cargo receptor
activity (GO:0038024), dendritic cell apoptotic process (GO:0097048), myeloid leukocyte
differentiation (GO:0002573), mononuclear cell differentiation (GO:1903131), regulation of
dendritic cell apoptotic process (GO:2000668), dendritic cell differentiation (GO:0097028)),
and cluster B (purinergic nucleotide receptor signaling pathway (GO:0035590).

Significant terms are presented in Figure 2 and Supplementary Table S2. Moreover, we
found three overlapping enriched pathways between three pipelines, LDL particle recep-
tor activity (GO:0005041), leukocyte differentiation (GO:0002521), cargo receptor activity
(GO:0038024) between three pipelines in survivors compared with nonsurvivors (Figure 1,
Supplementary Table S1). The DEGs involved in LDL particle receptor activity, cargo recep-



Cells 2021, 10, 3495 7 of 15

tor activity, and leukocyte differentiation pathways in the three pipelines are presented in
Supplementary Table S2. Interestingly, the determined gene sets included 62.5% genes from
all pathway-associated genes of LDL particle receptor activity (GO:0005041) in Pipeline 1,
75% in Pipeline 2, and 46.16% in Pipeline 3 (Supplementary Table S2).

Figure 2. GO network analysis of the top enriched GO terms in the differently expressed genes between in survivors
compared to nonsurvivors (multiple test correction by BH). Pipeline 1; Pipeline 2; Pipeline 3 with two clusters (Cluster A
consists of the processes included in groups 1 and 2. Cluster B consists of the processes included in group 3).

3.4. Enrichment Gene Ontology (GO) Analysis of Overlapping DEGs between Three Pipelines

Using a Venn diagram, 361 overlapping DEGs (248 upregulated, 113 downregulated) in
PBMCs of survivors compared with nonsurvivors between the three pipelines were deter-
mined (Figure 3). The overlapping genes determined by the Venn diagram are presented
in Supplementary Table S3. All the overlapping DEGs between the three pipelines had the
same direction of fold change.
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Figure 3. Venn diagram of differentially expressed genes in PBMCs of survivors compared to nonsurvivors among patients
with severe COVID-19 between three pipelines.

Next, we conducted GO analysis for 361 DEGs overlapping the three pipelines
(Figure 4). The enrichment pathways, LDL particle receptor activity (GO:0005041), leuko-
cyte differentiation (GO:0002521), and cargo receptor activity (GO:0038024), were also
determined in this part of the analysis (Figure 4, Supplementary Table S4). For the selection
of the putative target genes that may play a role in the outcome of COVID-19, we chose the
genes that had at least two relations between three overlapping pathways (Table 2). We
found downregulated expression levels of STAB1, PPARG, CD36, ITGAV, and ANXA2 in
survivors compared with nonsurvivors in all three pipelines.

Table 2. Differentially expressed genes in PBMCs from survivors compared to nonsurvivors involved in overlapping
pathways with at least two relations between three overlapping pathways: low-density lipoprotein particle receptor activity
(GO:0005041), leukocyte differentiation (GO:0002521), cargo receptor activity (GO:0038024).

Gene
Pipeline 1 Pipeline 2 Pipeline 3

log2FC padj log2FC padj log2FC padj

STAB1 −1.67 5.75 × 10−9 −1.69 4.02 × 10−9 −1.83 5.15 × 10−6

PPARG −1.68 0.001 −1.74 0.0045 −1.86 0.0007

CD36 −1.22 3.92 × 10−5 −1.25 5.47 × 10−5 −1.38 9.89 × 10−5

ITGAV −0.93 0.0059 −1.17 0.0008 −1.15 0.0004

ANXA2 −1.15 4.83 × 10−5 −1.23 0.0004 −1.23 0.0002
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Figure 4. GO network analysis of the top enriched GO terms in the differently expressed genes between in survivors
compared to nonsurvivors (multiple test correction by BH) in overlapping DEGs between all pipelines.

4. Discussion

Here, we report for the first time to our knowledge, downregulation of LDL particle
receptor pathway activity in patients of ICU surviving from severe COVID-19 infection.
PBMCs mRNAs were assessed in patients with severe COVID-19 infection by whole
transcriptome sequencing at the time of their admission to ICU. In this prospective study,
we compared DEGs between different clinical outcomes (survival or nonsurvival) in the
period of 30 days using the three pipelines. When DEGs were enriched into GO terms,
several pathways were identified with the main two revealed in all bioinformatics models,
namely the LDL particle receptor activity (GO: 0005041) and leukocyte differentiation
(GO:0002521). The LDL particle receptor pathway activity was identified with a high
degree of enrichment of up to 75% and was shown to be activated in nonsurvivors. This
pathway is linked to the regulation of the cell uptake of cholesterol-rich LDL from the
bloodstream [35].

During the past year, several studies have linked cholesterol metabolism with sus-
ceptibility to COVID-19 and the severity of the infection. First, a few studies showed that
COVID-19 disease is accompanied by dyslipidemia [36,37]. Specifically, serum lipid levels
decrease after acute COVID-19 onset and continue to decline in parallel with the increase
of C-reactive protein concentration until the patient’s condition is resolved [37]. Moreover,
serum LDL level is shown to be a predictor of poor disease prognosis [36,38,39]. In patients
that did not survive, LDL levels decreased continuously until death and in one study
were demonstrated to be reduced up to 60% compared with the level on admission [38].
Thus, one possibility is that downregulation of LDL particle receptor pathway activity in
surviving patients might make them more resistant to consequences of decreased serum
LDL levels.

Another important aspect of impaired cholesterol metabolism in COVID-19 may
be associated with impaired lipid peroxidation processes and the accumulation of lipid
peroxidation products, such as 4-hydroxynonenal, in deceased patients. This suggests
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that a poor prognosis in severe forms of COVD-19 may be associated with a decrease in
antioxidant activity [40].

Another point is that during viral infection a critical role is played by specific cellular
proteins determining virus–host interactions. Viral ability to enter the cell via ACE2, which
is believed now to be a viral SARS-CoV-2 entry receptor, is supposed to be dependent on
endogenic cholesterol synthesis. The hypothesis that the ACE2 receptor could shift out
of the viral entry pathway under conditions of low cholesterol has been discussed [41,42].
Cholesterol-rich regions play an essential role in spike-mediated fusion, which is neces-
sary for SARS-CoV-2 entry and replication [39]. Moreover, the involvement of cellular
cholesterol homeostasis has been previously linked to viral entry and membrane fusion
in the context of other infections, demonstrating a proviral function across different viral
families [43,44]. It is interesting to note that a genome-wide CRISPR knockout screen using
SARS-CoV-2 (USA/WA-1 isolate) in human cells revealed the involvement of genes linked
to cholesterol metabolism as important for virus replication [45]. In addition, to support
ACE2 as the distinct viral entry factor, resistant cell populations demonstrated down-
regulation of sterol regulatory element-binding protein (SREBP) and NPC1, the gene for
Niemann–Pick intracellular cholesterol transporter 1, controlling the export of cholesterol
from the endosomal compartment. These host factors could be critical for virus replication
supporting infection because inhibiting cholesterol homeostasis pharmacologically could
reduce the replication of SARS-CoV-2 [45]. It seems that SARS-CoV-2 needs endogenous
cholesterol synthesis as an important host factor [45], and at the same time when entering
the cell, it activates the family of SREBP transcription factors, which regulate lipid biosyn-
thesis and sterol homeostasis. For example, a COVID-19 patient’s PBMCs expression of
SREBP-2, which directly activates several genes involved in cholesterol metabolism, was
highly activated [46]. Moreover, SREBF2 mRNA, sestrin 1 (SESN1), and proprotein conver-
tase subtilisin/kexin type 9 (PCSK9) RNA levels were increased in PBMCs in COVID-19
patients in a severity-dependent manner.

It is interesting to note that in the present study, downregulation of ANXA2 expres-
sion was also demonstrated in all pipelines in surviving patients. Annexin A2 (AnxA2)
orchestrates multiple biological processes including vascular homeostasis, regulation of
inflammation and immune system activation, tissue injury and repair, and cholesterol
metabolism [47]. AnxA2 is reported to be an endogenous inhibitor of LDLR-degrading
activity of PCSK9 and thus influences LDL-receptor and plasma cholesterol levels [48,49].
AnxA2 is also a recurrent host factor in a variety of viral infections [50]. It is unknown
whether AnxA2 is implicated in SARS-CoV-2 infection or secondary viral infection, but its
higher expression was associated with fatal outcomes in the present study.

All genes (PPARG, CD36, STAB1, ITGAV, and ANXA2) downregulated in surviving
patients with COVID-19 are related to cholesterol homeostasis. CD36 and STAB1 both
encode the scavenger receptors recognizing modified LDL particles [51–53]. CD36, first
described as a platelet transmembrane glycoprotein, has now been shown to belong to a
member of the scavenger receptor family class B [54] and is actively expressed in peripheral
blood macrophages, where it plays an important role in innate immunity [55–58]. By
contrast, this glycoprotein is also associated with the development of atherosclerotic lesions
via its participation in the metabolism of oxidized LDL, phospholipids, and primarily
fatty acids [59–61]. CD36 is a major scavenger receptor responsible for the recognition
and internalization of oxLDL [51]. Receptor-mediated uptake of oxLDL by the monocyte-
derived macrophages activates the reprogramming of innate immunity responses, termed
“trained immunity” [51]. It is interesting to note that the representative network of blood
transcriptional modules enriched in the monocytes of COVID-19 patients compared with
controls, along with activation of T- and NK cells, cytopenia, and upregulation of cell cycle
genes and immunoglobulins detected increased signals of monocyte activation including
upregulation of CD36 [16]. This may be because severe COVID-19 is characterized by
a high frequency of classical monocyte subsets expressing CD36 [62]. We hypothesized
that upregulation of CD36 expression could be a predictive factor for severe COVID-
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19 with possible lethal outcomes. Thus, a change in the CD36 gene expression can be
associated with the unfavorable course of the disease in patients with a critical form of
COVID-19 through at least two different mechanisms: activation of innate immunity to
virus-containing cells and through activation of the atherogenesis processes via enhanced
absorption of fatty acids and oxidized lipoproteins.

STAB1 encodes a multifunctional scavenger receptor of an unusual type, which is
actively expressed by tissue macrophages and sinusoidal endothelial cells; moreover,
during inflammation, induction of stabilin expression was observed. STAB1 ensures
exocytosis by macrophages of Gram-positive and Gram-negative bacteria, LDL (including
oxidized and acetylated LDL), and advanced glycosylation end products [52,53]. We
suppose that increased activity of PPARG as the key regulator of transcription activity
of STAB1 and CD36 as receptors for modified LDL in the virus-infected areas may lead
to greater lipid uptake and transient lipid depletion. This is consistent with the finding
that serum lipid levels, namely total cholesterol, HDL-cholesterol, and LDL-cholesterol
in patients with COVID-19 infection were significantly lower and associated with poor
prognosis [63]. Several underlying mechanisms were suggested, including decreased
LDL biosynthesis due to liver dysfunction, altered lipid metabolism because of acute
inflammation, and/or lipid degradation induced by elevated free radicals [63].

In the present study, PPARG was upregulated in nonsurvivors. PPARγ can directly
regulate lipid metabolism in immune cells (directly regulates the expression of genes
involved in lipid transport and metabolism including CD36) [64]. Beyond regulation of
classical lipid metabolism pathways, PPARγ activation may be involved in the presentation
of lipid antigens to T-cells and modulation of the immune response through dendritic
cells [64]. Thereby PPARγ bridges the lipid microenvironment and immune cell’s function
driving its differentiation and functional phenotypes. PPARγ has an immunomodulatory
function and plays a role in the resolution of inflammation, its upregulation in nonsurvivors
may be a hallmark of nonresolved inflammation in condition of lipid depletion which is
characteristic of severe COVID-19.

One common pathway for leukocyte differentiation was also identified, which in-
dicates that the innate immunity and complement system, and T- and B-cell activation
genes are dysregulated in nonsurvivors. Among genes identified in the three pipelines,
those for growth arrest-specific protein 6 (GAS6), galectin-9 (LGALS9), and leukocyte
immunoglobulin-like receptor B4 (LILRB4) were upregulated. Their plasma product lev-
els are shown to be associated with disease severity. GAS6 plasma level is increased in
COVID-19 patients compared with controls and decreased over time in patients surviving
to 30 days post ICU admission [65]. Levels of galectin-9 and LILRB4 were increased from
a control group to a mildly affected group, further increasing in severe and critical af-
fected groups [66]. Interestingly, LGALS9 is a PPARγ target and is upregulated via PPARγ
overexpression [67].

Taken together, our findings suggest that induction of cholesterol metabolism and of
LDL particle receptor pathway activity in patients with COVID-19 infection is associated
with poor disease prognosis. It is worth noting that in accordance with our data in the
recent publication of Meoni and coauthors, plasma metabolite and lipoprotein profiles in
patients with COVID-19 demonstrated significant alterations compared with controls and
was characterized with the lower levels of cholesterol and free-cholesterol HDL and LDL
fractions. Importantly, treatment of toclizumab, a recombinant humanized monoclonal
antibody against the interleukin-6 receptor, reverted methabolic alterations [68]. Taken
together both RNA and metabolomics profiling conducted in the study cited above and
our study support the close link between cholesterol homeostasis and susceptibility to
COVID-19 and the disease severity. Inhibiting cholesterol biosynthesis may be a promising
therapy for COVID-19.

The main limitation of the present study is the inclusion of only males and a small
sample. Additionally, the serum lipids were not estimated in our patients in the course
of the COVID-19 disease. Therefore, we did not know whether plasma lipid levels were
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different between patients in the survivor and nonsurvivor subgroups. To confirm the
involvement of the cholesterol metabolism pathway in the progression of COVID-19,
increasing the number of patients, and verifying the present findings with a simultaneous
assessment of blood plasma cholesterol and lipoprotein levels appears warranted.

5. Conclusions

During the past year, several studies have linked cholesterol metabolism with sus-
ceptibility to COVID-19 and the severity of the infection and serum LDL level is shown
to be a predictor of poor disease prognosis We report downregulation of LDL particle
receptor pathway activity in patients of ICU surviving from severe COVID-19 infection
and genes PPARG, CD36, STAB1, ITGAV, and ANXA was downregulated in surviving
patients with COVID-19. All these genes are related to cholesterol homeostasis. For ex-
ample, AnxA2 is reported to be an endogenous inhibitor of LDLR-degrading activity of
PCSK9 and thus influences LDL-receptor and plasma cholesterol levels. CD36 and STAB1
both encode the scavenger receptors recognizing modified LDL particles. STAB1 encodes
a multifunctional scavenger receptor of an unusual type, which is actively expressed
by tissue macrophages and sinusoidal endothelial cells; moreover, during inflammation,
induction of stabilin expression was observed. We suppose that increased activity of
PPARG as the key regulator of transcription activity of STAB1 and CD36 as receptors for
modified LDL in the virus-infected areas may lead to greater lipid uptake and transient
lipid depletion. This is consistent with the finding that serum lipid levels, namely total
cholesterol, HDL-cholesterol, and LDL-cholesterol in patients with COVID-19 infection
were significantly lower and associated with poor prognosis. In general, it seems that
SARS-CoV-2 needs endogenous cholesterol synthesis as an important host factor, and our
data confirm the important role of changes in cholesterol metabolism in determining the
outcome of coronavirus infection.
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