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Abstract

The aim of this study was to examine if synbiotics present similar efficiency to a common

antibiotic used in poultry production under heat stress (HS) conditions. Two hundred and

forty-one-day-old male Ross 708 broiler chicks were distributed among 3 treatments with 8

pens per treatment of 80 birds each for a 42-day trial. From day 15, birds were heat stressed

(32˚C for 9 h daily, HS) and fed the basal diet (CONT), the basal diet mixed with an antibiotic

(Bactiracin Methylene Disalicylate) (0.05 g/kg of feed, BMD) or a synbiotic (0.5 g/kg of feed,

SYN). The treatment effects on bird behavior, production performance, jejunal histomor-

phology, and cecal microbial ecology were examined. Behavioral observation was recorded

by using instantaneous scan sampling technique. Production parameters were measured

on day 14, 28, and 42. Cecal microbial populations of Escherichia coli and Lactobacilli and

jejunal histomorphological parameters were measured at day 42. The results showed that,

SYN birds exhibited more feeding and preening but less drinking and panting behaviors

compared with both BMD and CONT birds (P < 0.05). The SYN birds also had higher body

weight (BW) at both day 28 and 42 compared to CONT birds (P < 0.05). At the end of the

experiment, the counts of Escherichia coli of SYN birds were at the similar levels of BMD but

were lower than that of CONT birds (P < 0.05); while there were no treatment effects on the

populations of Lactobacilli (P > 0.05). In addition, SYN birds had greater villus height com-

pared with both CONT and BMD birds (P < 0.05). These findings suggest that the dietary

synbiotic supplement has significant performance and welfare benefits, with the potential to

be used as an alternative to antibiotics for poultry meat production, especially during hot

seasons.
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Introduction

Heat stress (HS) is a critical animal health and welfare issue affecting the farm animal indus-

tries, impairing production performance and reducing economic profiles. Climate change

over the recent decades has resulted in more hot days with more intense and frequent unex-

pected heat waves [1]. Heat stress results in annual economic losses of $1.69 - $2.36 billion in

the livestock industry and of $128 - $165 million in the poultry industry [2]. In broiler chick-

ens, especially during hot seasons in the tropical and subtropical regions, HS detrimentally

affects production performances ranging from feed intake (FI), body weight gain (BWG), feed

conversion ratio (FCR), and meat quality [3].

Broiler chickens, like other homeothermic animals, can maintain a relative body tempera-

ture by balancing the basal metabolic rate of body heat production and the rate of heat loss to

the ambient environment [4]. However, broiler chickens are especially sensitive to HS due to

poor heat tolerance and limited heat release by feathering, lacking sweat glands, and having a

high metabolic rate [5, 6]. Behavioral adaptation is the major method of birds to cope with hot

temperatures, including eating less and drinking more, seeking cooler areas, wing spreading

(to promote cooling by reducing body insulation), and panting [7]. The act of panting

increases blood partial pressure of carbon dioxide. If HS persist, excessive panting will cause

birds to expire great amount of carbon dioxide and develop metabolic alkalosis, a serious dis-

ruption of acid-base balance, eventually leading birds to death [2].

The gastrointestinal tract (GIT) is one of the major organs affected by HS through several

pathways, including organ ischemia and hypoxia, resulted from excessive panting and superfi-

cial vasodilation. In addition, HS negatively affects the function of the GIT in food digestion

and nutrient resorption [8] and destroys microbial balance [9], causing local immunosuppres-

sion [10], damaging epithelial cells, and destroying the cellular microstructure and related

intestinal barrier [11]. Consequently, HS disrupts intestinal homeostasis and increases gut per-

meability (leaky gut), leading to systemic inflammation and or infection [12].

Antibiotics have been used in broiler production for disease prevention since 1940s, with

the secondary benefits, growth promotion, have also been observed [13]. In poultry, Bactiracin

Methylene Disalicylate (BMD) has been used to control infectious diseases, subsequently

improving growth performance and feed efficiency [14]. Bactiracin Methylene Disalicylate as

an antibiotic act through interfering with cell wall production and protein synthesis to pro-

mote cell lysis [15]. However, the use of antibiotics in animal husbandry has caused growing

public concerns about drug residues in meat products and the development of antibiotic-resis-

tant bacteria [16]. In the United States, more than 2.8 million people get an antibiotic-resistant

infection annually [17]. Therefore, the search for new alternatives in antimicrobial therapy in

animal production has become critical. Attention is being paid particularly to natural product-

based therapies, such as targeting the gut microbiota (or microbiome) with prebiotics, probiot-

ics, and synbiotics [18, 19]. Synbiotics may be more efficient than prebiotics and probiotics as

that synbiotics are a synergistic mixture of probiotics and prebiotics. Probiotics are live micro-

organisms whose functions in improving the microbiota balance in the GIT, inhibiting the

growth of pathogenic bacteria, promoting food digestion and nutrient resorption, and boost-

ing immune function [20]. Prebiotics are nondigestible fiber compounds that reduce the path-

ogenic bacteria through competing for binding sites on the intestinal mucosa and enhance the

survival and growth of beneficial microbial species in the gut [21, 22]. Several studies have

shown a promise outcome to use synbiotics as antibiotic replacements in commercial broiler

chickens under thermoneutral temperatures [23–25], although some contrasting results have

been reported [26, 27]. The inconsistent results could be affected by multiple factors such as

the birds’ age and strain with different survivability, diet quantities and nutrients, and the
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format of synbiotics and dosage used between the different studies [28]. The objective of this

study was to compare the effects of a synbiotic dietary supplement (a combination of fructo-oligo-

saccharides and 4 mixed microbial strains, SYN) and an antibiotic (Bactiracin Methylene Disali-

cylate, BMD) on the behavioral pattern, production performance, intestinal histomorphology,

and cecal microbial ecology in heat stressed broiler chickens. Bactiracin Methylene Disalicylate as

an antibiotic has been commonly used in poultry for promoting production and preventing and

treating infectious diseases [29]. We hypothesize that SYN, similar to BMD, can mitigate the neg-

ative effects of HS on broiler health and welfare by preventing or reducing HS induced abnormal

behaviors, impaired production performance, and damaged gut integrity without antibiotic side

effects, producing antibiotic-resistant bacteria through improving the microbiota balance in the

GIT, inhabiting HS-caused cell oxidative damage and related gut integrity disorder, increasing

permeability (leaky gut), promoting food digestion and nutrient resorption, and reducing HS-

caused immune suppression and related inflammation. we expect that the synbiotic has similar

function as that antibiotic in improving behavior, performance production, microbial balance

and intestinal histomorphology but without antibiotic side effects.

Materials and methods

Birds, management, and diets

A total of 240 one-day-old male broiler chicks (Ross708 strain) were obtained from a commer-

cial hatchery (Pine Manor/Miller Poultry, Goshen, IN). The broiler chicks were weighed in

groups of 10 birds each and assigned in to 1 of 24 floor pens (100×100 cm) with equal average

body weight (BW) within the temperature-controlled room at the Poultry Research Farm of

Purdue University. The pens were randomly distributed to one of three dietary treatments

(n = 8): control group fed the basal diet (CONT) (Table 1), mixed with an antibiotic (Bactira-

cin Methylene Disalicylate, ZOETIS, Durham, NC, USA) at 0.05 g/kg (BMD) or a synbiotic

(PoultryStar1, Biomin America Inc., Overland Park, KS, USA) at 0.5 g/kg (SYN). The dose

was recommended by the company and tested in previous studies [3, 30]. The synbiotic sup-

plement composed of fructooligosaccharides as the prebiotic and 4 microbial strains of probi-

otic (Bifidobacterium animalis; Enterococcus faecium; Lactobacillus reuteri; and Pediococcus
acidilactici). The SYN and BMD were mixed separately into the basal diets based on bird life

stages (the starter diet from day 1 to 14, grower diet from day 15 to 28, and finisher diet from

day 29 to 42) by a step-up procedure until the total amount of diet was homogenously incorpo-

rated [3]. The study was performed during the summer of 2020. Broiler chicken management

was performed according to the guidelines of Aviagen [31]. The ambient temperature was set

at 34 ± 2˚C on day 1 and was reduced 3˚C per week until it reached 26 ± 2˚C on day 14; there-

after, HS, 32˚C for 9 h (0800–1700), was started daily on day 15 (i.e., the beginning of the

growth phase) and maintained until the end of the experiment. In this study, we did not use a

thermoneutral control group as the objective of the study was to investigate the effect of syn-

biotics an antibiotics alternative on HS birds and using the daily HS episode (32˚C/9 h/d) was

guaranteed to motivate HS based on previous reports [19, 32, 33]. Narrowing focus to involve

only HS broiler chickens allowed us to minimize animal use by 50%, a key priority of animal

welfare scientists (i.e., the 3Rs principal [3, 19, 34]). The experimental protocol and related ani-

mal treatment and care procedures were approved by the Animal Care and Use Committee of

Purdue University (West Lafayette, IN, USA) (PACUC number:1712001657).

Behavioral observations

Forty birds per treatment (5 birds per pen x 8 pens per treatment) were randomly selected for

behavioral observation and marked with a livestock green spray paint marker (Cotran
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Corporation, Portsmouth, RI). Behavioral observations were performed twice daily, from

09:00 to 10:00 and 13:00 to 14:00, for 3 days weekly (Sunday, Tuesday, and Thursday) from

week 3 to 6. Instantaneous scan sampling was used for recording the focal birds’ behaviors 6

times per observation session based on the developed ethogram (Table 2) [3]. There was 1 m

distance between the observer and each pen during the behavioral observation to avoid dis-

turbing birds’ behavior. Behavioral data are presented as: % of behavior = the number of a

behavior / the total number of all behaviors during the observation time [3, 35].

Growth performance

Production parameters (BW, BWG, FI, and FCR) were measured at the end of each growth

phase, day 14 (the end of starter phase), day 28 (the end of grower phase), and day 42 (the end

of finisher phase), according to Mohammed et al. [3]. All birds within a pen (10 birds per pen)

were weighted at each time point. Feed intake was calculated by subtracting residual feed from

the offered feed. The BWG was calculated as the BW of the present time point subtracted the

BW of the previous time point. Data of FI and BWG were used to calculate the FCR

(FCR = FI/BWG).

Table 1. Components of base diet 1, separated by the growth phase2.

Ingredient % Starter Grower Finisher

(1–14 day) (15–28 day) (29–42 day)

Corn ground 57.66 63.76 66.9

Soybean meal 47.5% 35.27 29.68 26.3

Soybean oil degummed 3 3 3.52

Calcium carbonate 1.41 1.38 1.49

Phosphate monocalcium 1.42 1.02 0.82

L-Lysine 0.11 0.1 0.02

Salt plain 0.48 0.46 0.48

L-Threonine 98% 0.06 0.04 0

DL-Methionine 0.24 0.21 0.12

Poultry turkey starter 0.35 0.35 0.35

Calculated Analysis 3

Crude protein % 23.4 22.8 19.2

Poultry ME kcal/kg 3050 3151 3200

Calcium % 0.95 0.85 0.75

Available phosphorus % 0.50 0.44 0.36

Methionine % 0.66 0.59 0.53

Methionine+Cystine % 1.04 0.97 0.86

Lysine % 1.42 1.29 1.09

Threonine % 0.97 0.89 0.74

Na % 0.22 0.20 0.19

1 The ration formulation was produced according to Aviagen [31]. Dietary treatments containing basal diet under

heat stress condition (CONT), mixed with an antibiotic Bactiracin Methylene Disalicylate (BMD) and a synbiotic

(SYN).
2 The diets were formulated by the Purdue University Feed Mill. (w. Lafayette, IN, USA).
3 Provided per kilogram of diet: vitamin A, 13.233 IU; vitamin D3, 6.636 IU; vitamin E, 44.1 IU; vitamin K, 4.5 mg;

thiamine, 2.21 mg; riboflavin, 6.6 mg; pantothenic acid, 24.3 mg; niacin, 88.2 mg; pyridoxine, 3.31 mg; folic acid, 1.10

mg; biotin, 0.33 mg; vitamin B12, 24.8 μg; choline, 669.8 mg; iron from ferrous sulfate, 50.1 mg; copper from copper

sulfate, 7.7 mg; manganese from manganese oxide, 125.1 mg; zinc from zinc oxide, 125.1 mg; iodine from ethylene

diaminedihydroidide, 2.10 mg; selenium from sodium selenite, 0.30 mg.

https://doi.org/10.1371/journal.pone.0274179.t001
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Sample collection

At the end of the experiment, one bird per pen was randomly chosen for sample collection (8

birds per treatment). The sampled birds were sedated using sodium pentobarbital (30 mg/mL)

for blood sample collection. Followed blood collection, the birds were killed by cervical dislo-

cation, and then jejunal samples (2 cm at the midpoint) [36] and cecal contents (1 gram) were

collected [37]. The cecal samples were stored at -80˚C until analysis. The jejunal tissue samples

were gently flushed with 0.9% saline to remove the contents and then fixed in 10% formalin

until analysis.

Histomorphological measurements

The histomorphologal parameters of the jejunal tissue samples were measured using previ-

ously published methods [34, 38]. Briefly, the jejunal tissue samples were dehydrated and

embedded with paraffin wax (Thermo fisher scientific, Kalamazoo, MC). The paraffin blocks

were cut at 5-μm-thick cross sections using a microtome, then stained with hematoxylin and

eosin (H&E) (GeneCopoeia, Rockville, MD), and examined under an Olympus BX40 F-3

microscope (Olympus Cooperation, Tokyo, Japan) attached to a digital video camera (Q-

imaging, 01-MBF-200R-CLR-12, SN: Q32316, Canada) as described in Jiang et al. [34]. The

morphometric measurements of villus height and crypt depth of the jejunum were analyzed by

using the software of Image J (National Institutes of Health, USA).

Microbial analysis

Bacterial enumeration of each cecal sample was performed by following the previously pub-

lished protocol [37, 39]. In brief, 1 g of cecal sample was mixed with 9 mL of buffered peptone

water (NeogenCorporation, Lansing, MI), and then 10-fold serial dilutions up to 10−7 were

prepared. A 10 μL sample mixture from each of the serial dilutions was inoculated using bacte-

ria-specific agars. Rogosa agar (Fisher Scientific/Becton, Dickinson Co.) was used and incu-

bated for 24 h at 37˚C anerobically for enumeration of total lactobacilli; and Eosin methylene

blue (EMB) agar (Fisher Scientific/Becton, Dickin-son Co., Sparks, MD) was used and incu-

bated for 24 h at 37˚C aerobically for enumeration of Escherichia coli. Counting of the colonies

was done as units per gram of the sample after incubation.

Table 2. Ethogram of broiler behaviors according to Mohammed et al. [3].

Behavior1 Definition

Standing The birds’ body posture is in an upright position. The feet are in touch with the litter. No

other body part is in contact with the floor surface.

Sitting The ventral part of the bird is touching the ground. Legs are bent at the knee with lower part

of the leg, under the knee (i.e., fibula and tibia) touching the ground.

Feeding The bird’s head is in the feeder, presumably eating feed.

Drinking The bird’s neck is stretched to place his beak towards the drinker and then moved up,

presumably drinking water.

Preening The bird is using the beak to manipulate its own feathers gently.

Wing

Spreading

Wings are extended horizontally from the body such that a space can be seen between the

underside of the wing and the surface of the bird’s body.

Panting The bird opens its beak to breathe, and respiration rate is abnormally fast.

1All behavioral patterns were alternatively exclusive; postures (i.e., standing and sitting) were only enumerated if the

bird did no other simultaneous behaviors.

https://doi.org/10.1371/journal.pone.0274179.t002
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Statistical analysis

The experiment was conducted in a randomized block design. A pen (n = 8) was considered as

the experimental unit. Behavioral patterns and growth performance parameters were analyzed

by repeated measures ANOVA, and the cecal microbial population and jejunal histomorpho-

logical parameters were analyzed by One Way Analysis of Variance. The data were analyzed

by using PROC MIXED model with SAS 9.4 software (SAS Institute Inc., Cary, NC). The Sha-

piro-Wilk test was used to analyze the normality of the data. Transformation of the data was

performed for normality when variances were not homogeneous [40]. Performance parame-

ters and behavioral patterns were log transformed. Because statistical trends were similar for

both transformed and untransformed data, the untransformed results were presented. For

intestinal bacterial colony forming units (CFUs), colony counts (cfu/g) of Escherichia coli and

lactobacillus spp., were exposed to logarithmic transformation (log10) for normality and the

transformed data were presented. Tukey-Kramer test was used to compare the means when a

significant difference was detected; the level of statistical significance was set when the coeffi-

cients were at P< 0.05. Data were presented as mean ± SE.

Results

Behavioral patterns

The effects of dietary supplementation of BMD and SYN on behavioral patterns of heat

stressed broiler chickens are presented in Table 3. Compared to CONT and BMD groups, the

SYN group, exhibited more standing (P< 0.05), feeding (P < 0.001), and preening

(P< 0.001), with less drinking (P < 0.01) and panting (P< 0.001). In addition, the SYN group

sat less than the CONT group (P< 0.05) but not the BMD group (P> 0.05), while wing

spreading in the SYN group was not different compared to both CONT and BMD groups

(P> 0.05). There were no treatment effects on all measured behaviors between BMD and

CONT groups (P> 0.05) except the sitting behavior (P< 0.05).

Growth performance

The effects of dietary supplementation of BMD and SYN on growth performance parameters

of heat stressed broiler chickens are presented in Table 4. At day 14, there were no treatment

effects on all production traits (P > 0.05) except FI was increased in the CONT group

Table 3. Effect of dietary supplementation of synbiotic (SYN) and antibiotic (BMD) on behavioral patterns of

broiler chickens reared under heat stress condition.

Behavior CONT BMD SYN P-value

Standing (%) 3.81±1.09b 3.27±1.09b 7.92±1.09a 0.0128

Sitting (%) 30.89±2.35a 20.46±2.35b 15.21±2.35b 0.0004

Feeding (%) 18.51±1.74b 17.53±1.36b 33.00±1.75a 0.0001

Drinking (%) 6.24±0.88a 6.76±0.68a 3.12±0.54b 0.0033

Preening (%) 0.75±0.24b 1.59±0.35b 4.45±0.62a 0.0001

Wing Spreading (%) 6.13±0.68 5.97±0.98 3.58±1.01 0.1045

Panting (%) 49.30±2.87a 44.36±3.58a 16.95±2.23b 0.0001

a,bMean± SE with different superscripts in the same row differ (P< 0.05). (n-8 per treatment; and the data were

collected from 40 birds/treatment; 5 birds/pen x 8 pens/treatment).
1CONT, heat stress + a basal diet; BMD, heat stress + the basal diet mixed antibiotic Bactiracin Methylene

Disalicylate; SYN, heat stress + the basal diet mixed synbiotic.

https://doi.org/10.1371/journal.pone.0274179.t003
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compared to BMD group but not SYN group. At day 28, compared to the CONT group, the

SYN group had greater BW, BWG, but lower FCR (P < 0.05) without difference in FI

(P> 0.05); while BMD groups had a lower FI and FCR (P< 0.05) without differences in the

BW and BWG. Feed intake (P < 0.05) was the only difference between SYN and BMD groups,

the former had higher FI (P< 0.05). At day 42, among measured production traits, the SYN

group had greater BW and BWG (P < 0.05) than CONT, but not BMD groups. While FI and

FCR in the SYN group were not different compared to both CONT and BMD groups

(P> 0.05). There were no treatment effects on all measured parameters between SYN and

BMD groups (P> 0.05).

Cecal microbiota

The effects of dietary supplementation of BMD and SYN on the cecal populations of Escheri-
chia coli and Lactobacillus spp. in heat stressed broiler chickens are presented in Table 5. Heat

stress had significant effects on the cecal population of Escherichia coli as that CONT had the

highest counts at day 42 (P < 0.05). The HS effects were reduced by dietary supplements, but

significant reduction found in the SYN group only (P < 0.05). There was no treatment effect

of dietary treatments on Lactobacillus spp. count of heat stressed broiler chickens (P > 0.05).

Histomorphological measurements

The dietary supplementation effects on villus height, crypt depth and the ratio of villus height

and crypt depth in the jejunum of heat stressed broiler chickens are presented in Fig 1. The

SYN group had longer villi (P < 0.01) and crypts depth (P < 0.01) than both BMD and CONT

groups. These changes resulted in the greatest resorption areas in the SYN group (villus height

+ crypts depth: SYN, 1001 μm� CONT, 711 μm� BMD, 632 μm). There was no treatment

effect of dietary treatments on the ratio of villus height and crypt depth of heat stressed broiler

Table 4. Effect of dietary supplementation of synbiotic (SYN) and antibiotic (BMD) on performance parameters of broiler chickens reared under heat stress

condition.

Treatment1 CONT BMD SYN P-value

d14

BW (g) 432.28±7.35 428.62±4.99 445.79±6.72 0.1562

FI (g) 432.75±10.77a 390.83±8.09b 408.29±13.25ab 0.0414

BWG (g) 395.94±7.37 395.75±6.20 409.49±6.72 0.2815

FCR 1.09±0.01 1.01±0.02 1.00±0.04 0.0581

d28

BW (g) 1396.01±16.68b 1425.20±25.88ab 1497.15±13.88a 0.0075

FI (g) 1527.62±34.94a 1368.12±42.77b 1520.00±18.32a 0.0073

BWG (g) 963.73±12.82b 997.21±22.83ab 1051.36±18.73a 0.0173

FCR 1.58±0.02a 1.37±0.03b 1.45±0.03b 0.0007

d42

BW (g) 2380.97±25.53b 2434.16±28.33 ab 2512.34±37.06a 0.0325

FI (g) 2093.72±25.41 2043.66±23.15 2119.30±24.37 0.1371

BWG (g) 997.47±22.52 b 1042.31±12.99ab 1061.47±11.05 a 0.0471

FCR 2.11±0.04 1.96±0.03 1.99±0.02 0.0521

a,bMean± SE with different superscripts in the same row differ (P< 0.05). (n-8 per treatment; and the data were collected from 80 birds/treatment; 10 birds/pen x 8

pens/treatment).
1CONT, heat stress + a basal diet; BMD, heat stress + the basal diet mixed antibiotic Bactiracin Methylene Disalicylate; SYN, heat stress + the basal diet mixed synbiotic.

https://doi.org/10.1371/journal.pone.0274179.t004
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chickens (P> 0.05). There were no treatment effects on measured histomorphological param-

eters (P> 0.05) between BMD and CONT groups.

Discussion

Heat stress is among the most harmful environmental stressors for the poultry industry due to

it significant damages to health and welfare of birds which could lead to economic losses [2–

41]. When exposed to an environmental temperature exceeding the upper critical limit of their

thermoneutral zone, birds maintain their relative body temperature attempting to cope with

the health risk by losing body heat through physiological, biochemical, and behavioral changes

[42, 43]. If heat persists, excessive reactions beyond birds’ adaptive capability may cause patho-

physiological disorders, eventually increasing mortality. Sub-therapeutic doses of antibiotics

Table 5. Effect of dietary supplementation of synbiotic (SYN) and antibiotic (BMD) on cecal bacterial populations (Escherichia coli and Lactobacilli) of broiler

chickens reared under heat stress condition.

Treatment1 CONT BMD SYN P-value

Escherichia coli 3.12±0.12a 2.83±0.08ab 2.48±0.15b 0.0061

Lactobacilli 2.55±0.21 2.52±0.22 2.95±0.15 0.2521

a,bMean± SE with different superscripts in the same row differ (P< 0.05). (n-8 per treatment; and the data were collected from 8 birds/treatment; 1 birds/pen x 8 pens/

treatment).
1CONT, heat stress + a basal diet; BMD, heat stress + the basal diet mixed antibiotic Bactiracin Methylene Disalicylate; SYN, heat stress + the basal diet mixed synbiotic.

https://doi.org/10.1371/journal.pone.0274179.t005

Fig 1. The examples of the morphological changes of the villus height and crypts depth in the jejunum of broiler chickens.

Treatments: Heat stressed birds fed the basal diets (CONT), mixed antibiotic Bactiracin Methylene Disalicylate (BMD) or Synbiotic (SYN).

VH: Villus height; CD: Crypt depth. The scale bar = 50 um.

https://doi.org/10.1371/journal.pone.0274179.g001
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have been used as growth promoters to improve production performance and to prevent vari-

ous diseases in broiler chickens. However, ban and severe restriction on use of antibiotics have

been practiced in most countries due to growing concerns about antibiotic residue in poultry

products and related food safety. Previous studies have evidenced that keeping a healthy gut

microbiome is a critical step to maintain effective food digestion and nutrient resorption, con-

tributing to local and systemic immunity [22–37]. The current results indicate that the dietary

synbiotic supplement not only reduced HS-induced behavioral changes, particularly, panting

and drinking, but also increased production performance, especially BW in broiler chickens.

In addition, the synbiotic supplement increased the jejunal villus height and reduced cecal

Escherichia coli count.

Under high environmental temperatures, birds minimize their feed consumption as a

mechanism to reduce body metabolism and related heat production [2–39]. As a result,

reduced FI and production performance (meat production and carcass quality) and increased

mortality have been observed in broilers [4]. Compared to CONT group, SYN birds performed

more feeding, and preening, but less HS-related behavior (panting and drinking). Also, SYN

group had higher BW and BWG at the end of both the grower and finisher phases. Addition-

ally, SYN group had a longer jejunal villi with a lower count of cecal Escherichia coli. These

results may indicate that the synbiotic supplement functionally increases gut resorption sur-

face and reduces gut pathogenic bacteria. In agreement with our findings, several studies also

reported synbiotics maintain or improve broiler production, health, and welfare profiles under

both thermoneutral and HS conditions [3, 24, 30]. However, the outcomes are not consistent;

some studies have reported that dietary supplementation of probiotics and synbiotics had no

significant effect on BWG, FI, FCR, intestinal morphology, and bacterial populations [44, 45].

The different findings could be affected by multiple factors such as the birds’ strains, age, and

health status; diet quantity and nutrient content; housing environment and ambient tempera-

ture (i.e., the severity and length of HS); and the format of synbiotic and its dosage used in the

different studies. The current synbiotic consists of fructooligosaccharides as the prebiotic and

four microbial strains of probiotic bacteria extracted from chicken GIT. It may have more spe-

cies-specific efficiency in chickens than other probiotic bacteria extracted from other animals.

Numerous studies have reported that probiotics can regulate birds’ health and welfare via

the functions in immunomodulation [46], neuroendocrine regulation [47], and nutrient

metabolism [48]. In addition, prebiotics can stimulate the growth and activity of beneficial

bacteria in the GIT [3]. Probiotic and prebiotic of a synbiotic may work together (forming a

synergism) to improve animals’ health through regulation of both the microbiota-gut-immune

axis [49] and the microbiota-gut-brain axis [50]. For example, Hassan et al. [51] revealed an

increase in hematocrit values, erythrocyte count and hemoglobin concentration in broiler

chickens supplemented with lactobacillus spp. Improvement in the HS-related behaviors in the

synbiotic supplemented birds reported here may be attributed to the similar changes of hema-

tological parameters. In one of our previous studies, the synbiotic supplement reduced hetero-

phil/lymphocyte ratio, a stress indicator, without effects on the levels of circulating monocytes,

eosinophils, and basophils in HS broilers [37]. For explanation of the effects of increased

preening in the SYN group, Mohammed et al. [3] noted an improvement in preening behavior

of broiler chickens supplemented with synbiotics under heat stress condition. In chickens,

preening has been thought to be a comfort-related behavior [52], and it’s likely that supple-

menting broiler chickens with synbiotics reduced the disturbance associated with HS.

The protective effect of synbiotics on the bird intestinal microbial ecology under elevated

temperature conditions was revealed in this study. The improvement in the jejunal histomor-

phological characters may be attributed to the functions of both prebiotic nondigestible fibers

and probiotic beneficial bacteria in protecting the jejunal villi from pathogens and toxins to
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strengthen gut integrity (the tight junctions and epithelial cell cytoskeletons) through

improved nutrient metabolism and absorption [53]. Similarly, one of our previous studies has

reported the improvement in the intestinal architecture in synbiotic fed broilers under HS

conditions [34]. Hassanpour et al. [54] also reported a synbiotic composed of probiotic Entero-
coccus faecium (DSM 3530 strain) and prebiotic fructooligosaccharides, phycophytic sub-

stances derived from sea algae and cell wall fragments, enhanced intestinal health of broilers

under thermoneutral conditions.

Antibiotics have been utilized as growth promoters in poultry meat production for many

years. The antibiotics mechanism of action against various infectious diseases is related to

interactions with intestinal microbial population [13]. Compared to CONT group, BMD

group performed less sitting behavior, and there was no significant difference in the count of

cecal Escherichia coli. In this study, the SYN and BMD groups had a similar effect on the pro-

duction performance parameters such as BW, BWG, and FCR as well as cecal microbial count

of Escherichia coli and villus height/crypts depth ratio, but SYN group had lower HS-related

behaviors and longer villus height and crypts depth than BMD group, resulting in a greater

resorption area. It may indicate that the SYN has more benefits to the gut homeostasis than

BMD. Synbiotics have functions in protecting intestinal epithelial cells and maintaining gut

microstructural integrity due to antimicrobial, anti-inflammatory, antioxidant, enzymatic, and

immunomodulatory activities [34–55]. In agreement with the hypothesis, Neveling and Dicks

[56] reported that a probiotic (combination of Enterococcus faecium, Pediococcus acidilactici,
Bacillus animalis, Lactobacillus salvarius, and Lactobacillus reuteri) reduced the colonization of

pathogens in the GIT of broilers. Gutierrez-Fuentes et al. [57] also reported a probiotic (con-

sisting of Lactobacillus salivarius and Pediococcus parvulus) improved broiler weight gain,

bone health, intestinal integrity, and immunity. Interestingly, SYN and BMD exhibited differ-

ent effects on behavioral patterns. The SYN birds displayed more feeding and preening but

less panting and drinking. These results may indicate the synbiotic has functions in promoting

growth and health in broilers exposed to HS, which is better or, at least, similar to the function

of BMD. In supporting our findings, several studies have shown a promise in terms of protect-

ing the broiler profiles when supplementing with synbiotics instead of antibiotics [24, 30]. The

mechanisms underlying the different effects between synbiotics and antibiotics were not

detected in this study but could be similar to the ones reported previously. It has been pro-

posed that antibiotics, as growth promotors, prevent gut infectious disease but kill all gut bac-

teria (including both beneficial and pathogenic bacteria), while synbiotics as well as prebiotics

and probiotics, as growth promotors, eliminate pathogenic bacteria but improve beneficial

bacteria. In addition, synbiotics have multiple functions in food digestion, nutrient and min-

eral resorption, immunomodulation, and release of bioactive factors [58–60]. Furthermore,

synbiotics may regulate HS response and related local and systemic inflammation through the

bidirectional communication between the GIT and brain via the microbiota-gut-brain axis

[19–61]. Regulation of the microbiota-brain-gut axis, especially the hypothalamic-pituitary-

adrenal system, is essential for maintaining an animal’s physiological and behavioral homeo-

stasis. Taken together, the synbiotic may inhibit or reduce negative effects of HS on the GIT by

restoring the functions of gut microbiota; improving gut immunity [62]; increasing gut integ-

rity to reduce intestinal barrier permeability [63, 64]; and or assisting with beneficial bacteria’s

functions in nutritional benefits [65].

Conclusion

The current results indicate that the beneficial effects of the SYN supplement on broiler pro-

duction are better or, at least, comparable with BMD. The SYN reduced the negative effects of
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HS on production performance with increased the jejunal villus height and crypts depth. The

SYN also reduced HS-associated behaviors including panting and drinking. The current

results suggest that dietary synbiotics could be a useful management strategy for replacing

antibiotics to improve chicken health, welfare, and production during hot seasons, especially

in the tropical and subtropical regions.
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