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Grassy Silica Nanoribbons and 
Strong Blue Luminescence
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Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in 
metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine.  
We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si  
platform which is commonly used for field-effect transistors fabrication without other precursor. We 
investigate the formation mechanism of this novel silica nanostructure that has not been previously 
documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica 
nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as 
investigated by cathodoluminescence technique. The origins of the luminescence are attributed to 
various defects in the silica nanoribbons; and the intensity change of the blue emission and green 
emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational 
design of the new silica-based materials for a wide range of applications.

Silicon dioxide (SiO2) is one of the key materials in many modern technological applications. SiO2 is the gate 
dielectric layer that forms the basis of field-effect transistors on the present-day Si integrated circuits1, and current 
metal oxide semiconductor (MOS) transistors use SiO2 films of about 1.3 nm in thickness as the gate dielectric. 
SiO2 is also widely explored as an antireflection coating for photovoltaic solar cells2. It has been recently demon-
strated that a silica layer on top of a silicon absorber significantly reduced the temperature of the underlying 
absorber under sunlight due to radiative cooling3. In addition, silica-based materials can be worked as catalysts4–6 
for pollution removal and for biomedical applications7.

Owing to the fundamental scientific and technological significance of silica, there is great interest in 
development of novel structures of silica and understanding the basic structure-property relationships in 
silica-based materials8–15. It has been found that ultrathin layers of silica on metals occur either as ordered hex-
agonal structures or as disordered arrangements of non-hexagonal rings. In particular, the crystalline phase of 
two-dimensional (2D) silica consists of two registered layers of SiO4 tetrahedra; and the amorphous 2D silica 
resembles the 2D continuous random network8,14,15. These 2D silica layers can be synthesized in a chemical vapor 
deposition (CVD) furnace or grown by molecular beam epitaxy on various transition metals, such as Mo, Ru, Pt, 
Ni, Pd, and Cu8,15. Were the 2D silica layers isolated from metal substrates, like graphene16 and other 2D layered 
materials17, their intrinsic properties and enormous applicability could be investigated at large12.

Here, we report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si  
platform which is commonly used for field-effect transistors fabrication, without providing other precursor. The 
formation of silica nanoribbons is catalyzed by the co-existence of chromium (Cr) and sulfur (S) in a CVD system.  
We have performed rigorous analyses of the structure, chemical composition, and cathodoluminescence (CL) 
properties of the silica nanoribbons. The amorphous silica nanoribbons exhibit strong blue luminescence at about 
467 nm. Despite yet unknown technologically relevant performances of the silica nanoribbons as well as 2D silica 
structures, the understanding of their basic physicochemical properties and controllable growth mechanism may 
lead to rational design of the new silica-based materials for a wide range of applications.
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Results
Figure 1a shows a representative Helium ion microscopy (HIM)18 image of the silica nanoribbons grown on SiO2/Si  
substrate. The gatherings of nanoribbons with a length of tens of micrometers and varying widths resemble 
bunches of chlorophytum comosum planting into the ground. We further transferred several nanoribbons from 
the SiO2/Si substrate onto transmission electron microscope (TEM) Cu meshes to investigate the fine microstruc-
tures of the nanoribbons. As displayed in Fig. 1b, the silica nanoribbons are electron-transparent. No ordered 
structure is observed in the high-resolution TEM image (Fig. 1c and Figure S1 in Supp. Info.), suggesting an 
amorphous nature of the silica nanoribbons. We had also annealed the nanoribbons for 2 h at 1000. However, 
amorphous to crystalline structure transition did not occur. The amorphous feature of the nanoribbons is con-
firmed by the X-ray diffraction (XRD) pattern of the samples (see Figure S2, Supp. Info.). This phenomenon 
could be attributed to the multilayered structure of the silica nanoribbons, since it has been reported that grow-
ing additional layers on top of the crystalline silica monolayer would finally result in amorphous silica films19. 
The thickness of individual nanoribbons based on atomic force microscopy (AFM) measurements ranges from 
5.4 nm (Fig. 1e) to approximately 50 nm, becoming thinner along the growth direction of the grassy nanoribbons 
(Fig. 1d,e).

We characterized the chemical composition and Si oxidation states of the silica nanoribbons by employing 
local scanning Auger electron spectroscopy (AES) technique16,20–22. The Si LVV AES peak position and shape are 
extremely sensitive to the Si oxidation state21. The main peak for elemental Si is centered around 90 eV while that 
for SiO2 is located at 76 eV21,23. Figure 2b depicts the AES spectra acquired at different sample locations in Fig. 2a. 
At the substrate region, i.e., #1 position, the Auger electron signals of both the elemental Si and the Si oxidation 
states for SiO2 were detected. By contrast, only the latter was detected on the nanoribbons, i.e., #2 and #3 positions.  
Figure 2c,e show the Auger electron maps of the Si LVV (Fig. 2d) and O KLL (Fig. 2e), elucidating the chemi-
cal distribution of the elements in the silica nanoribbons. Besides, the X-ray photoelectron spectroscopy (XPS) 
results corroborate the formation of silica nanoribbons (Figure S3, Supp. Info.). Raman spectrum (Figure S4,  
Supp. Info.) and Fourier transform infrared spectroscopy (FTIR) (Figure S5, Supp. Info.) techniques were also 
used to analysized the silica nanoribbons in ambient air.

Discussion
We found the formation of silica nanoribbons when heating very thin Cr films deposited on SiO2/Si substrates 
under S atmosphere. However, without either Cr or S, no silica nanoribbon could be obtained. It is a big surprise, 
to some degree, because a thin Cr layer is normally an adhesive layer of the source/drain electrodes for field-effect 
transistors on SiO2/Si platform24. In the literature, the production of monolayer or bilayer 2D silica depended 
only on the metals and no S was present in their reaction systems11–14,25–28. Therefore, we believed that Cr and S 
acted as the dual co-catalysts for the growth of silica nanoribbons. Furthermore, on the basis of the morphological 
observation of the different phases of the growth, the growth mechanism of silica nanoribbons is most likely to be 

Figure 1.  Morphology of silica nanoribbons. (a) Typical SHIM image of bunches of silica nanoribbons.  
(b,c) TEM images of silica nanoribbons. (d,e) Topographic AFM images and line-profiles showing the thickness 
of nanoribbons.
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as follows (see Fig. 3 and Figure S6 in Suppl. Info.). Cracks were firstly generated in the SiO2 layer on Si with the 
assistance of Cr and S at high temperature (Fig. 3a); melting of the SiO2 occurred at the wall of the SiO2 cracks; 
and nanoribbons grew in-situ at the crack sites. It is also sound from the observations that the Si and O sources 
for the formation of silica nanoribbons were originated from the melted SiO2. The formed silica nanoribbons 
exhibit various features. Some nanoribbons like a braid (Fig. 3b,c), and some have wedge-shaped edges (Fig. 3d). 
It is also observed that long silica nanowires with size of about 20 nm (Figure S6e, Supp. Info.) were produced 
together with the nanoribbons (see Figs 2c–e and 3). In addition, short silica rods were also produced, lying on 
the substrate (see Figs 2c–e and 3). The generation of these silica nanostructures on the SiO2 substrate is rather 
interesting and the grassy appearance of the silica nanostructures is quite astonishing. The silica nanoribbons 
are bendable. Moreover, the nanoribbons are sensitive to the exposure of electron beam. As demonstrated in the 
sequentially acquired AES mappings in Fig. 2c–e, the nanoribbons highlighted in the oval were movable under 
the electron beam irradiation, which indicates the possibility to manipulate the nanoribbons by electron beam. 
Also, excessive exposure of electron beam could damage the nanoribbons as observed in Fig. 3b,c. Our grassy 
silica nanoribbons show distinct morphological characteristics from previous reported silica nanostructures such 
as nanowires29 and twisted nanobelts and nanosprings30 synthesized by a thermal evaporation method at 1300 °C, 
porous nanostructures synthesized by complicated solution chemical reactions31, and silica nanotubes synthe-
sized by a template-directed method32.

Defects in SiO2 exert significant influences on its properties such as dielectric performance and lumines-
cence. The defect structure of SiO2 is extremely sensitive to ionizing radiation33,34. Several kinds of defects 
in amorphous SiO2 are optically active and can be studied by luminescence spectroscopy. We investigated 
the defect-induced luminescence properties of the grassy silica nanoribbons by CL spectroscopy, which is a 
frequently used technique for high spatial resolution and high-sensitivity detection of defect centers in mate-
rials. Figure 4 displays the CL characterization results. All the CL spectra (#2–#9 in Fig. 4a,b) acquired from 
the different sample locations of nanoribbons possess luminescence features at around 285 nm (4.35 eV, UV 
band), 467 nm (2.60 eV, blue band), 550 nm (2.25 eV, green band), and 645 nm (1.92 eV, red band)33. No blue 
emission can be detected from the substrate (#1). These luminescent bands are common in silica and the 
specific luminescence centers related to them have been well documented35–38, originating from local atomic 
rearrangement that deviates from the SiO4 tetrahedra expected for a perfect silica matrix. The red emission 
band ascribed to the nonbridging oxygen hole centers (NBOHCs)39,40 (see Fig. 4c). The UV emission band can 
be originated from particular kinds of oxygen vacancy centers (OVCs) such as the discoordinated Si or neutral 
oxygen vacancy (Fig. 4c)35,37.

The most striking change in the present set of CL spectra is the luminescent intensity of the blue and green 
emissions (Fig. 4a,b). At the substrate location (#1), no blue emission appears, in line with previous study on 

Figure 2.  AES characterization of silica nanoribbons. (a) Scanning secondary electron image of the sample, 
showing the locations of AES spectra acquiring area. (b) Differential AES spectra acquired at positions “1”, “2” and 
“3” marked in (a). (c) Scanning secondary electron image of the sample, showing the locations of AES mapping. 
(d) Si LVV Auger electron map acquired in (c). (e) O KLL Auger electron map acquired in (c). The oval in (c) 
marks movement of the nanoribbon under electron-beam as compared to the positions observed in (d,e).
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Figure 3.  Formation of silica nanoribbons and various fine structures. (a) SEM image showing initial 
formation of silica nanoribbons at the melted crack-wall sites. (b) SEM image showing a bunch of silica 
nanoribbons together with nanowires. (c) SEM image showing nanoribbons with different morphologies 
and deformation of nanoribbons by electron-beam. (d) SHIM image highlighting different edge structures of 
nanoribbons. (e) SHIM images showing dense nanoribbons. (d) tilt-view of bunched silica nanoribbons.

Figure 4.  CL characteristics of silica nanoribbons. (a) SEM image showing the positions where the CL  
spectra were acquired in (b) and emission maps in (e,f). (b) CL spectra acquired at different positions.  
(c) Schematical illustration of an OVC and a NBOHC, neutral oxygen vacancy, and Si hexamer ring. (d) Blue 
band map corresponding to (a). (e) Green band map corresponding to (a).
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unirradiated amorphous SiO2
41. However, at the apex (#2 as well as #3) of the upright, free-standing silica nano-

ribbon (Figs 3e and 4a), very strong blue emission is observed. This comparison suggests that the blue emission 
is most likely to be orginated from surface features of the high surface area silica nanoribbons rather than the 
bulk features of silica. Thus, on the basis of previous study on the blue emission of silica nanostructures42–45, the 
observed blue emission here could be associated with a defect pair consisting of dioxasilirane (=​Si (O2)) and a 
silylene (=​Si:). As for the green emission, this may be associated with oxygen-related defects such as silanone  
(=​Si=​O) or dioxasilyrane40.

The intensity change of the blue and green emissions is clearly illustrated by the luminescent spectra acquired 
at the #4, #5 and #6 locations. These phenomena can be explained based on the origins of the luminescence as 
discussed above. On the one hand, we confirmed the remarkable defective nature of the silica (SiOx) nanoribbons 
by TEM-based energy dispersive spectroscopy (EDS) measurements. An atomic ratio ranging from 1.54 to 2.09 
between O and Si, typically smaller than 2.0, was obtained for the SiOx nanoribbons (Figure S7, Supp. Info.). This 
substoichiometric characteristic suggests the existence of oxygen vacancies in the silica nanoribbons, leading 
to the strong blue emission. On the other hand, as shown in the AES spectra (Fig. 2b), elemental Si signal was 
detected at the substrate, which indicates the existence of Si aggregates at the substrate surface resulted from 
the silica production as addressed above. Therefore, strong green luminescence also appears at the substrate. 
The intensity mappings of the blue and green emissions are displayed in Fig. 4d,e, respectively. The map of blue 
emission matches well with the silica nanoribbons (Fig. 4a). The reason resulting in the intensity change of blue 
and green bands might be the variation of the oxygen content in the silica nanoribbons. Although a quantitative 
correlation between the oxygen content and the emission intensity is difficult to be concluded at this stage, the 
lower oxygen content, responsible to the blue emission, could suggest a higher component of silicon aggregates, 
responsible to the green emission, in the silica nanoribbons. In fact, the OVCs could be described as Si-Si links in 
the form of dimers, timers or hexamers42,46. In this perspective, the very weak blue emission at #4 is likely due to 
the higher content of oxygen than those at #5 and #6 locations.

We investigated the CL properties of a gathering of silica nanoribbons as a function of irradiation time (Fig. 5). 
The CL emission was excited by continuous irradiation over the observation field with an electron beam of energy 
5.0 keV and current 0.1 nA. The very weak green emission of the first collected CL spectrum might be due to the 
relatively small substrate area because irradiated area is almost fully covered by the silica nanoribbons and silicon 
aggregates responsible for the emission is not as sensitive to the irradiation as the OVCs. The intensity of the red 
emission increased with the irradiation time from 0 s to about 600 s; and the UV emission first increased and 
then decreased within the first 300 s. In the case of the blue emission, the intensity escalated rapidly to a constant 
intensity within the first 240 s. With irradiation, green emission was being overlapped by the strong blue emission. 
The trend of the irradiation effect on the luminescence of the nanoribbons is similar to the previous observations 
on amorphous SiO2 films41. Nevertheless, the previous amorphous SiO2 films41 did not possess the green emission 
as detected on our substrate, and we also failed to observe the blue emission from the substrate. The different 
behaviours of the UV and blue emissions upon the electron irradiation indicate different origins of the emissions. 
These results indicate that the electron irradiation significantly increases the number of luminescent centers of 
the silica nanoribbons, strongly dependent on their stoichiometries or absolute deficiency of oxygen atoms over 
silicon atoms47,48.

In summary, we produced silica nanoribbons by a facile method. The silica nanoribbons look like chloro-
phytum comosum. The silica nanoribbons have a strongly characteristic blue luminescence at about 476 nm 
as compared to the SiO2 substrate. Moreover, the silica nanoribbons are flexible and can be manipulated by 
electron-beam. Whatever the defects responsible for the emissions, this new structure of silica enriches our 
knowledge of silica-based materials. While the allotropes of bulk silica have made a great impact in fundamental 
and applied research, the exceptional properties revealed here herald that the grassy silica nanoribbons may pres-
ent potential applications for, such as composite materials and solar cells as antireflection coating and radiative 
cooling.

Figure 5.  Electron irradiation effect on CL spectrum of silicon nanoribbons. (a) Evolution of CL spectrum 
with electron irradiation time. (b) Intensity change of UV band, blue band, and red band.
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Methods
Silica Nanoribbon Synthesis.  We used chemical vapor deposition method to synthesize the silica nanor-
ibbons. SiO2/Si substrate coated with a thin layer of Cr (99.95%) was used for silica nanoribbon growth under a 
sulfur atmosphere. Vapor of sulfur was produced by heating surfur powder. The growth temperature was about 
820 °C. We tried to get crystalline silica by annealing the as-prepared silica nanoribbons at 1000 °C for 2 h under 
Ar atmosphere.

Materials characterization.  Characterizations of the silica nanoribbons were carried out by using an 
atomic force microscope (AFM, Digital Instrument Nanoscope IIIA), a powder X-ray diffractometer (XRD, 
Rigaku D/Max Ultima IV), a field emission scanning electron microscope (FESEM, Hitachi S-4800), a transmis-
sion electron microscope (TEM, FEI TECNAIG2 F20-TWIN) equipped with an energy dispersive X-ray spec-
troscope (EDS), and X-ray photoelectron spectroscopy (ESCALAB 250Xi system). The topographic images of 
the silica nanoribbons were acquired in the tapping mode. The SEM images were obtained on a Hitachi S4800 
field-emission SEM system with an accelerating voltage of 3.0 kV. The XRD was operated at 40 kV, 40 mA for 
Cu Kα​ radiation (λ​ =​ 1.5418 Å). XPS was performed using Al Kα​ as the source and the C 1s peak at 284.8 eV as 
an internal standard. An acceleration voltage of 200 kV was used for EDS measurement. Raman spectrum was 
obtained by using Renishaw inVia system with a 532 nm laser in ambinet air. Fourier transform infrared spectros-
copy (FTIR) was recorded on a Bruker Vector 22 spectrofluorometer in ambient air.

Cathodoluminescence (CL) Characterization.  CL measurement was performed by using field emis-
sion scanning electron microscope (FESEM;HITACHI SU6600) equipped with CL system (HORIBA MP32). An 
acceleration voltage of 5.0 kV and beam current of 0.1 nA were used for CL measurement.

Scanning Auger Electron Spectroscopy.  The AES measurements were performed at room temperature 
with a scanning Auger electron spectroscope (ULVAC-PHI model SAM650) with a cylindrical mirror analyzer. 
The takeoff angle of the instrument was 42°. AES spectra were acquired with a primary electron beam of 10 keV. 
The incident electron beam current for the AES spectra was about 2.0 nA, as calibrated with a Faraday cup before 
and after each measurement. Area-analysis mode can be chosen to acquire electron spectra. Acquiring of each 
elemental map (512 ×​ 512 pixels) took ~3.5 h.
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