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Abstract 
Carcinogenesis is an evolutionary process, and mutations can fix the selected phenotypes in 
selective microenvironments. Both normal and neoplastic cells are robust to the mutational 
stressors in the microenvironment to the extent that secure their fitness. To test the robustness of 
genes under a range of mutagens, we developed a sequential mutation simulator, Sinabro, to 
simulate single base substitution under a given mutational process. Then, we developed a pipeline 
to measure the robustness of genes and cells under those mutagenesis processes. We discovered 
significant human genome robustness to the APOBEC mutational signature SBS2, which is 
associated with viral defense mechanisms and is implicated in cancer. Robustness evaluations 
across over 70,000 sequences against 41 signatures showed higher resilience under signatures 
predominantly causing C-to-T (G-to-A) mutations. Principal component analysis indicates the GC 
content at the codon's wobble position significantly influences robustness, with increased resilience 
noted under transition mutations compared to transversions. Then, we tested our results in bats at 
extremes of the lifespan-to-mass relationship and found the long-lived bat is more robust to 
APOBEC than the short-lived one. By revealing robustness to APOBEC ranked highest in human 
(and bats with much more than number of APOBEC) genome, this work bolsters the key potential 
role of APOBECs in aging and cancer, as well as evolved countermeasures to this innate 
mutagenic process. It also provides the baseline of the human and bat genome robustness under 
mutational processes associated with aging and cancer. 
 
Keywords: Cancer evolution, Robustness and evolvability, Mutational signature, APOBEC, GC 
Wobble 
 

Highlights 
● Sinabro, the sequential mutation simulator, facilitates measuring the robustness of human 
protein-coding sequences under all COSMIC mutational signatures. 
● Robustness under APOBEC mutational signatures showed the largest mean and standard 
deviation in the human genome. 
● Robustness to mutational signatures analysis reveals the role of APOBECs is complementary to 
cancer in the evolvability of cancer cells in later stages. 
● Principal component analysis indicates that the GC content at the codon's wobble position 
significantly influences robustness. 
● A long-lived bat (Myotis myotis) has higher robustness to APOBECs than a short-lived one  
(Molossus molossus) than humans.  
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Introduction 
The evolutionary theory of cancer posits that mutations are key drivers of cancer initiation and 
progression, as mutation accumulation over time can transform normal cells into malignant cancer 
cells and also fuel their evolution1,2. Therefore, the main focus of much research is studying 
mutations in cancer as the main factor initiating the disease or shaping the cancer's ability to 
survive, adapt, and evolve in response to various challenges. However, what is overlooked is how 
our genome evolves against all these various types of mutations and mutagenic processes2–5. 
Based on their response to external and internal stressors, biological systems can be categorized 
into two groups: robust or evolvable. Robustness is a property of a system to resist internal or 
external perturbations. Robustness of the biological systems can be found in various levels in 
organisms, from tissues such as body temperature and homeostasis to molecules such as 
molecular canalization during development6. In contrast, evolvability is a property of a system to 
maintain or even increase heritable phenotypic variability throughout generations to facilitate 
adaptation6–10.  
Cancer is a fast-evolving system that follows both Darwinian and non-Darwinian evolution10,11. 
Understanding our body's normal cell homeostatic state as a system robust to mutations will 
illuminate the evolutionary history and principles of carcinogenesis. It can also answer the question 
of why some of us get cancer, and some don’t, or why some of us die from cancer while some do 
not12,13. There have been several studies to understand cancer's evolutionary trajectories by 
profiling cancer cell mutations over time14–17. Those studies can record the sequence of events, but 
miss the causes of those events on the whole genome. Recently, a different approach was 
developed to examine mutations of the whole genome to define distinct mutational patterns called 
mutational signatures18. The latter gives the opportunity to examine the whole genome as one unit. 
We used these signatures to measure genome robustness to mutational signatures using our 
pipeline, which induces one mutation at a time and measures the robustness of each gene to each 
mutation type. Our hypothesis is that the human genome has evolved to be robust to several 
mutagens, considering our genome a robust system to stressors. 
In this study, we redefine and quantitatively assess the robustness of protein-coding sequences in 
the human genome under various mutational signatures using our Python-based simulation tool, 
Sinabro, meaning “little by little unknowingly” in Korean, describing the accumulation of mutations. 
In this context, robustness is defined as the average number of mutations a sequence can 
withstand before an amino acid change occurs. Sinabro facilitates the simulation of sequential 
single-base substitutions within a coding sequence until a predefined stop condition—either a 
maximum number of mutations or amino acid sequence changes—is reached. We discovered our 
genome has variable robustness across different mutational signatures with the maximum 
robustness to signature SBS2, that is, the APOBECs signature. Furthermore, the study explores the 
robustness of over 70,000 coding sequences against 41 known mutational signatures, revealing 
that sequences are particularly robust under signatures that predominantly cause C-to-T (G-to-A) 
mutations. Principal component analysis (PCA) of the robustness data suggests the GC content at 
the wobble position of codons has a positive correlation determining robustness. Notably, the 
genome shows increased robustness under transition mutations compared to transversions, 
aligning with our findings that transition mutation preference correlates positively with robustness. 
Finally, we compared human genome robustness to APOBECs with two bats: one long-lived (M. 
myotis) and the other one short-lived (M. molossus), knowing that bats have more APOBECs than 
primates with relatively much less cancer incidence and more extended longevity. We found the 
long-lived bat had higher robustness compared to humans and the short-lived bat. Our research 
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can open a new avenue on how to analyze the mutation and mutagenesis process in 
carcinogenesis and cancer outcomes, particularly with respect to aging-induced cancer. 
 

Results 
Robustness analysis in cancer evolution via Sinabro-based sequential mutation simulation 
Robustness is the tendency of the system to be invariant against internal and/or external 
perturbation. Because systems can have invariance in multiple factors, multiple valid definitions of 
robustness are possible. We reviewed previous definitions of robustness from the perspective of 
mutational processes and redefined the robustness under mutational signatures (Supplementary 
Note S1). Briefly, the definition of the robustness of a protein-coding sequence is the average 
number of mutations that the sequence can tolerate before amino acid change. We developed the 
Python program Sinabro to simulate sequential mutation. Sinabro simulates single base substitution 
under a given mutational process until the stop condition is met. Mutational processes can be 
simply random, a single mutation type, or COSMIC mutational signatures. A stop condition can be 
set as the maximum number of mutations or amino acid sequence changes. We applied Sinabro to 
measure the robustness we defined.  
The workflow to measure robustness by Sinabro follows the ensuing steps (Figure 1). First, Sinabro 
takes a protein-coding sequence starting from the start codon (ATG) to one of the stop codons 
(TAA, TGA, TAG) with an additional one bp nucleotide, each upstream and downstream. Second, 
Sinabro computes the probability of nucleotide si at position i to be mutated into a nucleotide aj, 
denoted as P(si>aj), based on a given SBS mutational signature. Third, a single mutation is 
selected based on those probabilities, and the simulator checks if the mutation changed the amino 
acid sequence of a given protein coding sequence. Fourth, the simulator repeats sequential 
mutation until the mutation changes the amino acid sequences. Finally, the resulting output of one 
cycle of complete sequential mutations is a sequence of n sequences, and the number of mutations 
n-2 is saved for computation of the robustness. The simulator repeats 1,000 cycles of sequential 
mutations of the original input sequence, and the average number of mutations is measured as the 
robustness of the input sequence.  
We validated Sinabro by simulating a single mutation of each mutational signature for 10,000 
random sequences (Figure S1). The average cosine similarity between the original mutational 
signatures and simulated signatures was 0.974, supporting that Sinabro recapitulates mutational 
processes given by signatures (Figure S2).   
 
The human genome is most robust under APOBEC mutational signature SBS2 
Applying Sinabro, we computed the robustness against all mutational signatures of more than 
70,000 coding sequences of transcripts of the human genome. Surprisingly, APOBEC mutational 
signatures SBS2 appeared to have both the largest average robustness and variation in robustness 
(Figures 2a and 2b). APOBEC is a cytidine deaminase that participates in a viral defense 
mechanism. Recent studies have suspected APOBEC plays a role in cancer formation and 
intratumor heterogeneity through mutagenesis19,20.  
We first investigated up to the 15th rank based on the average robustness under 41 mutational 
signatures with known etiology (Figure 2a; Table S1). Robustness under SBS7a, 7b, and 7d are 
ultraviolet light exposure signatures ranked 2nd, 4th, and 8th. The third mutational signature under 
which the human genome is robust was SBS11, whose proposed etiology is a temozolomide 
treatment. SBS11 resembles the mutational signature of alkylating agents21. Another mutational 
signature, SBS31 (platinum chemotherapy treatment), whose patterns are similar to those of 
alkylating agents, was ranked 10th. There were five mutational signatures associated with a 
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defective DNA repair mechanism; among them, four were an indication of defective DNA mismatch 
repair (SBS6, SBS15, SBS26, SBS44) and a defective DNA base excision repair due to NTHL1 
mutations (SBS30). The robustness under SBS1, a signature of spontaneous deamination of 5-
methylcytosine correlated to age that we originally expected to have higher robustness, surprisingly 
ranked only  9th. The remaining mutational signatures within the top 15 were SBS32 (azathioprine 
treatment), SBS84 (activity of activation-induced cytidine deaminase), and SBS92 (tobacco 
smoking), ranked 6th, 11th, and 13th, respectively.  
We then further investigated mutational signatures under which the human genome showed low 
robustness (Figure 2c; Table S1). The bottom 15 mutational signatures were SBS10a (polymerase 
epsilon exonuclease domain mutations), SBS14 (concurrent polymerase epsilon mutation and 
defective DNA mismatch repair), SBS86 (unknown chemotherapy treatment), SBS90 (duocarmycin 
exposure), SBS13 (activity of APOBEC family of cytidine deaminases), SBS7c (ultraviolet light 
exposure), SBS29 (tobacco chewing), SBS88 (colibactin exposure), SBS10d (defective POLD1 
proofreading), SBS36 (defective DNA base excision repair due to MUTYH mutations), SBS10c 
(defective POLD1 proofreading), SBS24 (aflatoxin exposure), SBS85 (indirect effects of activation-
induced cytidine deaminase), SBS18 (damage by reactive oxygen species), and SBS35 (platinum 
chemotherapy treatment). Nine out of fifteen mutational signatures of the human genome are least 
robust to induce mainly C-to-A mutations (Figure S3).  
 
The human genome is robust under mutational processes targeting G/C 
To understand common features between mutational signatures under which the human genome is 
robust, we investigated the targeting preferences of the top 10 mutational signatures (Figure S4). 
Interestingly, except for SBS7d, all mutational signatures almost exclusively induce C-to-T (G-to-A) 
mutations. In addition to the average robustness value, the top 10 mutational signatures based on 
the standard deviation showed a similar pattern that mutational signatures resulting in C-to-T (G-to-
A) mutations except for SBS38 and SBS10a which induce C-to-A (G-to-T) mutations (Figure S5). 
Based on these results, we hypothesize that the GC contents of genes and the GC targeting 
preference of mutational signatures are crucial to robustness. To examine the hypothesis, we 
performed a principal component analysis (PCA) on a gene-by-mutational-signature matrix, with 
each element having a corresponding robustness value. Then, we analyzed principal components 
by sorting the weight of each mutational signature based on the GC targeting preference of 
mutational signature (Figure 3a). We found that the weights of the first principal component (PC1) 
positively correlated to the GC targeting preference of the mutational signature. By contrast, the 
weights of the second principal component (PC2) negatively correlated to the GC targeting 
mutational signature except SBS2. The third position of the codon is often called the “wobble” 
position, which originated from the “wobble” hypothesis by Francis Crick that the 5’ base of the 
anticodon can form non-standard pairing by “wobble” movement. This makes mutations at the 
“wobble” position less consequential than those at other positions. Hence, we analyzed the GC 
contents of the wobble position of the genes on the PC1-PC2 plot (Figure 3c).  The result showed 
that the GC content of the codon’s third position of a gene is positively correlated with PC1 and 
negatively correlated with PC2. Furthermore, the first and second principal components (PC1 and 
PC2) explain nearly 75% of the variance of the data (Figure 3b), supporting the idea that the GC 
content of the codon’s third position of a gene is one of the most crucial factors for the robustness 
under mutational processes in human. 
 
The human genome is more robust under transition mutations than transversion mutations 
We further investigated the weights of principal components from PC3 to PC10 to understand the 
variance remaining in the robustness profile of the human genome. The cumulative explained 
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variance up to PC10 was 90%. We first focused on the mutational signature with the highest weight 
value in each principal component. SBS1 appeared to be the highest for PC3, PC4, and PC10; 
SBS10a for PC5; SBS7d for PC6; SBS7a for PC7; SBS84 for PC8; SBS22 for PC9 (Figure 4). 
These mutational signatures had different target preferences but commonly showed high specificity 
(Figure S6). To determine how the specificity of mutational signatures affects the robustness, we 
computed the specificity of mutational signatures using Shannon entropy. We found an arrow-tip 
shape from the average robustness under the mutational signature versus the specificity of the 
mutational signature plot (Figure 5a) and a negative correlation between the standard deviation of 
robustness and the specificity of the mutational signature (Figure 5b). As in the previous analysis, 
we assumed that GC targeting preference might explain the result. However, when we colored dots 
with the GC targeting preference, it appeared to have mixed results, although, as expected, there 
was a mild positive correlation along the y-axis. From the previous result, the human genome 
showed high robustness under C-to-T targeting mutational signature and low robustness under C-
to-A targeting mutational signature. We further analyzed the robustness versus specificity plot by 
coloring the preference for the transition mutation, which makes pyrimidine-to-pyrimidine or purine-
to-purine modification (Figure 5c). The color gradients clearly divided the arrow tip shape into two 
linear shapes intersecting where the mutational signatures induce almost random mutations. The 
linear regression on robustness versus transition mutation preference also showed a significant 
positive correlation (Figure 5d). These results showed the human genome is more robust under 
transition than transversion mutations. 
 
Long-lived bat’s genome has higher robustness than the human genome under their native 
APOBEC3like enzymes activity  
Several bat species have extremely high longevity and cancer resilience compared to mammals of 
similar size22,23. Bats also tolerate a diverse suite of viruses, seemingly asymptomatically, meaning 
they have evolved to control (some) viral infections without adverse inflammation24. One such 
mechanism involves the AID/APOBEC family of deaminase, which induces mutations in the viral 
genome, reducing viral fitness. We hypothesize that long-lived bats have higher robustness under 
APOBEC activity since they have had to avoid damaging their genome while maintaining high 
activity to suppress viral infection. To test our hypothesis, we measure motif specificity of bat 
APOBECs in cytidine deamination. An artificial DNA substrate of 369 bp was used to test the 
cytidine deamination activities of 6 bat APOBEC enzymes from the two species of Molossus 
molossus (short-lived bat) and Myotis myotis (long-lived bat). The substrate was designed to have 
multiple copies of each of the 16 NNC motifs that were randomly distributed in the sequence. This 
would provide relatively equal accessibility to each different NNC for the ABOBEC enzymes.  The 
substrate DNA was incubated with each bat APOBEC enzymes, and then PCR amplified and 
followed by Next Generation Sequencing analysis. Figure 6 shows the average percentages of C to 
T mutation rates of all the same NNC in the full DNA sequence.  As shown in the figure, each of the 
four APOBEC3A-like and APOBEC3C-like enzymes showed distinctively different motif preference 
patterns.  In contrast, the APOBEC1-like enzymes from the two species had the same preference 
patterns. While each of the 6 enzymes worked similarly well on their different sets of multiple NNCs, 
it was interesting that all of them had very low activities on motifs such as GGC and AGC. We then 
evaluated the robustness of two bat genomes, Molossus molossus and Myotis myotis, under 6 
COSMIC mutational signatures, and the activity of APOBEC1, APOBEC3A, APOBEC3C from these 
bat species using Sinabro (Figure 7). We found that M. myotis has higher robustness under 
APOBEC activity, especially under SBS2, than humans and Mol. molossus (Figure 6e and 6f; 
Mann–Whitney U test p < 2.2x10-16). This trend was evident when we compared robustness under 
their native APOBEC3A (Figure 6g). We used SBS4 (tobacco smoking) signatures as negative 
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control and, as expected, did not show a difference  (Figure 6b). Although we expected to observe 
higher robustness to other mutational signatures in the long-lived bat, we found no or small 
differences in  SBS1, SBS4, and SBS6 (Figures 6a, 6c, and 6d). This suggests that bat longevity 
and cancer resilience might have cross-evolved under their own APOBEC activity but not under 
other documented mutagens to humans.  
 

Discussion 
Genomes are constantly exposed to various mutational drivers, from spontaneous deamination to 
specific mutagens, such as UV exposure. Tolerance to these mutational burdens is crucial to 
maintaining a robust biological system. Ironically, cells are both evolvable and robust to the 
mutational stressors in their microenvironment. In a 2008 paper 6, Wagner introduced genotype 
robustness as the number (or fraction) of neutral neighbors of the genotype. Greenbury et al. 
expanded Wagner's definition, allowing more than one mutation and introducing the concept of n-
robustness 7. However, these definitions are too broad to evaluate the robustness of a gene directly 
under specific mutational drivers. To resolve this problem, we defined a gene's robustness under a 
specific mutational process using sequential mutations under a mutational signature.  
Here, we propose a simple method for computing the robustness under a specific mutational 
process for a given coding sequence, Sinabro, to simulate single base substitution under a given 
mutational driver. Robustness was measured as the average number of single base substitutions a 
given sequence can tolerate. Our simulator successfully recapitulated COSMIC mutational 
signatures. Our results highlight that the human genome displays variable robustness across 
different mutational signatures, with notable resilience under the APOBEC mutational signature, 
SBS2. This signature is linked to a cytidine deaminase involved in viral defense mechanisms, but it 
has also been implicated in cancer pathogenesis and tumor heterogeneity. As many research 
studies highlight APOBEC mutagenesis as part of carcinogenesis and cancer initiation, robustness 
to SBS2 is a key finding. Our findings validate our previous discovery on the role of APOBECs in 
later stages of cancer by contributing to the heterogeneity of cancer cells that are more evolvable 
and probably less robust to mutations25. 
We also demonstrate the utility of our approach when comparing robustness to mutagenic 
processes across species. Among bats, M. myotis (maximum lifespan = 37 years) and Mol. 
molossus (maximum lifespan = 5.6 years) represent extremes in the relationship between lifespan 
and body mass26. While the expansion of the APOBEC3 gene subfamily in bats has been well 
documented27,28, ours is the first analysis to explore the implications for genomes of more than one 
bat species. Our finding of varying robustness to their own (Fig. 6g), but not other species’ 
APOBEC3 activity suggests coevolution between the genome and native APOBEC3. This contrasts 
with our previous finding of similar APOBEC3 motif representation across cancer and non-cancer 
genes in Pteropus alecto (maximum lifespan = 20.3 years)25, a bat with the most APOBEC3 
catalytic domains known to date, 1328. But, consistent with the coevolution hypothesis, we also 
found distinct distributions in inferred mutational susceptibility to APOBEC3-mediated deamination25. 
Our focus on robustness illuminates another dimension of genome variability; while the long-lived 
bat displays higher robustness, the short-lived bat shows lower robustness and its frequency 
distribution is distinct from those of both human and the long-lived bat. Thus, our finding that 
APOBEC3 mutational signatures strongly influence the robustness of the human genome is 
validated across bats and appears to relate to the evolution of extreme lifespans as well.   
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Figure 1. Schematic representation of Sinabro algorithm for sequential mutations under
mutational signatures. For a given coding sequence, Sinabro traverses trinucleotide context
through the sequence and calls in the percentage of corresponding mutation type based on
mutational signature from the pre-computed matrix. The matrix is then normalized to the sum of the
matrix to make it a probability matrix. A single base substitution of the sequence is selected based
on the probability matrix, and the mutation is compared to the original codon to determine whether it
is non-synonymous. The process loops until the mutation is non-synonymous. 
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Figure 2. The average and variation of robustness against each mutational signature of the
human genome. a. The top 10 mutational signatures rank by average. b. The top 10 mutational
signatures rank by standard deviation. c. The bottom 10 mutational signatures rank by average. d.
The bottom 10 mutational signatures rank by standard deviation. 
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Figure 3. Principal component analysis (PCA) of mutational signature. a. Heat map colored by
the weight of mutational signatures in each principal component. The Y-axis is sorted based on the
GC targeting preference of each mutational signature. b. Shoulder plot of cumulative explained
variance ratio. PC1 and PC2 explain 73% of the total variance, and from PC1 to PC10 explain 90%
of the total variance. c. PC1-PC2 plot of all protein-coding sequences of the human genome
colored by the GC contents at the wobble position. A sequence with high GC contents at the
wobble position has a high PC1 value. 
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Figure 4. The weight of each mutational signature on PCs 1-10. The Y-axis is sorted based on
the weight of each mutational signature of each principal component. SBS1 appeared to be the
highest for PC3, PC4, and PC10 (a, b, and h); SBS10a for PC5 (c); SBS7d for PC6 (d); SBS7a for
PC7 (e); SBS84 for PC8 (f); SBS22 for PC9 (g). 
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Figure 5. Impact of mutational signatures' specificity and the transition mutation ratio on 
robustness. Specificity decreases with increasing entropy. a. The average robustness under 
mutational signature versus the specificity of the mutational signatures plot is colored by the GC 
targeting preference of the mutational signatures. b. The standard deviation of robustness under 
mutational signatures versus the specificity of the mutational signatures plot is colored by the GC 
targeting preference of the mutational signatures. c. Average robustness under mutational 
signature versus the specificity of the mutational signatures plot is colored by the transition mutation 
ratio of the mutational signatures. d. Linear regression plot of the average robustness of mutational 
signatures against the transition ratio of the mutational signatures. The two variables have a 
significant positive correlation (R2 = 0.715, F(1, 58) = 145.5, p < 2.2 x 10-16). 
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Figure 6. Motif preference patterns of bat APOBECs in cytidine deamination.  Each bat 
APOBEC enzyme was incubated with a 369 bp artificial DNA substrate, followed by PCR 
amplification of the resultant DNA and Next Generation Sequencing analysis. Each bar shows the 
average percentage of the C to T mutation rates of the corresponding NNC from the full length of 
the DNA sequence.  
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Figure 7. Comparison of robustness under mutational signatures between human and two
bat genomes. Robustness under COSMIC mutational signature (a) SBS1 spontaneous
deamination, (b) SBS4 tobacco smoking, (c) SBS6 defective DNA mismatch repair, (d) SBS18
damage by ROS, (e and f) SBS2 and SBS13 APOBEC activity. Pair wise Wilcoxon rank sum test in
Table S2. g. Robustness under their native APOBEC3A activity. M. myotis showed the highest and
M. molossus showed the lowest robustness. 
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Methods 
 
Sinabro: sequential mutation simulator 
The main function of Sinabro is to generate sequences by simulating a single base substitution at a 
time. To accomplish this function, Sinabro applies the custom Python class Trajectory, which stores 
the input sequence and other sequences generated by sequential mutation. The class also stores 
mutations in HGVS mRNA format, HGVS Protein format, and mutation type. The mutation type in 
this study is a string formatted as (5’ context)[(original nucleotide)>(mutated nucleotide)](3’ context) 
to record the context and the type of single base substitution. For example, a mutation type 
T[C>T]A represents the C-to-T mutation in TCA. Users can either manually create a Trajectory 
class object by inserting records or automatically fill it using predefined methods with parameters 
(details in Supplementary Note S2). To compute the robustness of a given coding sequence under 
mutational signatures, we used  parameters condition=“nonsynonymous” and method=“signature.” 
With these parameters, Sinabro reads a signature file containing the occurrence frequencies of 96 
mutation types and converts it to a 4-by-64 matrix where columns are all possible 64 trinucleotides, 
and rows are the nucleotides resulting from mutation. For example, f2,1 represents that the center 
nucleotide is mutated to nucleotide 2 (C) in the context of trinucleotide 1 (AAA). Using the matrix, 
Sinabro then computes a 4-by-n probability matrix whose element pi,j is the probability of j-th 
nucleotide in the sequence mutated to i-th nucleotide, where n is the length of a given sequence. 
Then, a single base substitution is selected based on the probability matrix, and the resulting 
sequence, HGVS mRNA format, HGVS Protein format, and mutation type are recorded to the 
Trajectory object. Sinabro decides whether to continue the process by checking whether the 
resulting mutation changed the codon. Sinabro ends the automatic filling of the Trajectory object if 
the mutation is non-synonymous. To compute the robustness under bat’s APOBEC activity, we 
used parameters condition=“nonsynonymous” and method =“mut_types.” With these parameters, 
Sinabro detects all potential mutation sites and computes the probability of mutation of each site 
based on the given probabilities of each mutation type. Then, the same procedures, selecting a 
single base substitution and checking codon difference, are repeated to measure robustness. 
We validated that Sinabro faithfully recapitulates mutational signatures by simulating a single base 
substitution on 10,000 per random sequence of 2,200 bp long. Then, we re-created each mutational 
signature based on the simulation result (Figure S1), and the cosine similarity between the original 
mutational signatures was computed (Figure S2).   
 
Data and preprocessing 
We downloaded the FASTA file containing all protein-coding transcript sequences from GENCODE 
(Release 40). Then, only the complete protein-coding region of each record was extracted. In detail, 
we extracted substrings of the record containing coding sequence using the FASTA file name field 
annotation. Those sequences were filtered to have the correct length of a multiple of three, start 
codon, and stop codon. In addition, we removed sequences from the pseudoautosomal region of 
the Y chromosome. For the computation of the robustness under mutational signature, each 
sequence also includes two additional nucleotides, one at the 5’ end and one at the 3’ end. Those 
nucleotides were required to simulate mutations at the first and the last position in trinucleotide 
contexts of COSMIC mutational signatures. The resulting FASTA file with a total of 73,214 coding 
sequences was used in further robustness computation. 
 
Computation of the robustness under mutational signatures 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.05.611453doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611453
http://creativecommons.org/licenses/by-nc/4.0/


Human genome robustness under COSMIC mutational signatures 

We defined the robustness of a coding sequence under the mutational signature as the average 
number of synonymous single-base substitutions under the mutational signature. We wrote a 
custom Python script computing the robustness of a single sequence utilizing Sinabro. The script 
generates 1,000 Trajectory objects per mutational signature from a coding sequence record in the 
preprocessed GENCODE file. The script then makes a 1,000-by-79 Pandas DataFrame that stores 
l-1, where l is the length of the Trajectory object and saves it into a CSV file. We used the SGE 
high-performance computing cluster in the Laufer center to compute the robustness for all coding 
sequences in the processed GENCODE file by submitting an array job. We calculated the 
robustness of each coding sequence by averaging the results from each output file and combined 
them into a single file, all_gencode_rums_profile.csv, which was used for further analysis. The 
robustness profile file was imported into R for the ranking plots, and violin plots of the robustness 
distribution were created using the ggplot2 package29 (Figure 2).  
 
Calculation of GC targeting preferences and entropy of mutational signatures 
COSMIC mutational signatures were downloaded from COSMIC. GC targeting preferences of each 
mutational signature were computed by summing the percentage of C>A, C>G, and C>T. The 
entropy of the mutational signature was calculated as H(s)=-Σp(si)log2p(si) where s is a mutational 
signature and p(si) is the percentage of mutation type i. We used Numpy to compute GC targeting 
preferences and entropy, and the results were exported to a single CSV file. 
 
GC contents at the wobble position of coding sequences 
GC contents at the wobble position, that is, the fraction of G or C at the wobble positions in the 
given coding sequence, were computed using a custom Python script. The script reads in the 
preprocessed GENCODE FASTA file with the BioPython SeqIO module. The GC content at the 
wobble position is calculated by dividing the number of G or C at the wobble position by the number 
of wobble positions, which is the total length divided by three. The result was then exported to a 
single CSV file. 
 
Transition mutation ratio of mutational signatures 
The transition mutation ratios of mutational signatures were computed by summing the percentage 
of C>T and T>C mutations for each mutational signature using Numpy and exported to a single 
CSV file.  
 
Principal component analysis 
COSMIC mutational signatures include signatures likely to arise from sequencing artifacts. Hence, 
we excluded 19 possible sequencing artifact signatures and performed principal component 
analysis (PCA). We used the “PCA.fit()” function from “sklearn.decomposition” with default 
parameters to perform the principal component analysis on the subsetted robustness profiles matrix. 
Then, the cumulative explained variance ratio and the weights of principal components were 
exported into a single CSV file using the Numpy cumsum() function on 
PCA.fit.explained_variance_ratio_ and  PCA.fit.components_, respectively. 
All generated files were imported into R, and the principal components heat map, cumulative 
explained variance plot, PC1-PC2 with GC contents of coding sequences, principal component 
weight plots, robustness versus entropy plots, and robustness to transition ration regression plot 
were created using the ggplot2 package.  
 
Bat APOBEC protein expression, purification and cytidine deamination motif preference 
analysis  
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The bat APOBEC gene coding sequences of Molossus molossus and Myotis myotis were identified 
in the bat1k longevity project. The genes were cloned into a pPICZ yeast expression vector for 
expression and purification in yeast as previously described30. For purification purposes, a GST-tag 
was introduced in frame at the 5’-end of each gene so that a fusion protein would be expressed.  
Screening of transformants and expression of GST-APOBEC fusion proteins were carried out as 
previously described30,31. Cells were lysed using a French Pressure Cell Press. GST-tagged bat 
APOBEC proteins were purified using Glutathione Sepharose High-Performance beads (GE 
Healthcare, Cat # 17-5279-01) as previously described30. Purified proteins were stored in a solution 
containing 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM DTT and 5% glycerol. 
  
To examine the cytidine deamination (C to T mutation) activities of the purified bat APOBEC 
enzymes, we employed a PCR-based assay described previously 31 where in Next Generation 
Sequencing (NGS) was used to amplify and sequence a DNA substrate incubated with the 
APOBECs. The substrate DNA fragment was a 369 bp-long artificial sequence containing multiple 
copies of all the 16 NNC motifs and cloned into the pcDNA3.1 vector. This DNA fragment was 
flanked at both the 5’- and 3’- ends with AT-only sequences to ensure unbiased PCR amplification 
post APOBEC-mediated cytidine deamination. The purified bat APOBEC enzymes were incubated 
with the plasmid DNA substrate at 33 ˚C, pH6.5 for 1 h, and then PCR amplified using Taq DNA 
polymerase and primers annealing to the AT-only flanking regions. PCR products were purified and 
NGS was performed by GENEWIZ (Azenta Life Sciences). The sequencing data were analyzed at 
the Galaxy web platform (usegalaxy.org) using tools FastQC, Trimmomatic, Bowtie2, Naïve Variant 
caller and Variant Annotator. Output data were analyzed for NNC hotspot motif preference of the 
bat APOBECs by comparing the normalized frequency of mutations found at each motif. 
 
Computation of probability of mutation type for measuring robustness under bat APOBECs 
To measure robustness using Sinabro, the conditional probability that the 5' context is one of NNC, 
given that a C-to-T mutation occurs. In detail, denote the probability of a single C-to-T mutation as 
P(A) and the probability that the 5’ context of mutated C is ci as P(Bi) where ci is an element of a set 
of all possible 5’ context C={ci}. Then, P(Bi|A)=mi/M where mi is the number of C-to-T mutations in 
the context ci, and M is the total number of C-to-T mutations. These probabilities were computed for 
each APOBECs and passed to the parameter mut_type_prob in Sinabro for measuring robustness 
along with other parameters condition=“nonsynonymous” and method =“mut_types.” 
 

Data availability 
All human protein-coding transcript sequences are available in GENCODE (release v40, 
https://www.gencodegenes.org/human/release_40.html). Genome assembly and mRNA annotation 
of two bat species, M. molossus (molMol2) and M. myotis (myoMyo6), are available in Bat1K 
genomes from Hiller Lab (https://bds.mpi-cbg.de/hillerlab/Bat1KPilotProject/).  
 

Code availability 
The sequential mutation simulator Sinabro is available on the Sinabro GitHub repository 
(https://github.com/StudyingAnt/sinabro). All computational analysis scripts are available on the 
GitHub repository (https://github.com/StudyingAnt/Simple_robustness_analysis_of_cds). 
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Table S3. Pair wise Wilcoxon rank sum test of robustness under bats’ APOBEC 
Figure S1. Recapitulation of all COSMIC mutational signatures using Sinabro. 
Figure S2. Cosine similarity between COSMIC mutational signature and Sinabro simulation. 
Figure S3. The bottom 15 mutational signatures ranked by the average robustness. 
Figure S4. The top 10 mutational signatures ranked by the average robustness. 
Figure S5. The top 10 mutational signatures ranked by the standard deviation of robustness 
distribution. 
Figure S6. The mutational signatures with the highest weight of each principal components.  
Figure S7. Schematic comparison between the definitions of robustness.  
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Supplementary Note S1 
 
Incorporation of mutational processes into the robustness 
Wagner straightforwardly defined the robustness of genotype g as the number (Rg) or fraction (rg) of 
neutral genotypes separated by 1 nucleotide (Figure S7A). If the genotype length is L, there are 3L 
genotypes separated by 1 nucleotide considering only substitutions hence, we have a relation 
rg=Rg/3L. We can view rg from a different perspective. One can think of rg as an expectation that the 
genotype maintains its phenotype after a random single nucleotide substitution where all mutation 
types have the same probability of 1/3L. Applying a similar perspective, the n-robustness of 
genotype g (rg

(n)) can be considered as an expectation that the genotype maintains its phenotype 
after n single nucleotide substitution where the probability to be mutated into a specific genotype is 
the same for all genotypes. One can immediately think of considering different probabilities of being 
mutated into different genotypes. Then, the robustness of genotype g under mutational process can 
be written as $$r_g=\sum_{g_i \in G}{P(g>g_i) }$$ where P(g>g_i) is a probability of g mutated to 
g_i, and G is a set of all genotypes having the same phenotype with genotype g separated by single 
nucleotide substitution. Furthermore, one can consider sequential mutations until phenotype 
changes and the length of a path from g to g_i instead of restricting the number of mutations to a 
constant n. We can define robustness as the expectation of the length of a path. These can also be 
interpreted as the number of mutations given by the genotype that can be tolerated before 
phenotype changes. In this study, a protein-coding sequence and its variants by mutational 
signatures are the genotype g and g_i, respectively, and their translated amino acid sequences are 
phenotypes.   
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Supplementary Note S2. Parameters of Sinbaro auto-filling function 
Currently, in Sinabro, we have two stop conditions and three methods for mutation: max_length and 
nonsynonymous; random, mut_type, mut_types, and signature. The first stop condition, max_length, 
runs the simulation until the sequence cannot be mutated by the given mutation method or the 
length of the Trajectory reaches the given max_length. The second stop condition, nonsynonymous, 
runs the simulation until the sequence gets a non-synonymous mutation. The first mutation method, 
random, generates random single base substitution, meaning all nucleotides in the sequence have 
the same probability of mutation and the same probability of being mutated to one of three other 
nucleotides. The second mutation method, mut_type, runs the simulation of a given mutation type. 
It searches for candidates that match the given nucleotide context of the mutation type, randomly 
selects a position to mutate, and mutates the sequence based on the given mutation type. The third 
mutation method, mut_types, is similar to mut_type but used when each contexts have different 
probability to be mutated. It runs a simulation of a given mutation types and according probability of 
each mutation. The final mutation method, signature, runs a simulation of a given mutational 
signature as described in the method section. The mutational signature can be given by its 
COSMIC mutational signature name or custom mutational signature either generated by SigProfiler 
or manually created by the user. 
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Figure S1. Recapitulation of all COSMIC mutational signatures using Sinabro. Randomly
generated 10,000 of 2,200 bp long sequences with GC contents of 0.4 were passed to Sinabro, and
simulated single mutations on those sequences to validate Sinabro faithfully recapitulates
mutational signatures. The number in each plot is the cosine similarity between the original
COSMIC mutational signature and simulation.  
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Figure S2. Cosine similarity between COSMIC mutational signature and Sinabro simulation.
The average cosine similarity was 0.974, the maximum 1 for SBS13, and the minimum 0.926 for
SBS94.  
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Figure S3. The bottom 15 mutational signatures ranked by the average robustness. 9 out of
15 signatures are almost exclusively inducing C-to-A mutation. 
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Figure S4. The top 10 mutational signatures ranked by the average robustness. 9 out of 10
signatures induce almost exclusively C-to-T mutation. 
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Figure S5. The top 10 mutational signatures ranked by the standard deviation of robustness
distribution. 8 out of 10 signatures induce almost exclusively C-to-T mutation. 
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Figure S6. The mutational signatures with the highest weight of each principal components.
Mutational signatures induce a specific mutation rather than a random mutation. 

s. 
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Figure S7. Robustness under the activity of APOBECs from different species. a., b., and c.
Robustness under APOBEC1, APOBEC3A, and APOBEC3C of M. molossus, respectively. d., e.,
and f. Robustness under APOBEC1, APOBEC3A, and APOBEC3C of M. myotis, respectively. g.
Robustness under SBS2 from H. sapiens. Pair wise Wilcoxon rank sum test in Table S3. 
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Figure S8. Schematic comparison between the definitions of robustness. a. 1-robustness
definition by Wagner. b. n-robustness definition by Granbury. c. Robustness under mutational
signature used in this study.  
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