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Abstract

Background

Among HIV-infected individuals with CD4 less than 200 cells/mm3, tuberculosis often has

an atypical presentation, is more likely to be disseminated and is diagnostically challenging.

We sought to understand the genotypic discordance of concurrent sputum and bloodM.

tuberculosis (MTB) isolates from HIV-infected individuals.

Methods

From a prospective diagnostic accuracy study with 182 HIV-infected culture-positive TB

adults, isolates were obtained from 51 of 66 participants who were MTB culture-positive by

both sputum and blood. Isolates were subjected to susceptibility testing to 1st line drugs,

spoligotyping and 24 locus- MIRU-VNTR.

Results

The median age of the participants was 31 (IQR; 27–38) years and 51% were male. The

median CD4 count was 29 (IQR; 10–84) cells/mm3 with 20% taking ART; 8.0% were previ-

ously treated for TB, and 63% were AFB smear-negative. The isolates belonged to two of

the main global MTB-lineages; East-African-Indian (L3) 17 (16.7%) and Euro-American (L4)

85 (83.3%). We identified 26 (51.0%) participants with discordant MTB-genotypes between

sputum and blood, including two patients with evidence of mixed infection in either compart-

ment. Having discordant MTB-genotypes was not predicted by the MTB-lineage in either

blood or sputum, CD4 cell count, or any other clinical characteristic.
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Conclusions

There is a high genotypic discordance amongM. tuberculosis concurrently isolated from

sputum and blood of HIV-infected individuals. These findings suggest that infection with

more than one strain ofM. tuberculosis occurs in at least half of patients with advanced HIV

infection.

Background
The ongoing tuberculosis pandemic is in part sustained by the presence of a large population
of individuals with impaired immunity as a result of AIDS [1]. Though antibiotic therapy is
effective in these patients when infected with drug-sensitive strains, peculiarities in the course
of infection present challenges for both diagnosis and therapy [2–4]. Specifically, the immune
impaired patient is less likely to show sputum smear positivity and more likely to present with
advanced and/or disseminated disease [5, 6]. For these reasons, there is great interest in better
understanding the course of tuberculosis in the immune impaired to improve diagnosis and
therapy.[7, 8].

Patients with both mycobacteremia and pulmonary involvement have increased mortality
rates [2]. One aspect of the greater propensity for disseminated tuberculosis in the immune
impaired is the potential for polyclonal infection, as different strains ofM. tuberculosismay
have distinct fitness in different host niches [9–12]. Infections with more than one genotype
challenge old dogmas related to TB immunity, pathogenesis and progression from latent to
active TB. They moreover raise questions on the timing of multiple infections and the mecha-
nism of reactivation of both infections simultaneously, which we expected to be higher in
patients in whom the immune system is impaired. Such different genotypes in different sam-
ples may be clinically relevant. Animal studies show that different strains differ in the severity
of disease they cause [13–15], and in humans a subset of the Euro-American MTB lineage was
found to be less common in TB meningitis than in pulmonary TB, suggesting an interaction
between bacterial genotype and clinical phenotype[16, 17]. Moreover, multidrug resistant and
extensively drug resistant (MDR/XDR) strains have been isolated from blood of HIV-infected
individuals with low CD4 cell counts [8], and mixed infections of susceptible and MDR strains
of different genotype isolated from either sputum or blood have been reported[18]. Strains
involved in mixed infections may consequently have different susceptibility patterns, requiring
treatment to be adjusted to the most resistant strain that can however be missed if only one
body compartment is sampled [19, 20]. We thus investigated what proportion of patients with
poor cellular immunity were infected with different MTB strains in sputum as compared to
blood.

Materials and Methods

Study Population
Clinical and laboratory culture data were obtained from a prospective cohort of HIV-infected
outpatients at the Infectious Diseases Institute [IDI] and HIV-infected inpatients from Mulago
National Tertiary Referral Hospital, both in Kampala, Uganda, in whom the diagnosis of pul-
monary and extrapulmonary tuberculosis (EPTB) was considered [21]. Of the 506 participants
recruited, 69% (351/506) were inpatients. Participants were 18 years and older and provided
two spot sputum samples and a blood sample for mycobacterial culture and CD4 cell count at
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the baseline visit. The study had 104 individuals with positive sputumMTB culture only, 66
with concurrently positive sputum and blood cultures and 12 with positive blood culture only.
No individual was found to have non-tuberculous mycobacteria in blood culture.

For the present study, we only considered the 66 TB patients with both sputum and blood
culture positive results forM. tuberculosis.

Laboratory Procedures
Mycobacterial cultures of sputum and blood were done at the Department of Medical Microbi-
ology, Makerere University, Uganda, according to standard procedures as described elsewhere
[21].

All Capilia TB Neo (TAUN, Numazu, Japan) and/or Ziehl-Neelsen (ZN) positive samples
were confirmed asM. tuberculosis complex (MTBc) by PCR detection of a 500 bp fragment of
the IS6110[22] and then the isolates were subjected to drug susceptibility testing (DST) to
streptomycin, isoniazid, rifampicin and ethambutol using the proportion method on solid
media. DST was done partly at the Department of Medical Microbiology, Makerere University,
and at the Institute of Tropical Medicine (ITM), Antwerp, Belgium. The isolates resistant to
rifampicin and/or isoniazid from the batch tested from Uganda were retested at ITM and
repeat results were considered final.

M. tuberculosis strain typing methods. To determineM. tuberculosis strain types from
sputum and blood spoligotyping, using boiled bacterial lysates, was performed at the Mycobac-
teriology Unit at ITM according to standard procedures [23]. Spoligotyping (spacer oligonucle-
otide typing) is a PCR-based method that can be simultaneously used for detection as well as
typing of the MTBc basing on the amplification of a highly polymorphic Direct Repeat (DR)
locus inM. tuberculosis genome. Although it is well suited for discrimination of clinical isolates
the method has clear disadvantages for the investigation of the deep phylogenetic structure.
For a finer phylogenetic classification, Variable Number of Tandem Repeats (VNTR)-typing
applying genetic elements called Mycobacterial Interspersed Repetitive Units (MIRU) as
genetic markers was performed on bacterial lysates at Genoscreen (Lille, France) [24]. MIR-
U-VNTR typing can provide unique high-resolution insights into the population structure of
the MTBC, provides clear criteria for the identification of the different MTBc lineages and sub-
lineages, and is best suited to identify instances of mixed infection in the same culture. The
combination of both methods provides a higher resolution to identify clonal infection, akin to
IS6110 RFLP[23, 25]. We performed both spoligotyping and MIRU-VNTR aiming at around
99% specificity and 95% sensitivity, to rigorously discriminate clonal variants of the paired
samples, as previously documented[26].

Quality assurance and quality control. Samples were collected according to internation-
ally accepted standards from the Uganda site only in a good clinical- and good laboratory
practice compliant multicentre clinical trial registered under clinical trials.gov number
NCT01525134 [21]. Blood culture samples were collected directly into Myco F/Lytic media,
(Becton and Dickson, Franklin Lakes, NJ USA) culture bottles and incubated without further
manipulation.

To rule-out cross-contamination, blinded samples of artificial sputum (mock sterile samples
made of eggs and methylcellulose, Sigma-Aldrich MO267) were introduced in each batch of
10 sputum samples before processing and processed as other patient samples. There was no
growth on any artificial sputa processed during the study period. For spoligotype analysis, sam-
ples were received in two batches, and eight of the samples from the first batch were blindly
included in the second batch and re-analyzed blindly. All eight samples had identical spoligo-
type results on repeat. Also to rule out contamination from other activities in the laboratory
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during spoligotyping analysis, DNA from BCG and of H37Rv were included in each batch and
none of the patient samples showed spoligotypes characteristic to either of the control strains.

Data Analysis
Spoligotyping data were entered in a binary code format and the 24 loci Mycobacterial Inter-
spersed Repetitive Unit-Variable-Number Tandem Repeat (MIRU-VNTR) data into Microsoft
excel. The data were then imported to “MIRU-VNTR plus” online database (http://www.miru-
vntrplus.org/MIRU)[27, 28] for lineage assignment. The MIRU database unassigned lineages
were interpreted using another online database [29]. For spoligotyping data, we considered
pairs with more than one spacer difference to be discordant MTB-genotypes. For 24 locus
MIRU-VNTR, we considered data with interpretable results for at least 15 of the 24 loci; isolate
pairs with more than one locus difference were considered discordant MTB-genotypes. For
final MTB-lineage assignment, we considered results of spoligotype and/or MIRU-VNTR. For
patients with both MIRU-VNTR and spoligotyping results, we considered MIRU-VNTR
results for final interpretation of concordance. Mixed infection was defined as isolates with
MIRU patterns with more than one allele per locus present in more than one locus per patient,
otherwise MIRU-VNTR profiles with double alleles at a single locus were considered to be
clonal variants of the same strain. Genotyping results were added to participant’s demographic
data in Microsoft excel and data cleaned. Discrepancies were solved by checking the entries
against the raw data. To visualize the phylogenetic distribution of MTB lineages/sub lineages,
an unweighted pair-group method with arithmetic mean (UPGMA) tree was generated [27].
Data were exported to Epi Info 7.1.4 for analysis of frequencies and proportions of phenotypic
and genotypic diversity of MTB from sputum and/or blood in relation to individual clinical
characteristics. We compared patients with discordant sputum/blood genotype pairs with
those of concordant pairs for differences in lineage, site of disease and patient characteristics
caclulating odds ratios and using the 2-sided Fisher’s exact test. We attempted multivariate
logistic regression to control for confounding but numbers were too small to build mathemati-
cally stable models. A p-value<0.05 was considered significant.

Ethics Statement
This was a nested study within a study that was approved by the Joint Clinical Research Center
Institutional Review Board (IRB) and the Uganda National Council of Science and Technology
(UNCST, HS850). Each participant gave a written informed consent for participation in the
main study, including a second written informed consent for the samples and isolates to be
used in future studies. Additional IRB approval was obtained from the Institute of Tropical
Medicine (ITM, 938/14), Antwerp, Belgium for the present genotyping analyses.

Results

Characteristics of study participants
Of the 66 HIV-infected participants’ in the parent study with concurrently positive sputum
and blood cultures, 57 (86.3%) pairs of frozen isolates (from sputum and blood) were available,
of which 51 pairs had sufficient viable bacilli/DNA available for interpretable pairwise spoligo-
typing and/or MIRU VNTR results, Fig 1).

Of these 51 participants, the median age was 31 years (interquartile range, IQR; 27-38) and
26 (51.0%) were male. The median CD4 cell count/mm3 was 29 (IQR; 10-84), the majority (33,
64.7%) had CD4 cell count<50 cells/mm3, and 31 (63.3%) were smear-negative by direct fluo-
rescent smear microscopy. The median time to culture positivity in mycobacterial growth
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indicator tube (MGIT) on sputum was 10 (IQR; 6-12) days versus 24 (IQR; 21-30) days for
blood cultures, and the majority of sputum samples 29 (56.9%) had 10-100 Lowenstein Jensen
(LJ) culture colony counts, Table 1.

Distribution ofM. tuberculosis lineages of concurrent isolates from
sputum and blood samples
Of the 102 isolates from 51 TB patients, 17 (16.7%) belonged to the East-African-Indian lineage
(Lineage 3, L3) and 85 (83.3%) to the Euro-American lineage (Lineage 4, L4). Among the L4
strains the most common sub-lineage was T2 (49; 57.6%). Among the L3 strains the most com-
mon sub-lineages were CAS and CAS1_DELHI both at 7 (41.2%). There were no significant
associations between lineage or sub-lineage with site of disease, Table 2.

The distribution ofM. tuberculosis lineages by site of disease per participant was as illus-
trated, Fig 2.

Fig 1. Flow chart showing the HIV-infected participants with concurrent sputum and bloodMycobacterium tuberculosis. Abbreviation;
MIRU-VNTR= Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat.

doi:10.1371/journal.pone.0132581.g001
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Table 1. Characteristic of participants withM. tuberculosis concurrently isolated from sputum and blood samples (n=51).

Parameter Category Frequency Percent

Age (years)

<30 19 37.3

30-39 22 43.4

=/>40 10 19.6

Median (IQR) 31 (27-38)

Sex Male 26 51.0

CD4 cell count/mm3

<50 33 64.7

51-200 15 29.4

>200 3 5.9

Median (IQR) 29 (10-84)

On ART (n=50) At enrollment 10 19.61

TB treatment Previously treated 4 7.84

Karnofsky performance score at baseline

50-70 45 88.2

80 and above 6 11.8

Median (IQR) 60 (60-70)

Weight at baseline in Kgs Median (IQR) 50 (45-54.3)

Direct fluorescent smear microscopy (n=49)
Negative 31 63.3

Positive 18 36.7

LJ (sputum) culture colony counts Negative 9 17.6

<10 10 19.6

10-100 29 56.9

>100 3 5.9

MGIT (sputum) culture time to detection (days) =/>12 15 29.4

7-11 19 37.3

</= 6 17 33.3

Median (IQR) 10 (6-12)

Blood culture time to detection (days) =/> 30 14 27.5

22-29 23 45.1

</= 21 14 27.5

Median (IQR) 24 (21-30)

Abbreviations: IQR = inter quartile range, LJ- Lowenstein Jensen, MGIT- Mycobacterial Growth Indicator Tube.

doi:10.1371/journal.pone.0132581.t001

Table 2. Distribution of theM. tuberculosis lineages/sub-lineages concurrently isolated from sputum and blood samples.

Global MTB Lineage Sub-lineage Blood (N=51) Sputum (N=51) P-value*

East-African-Indian lineage CAS 10(19.6) 7 (13.7) 0.425

Euro-American lineage LAM 6 (11.8) 8 (15.7) 0.646

T 31(60.8) 33 (64.7) 0.681

Others† 4 (7.8) 3 (5.9) 0.695

Abbreviations; CAS= Central- Asian strain, LAM= Latin American and Mediterranean.

† = Haarlem, X2 and U sub-lineages

*2-sided Fisher’s exact

doi:10.1371/journal.pone.0132581.t002
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Diversity ofM. tuberculosis genotypes concurrently isolated from
sputum and blood
Of the 51 participants, 25 (49.0%) had concordant and 26 (51.0%) had discordant MTB-geno-
types as shown by spoligotyping and/or MIRU-VNTR typing.

Seven patients classified as discordant had isolates with similar spoligotypes, however, they
were found to be discordant by the higher resolution 24 loci-MIRU-VNTR genotyping method
and hence interpreted as discordant MTB genotypes, S1 Dataset.

Having discordant MTB-genotype was not predicted by MTB-lineage in either blood or
sputum, bacillary burden, CD4 cell count or any other clinical characteristic, although it was
near-significantly more frequent for the Euro-American lineage in either blood or sputum
(p=0.050). Multivariate analysis resulted in statistically unstable models, Table 3.

Two of the fifty-one patients (4%) had MIRU-VNTR patterns showing evidence of mixed
infection and both were L4. In one pair, one pattern was found in both blood and sputum,
mixed with another pattern in blood. In another pair, the mixed pattern in sputum did not
match the pattern in blood, for a total of three genotypes in the same patient.

DST results were available for 87 of 102 samples with viable bacilli from blood and sputum.
All isolates tested were susceptible to streptomycin and rifampicin, while one isolate was resis-
tant at 0.2 μg/ml of isoniazid but susceptible at 1.0 μg/ml. Three pairs of isolates (sputum and
blood), two from patients with discordant and one with concordant MTB genotypes (T2),
showed resistance to ethambutol at 5.0 μg/ml.

Discussion
In this relatively large study of concurrent sputum and blood isolates we identified a high rate
of MTB genotypic discordance. While these HIV-infected patients predominantly had low
CD4 cell counts, neither these counts, nor other clinical characteristics, predicted genotypic
discordance. Lineages or sub-lineages were not associated with site of disease, but strains of the
Euro-American lineage appeared more often in discordant pairs, possibly reflecting a higher
potential of strains of this lineage for occurring in polyclonal infections in different compart-
ments. However, this association remained short of significance (p=0.050) and we were unable
to adjust for possible confounding. The probability of finding discordant strains within this
lineage may have been larger than the probability of finding discordant strains with the East
African–Indian lineage simply because of their larger numbers. The high discordance rate doc-
umented in this population is not dissimilar to that of much smaller earlier studies of sample
sizes up to fourteen pairs [9, 10]. This finding reflects a high prevalence of mixed MTB infec-
tions within the same TB patients, potentially even underestimated due to a second, third, etc.
infection having been missed, as in vitro culture may have allowed one strain to predominate
[30]. Indeed, our study found only 4% mixed infection within compartments, similar to the 7%
found in a previous study [31]. These multiple MTB strains may have been acquired together
(due to exposure to a patient with mixed infection) but are more likely due to exposure to dif-
ferent MTB strains at different times [13, 32]. MTB infection can lead to immediate and/or
severe presentation of TB disease, especially in patients with HIV infection [33], or delayed
development of TB disease due toM. tuberculosis persisting in several sites and cell types,
which might constitute reservoirs from where infection can reactivate to produce EPTB, with

Fig 2. Phylogenetic tree and distribution ofMycobacterium tuberculosis lineages by site of disease. SIT = shared international type. H3= Haarlem,
CAS= Central-Asian strain, LAM= Latin American and Mediterranean **= according to [29], Completely empty MIRU-VNTR or Spoligotype pattern = not
done or uninterpretable, partial empty MIRU-VNTR= non-amplified allele. PID= Patient unique Identification Number, Shaded PID = blood isolates and un-
shaded PID= sputum isolates, *=Mixed alleles at a given locus, MIRU-VNTR=Mycobacterial Interspersed Repetitive Unit-Variable-Number TandemRepeat.

doi:10.1371/journal.pone.0132581.g002

MTB-Genotypes from Sputum and Blood of HIV-Infected Individuals

PLOS ONE | DOI:10.1371/journal.pone.0132581 July 15, 2015 8 / 14



Table 3. Distribution of the globalM. tuberculosis lineages by baseline patient characteristics andM. tuberculosis –genotypes by concordance of
isolates from sputum and blood samples.

Variable ConcordantN=25; N (%) DiscordantN=26; N (%) Odds ratio (95% CI) p-value

Euro-American lineage in sputum and/or blood

No 6 (24.0) 1 (3.8) Reference 0.050

Yes 19 (76.0) 25 (96.2) 7.89 (0.99-71.21)

East-African-Indian lineage in sputum and/or blood

No 19 (76.0) 22 (84.6) Reference 0.499

Yes 6(24.0) 4 (15.4) 0.58 (0.15-2.22)

CD4 count/ mm3

>50 10 (40.0) 8 (30.8) Reference 0.565

<50 15 (60.0) 18 (69.2) 1.50 (0.48-4.66)

Age group

<30 8 (32.0) 11 (42.3) Reference 0.452

30-39 13 (52.0) 9 (34.6) 0.50 (0.15-1.72)

=/>40 4 (16.0) 6 (23.1) 1.09 (0.24-4.88)

Sex

Female 15 (60.0) 10 (38.5) Reference 0.165

Male 10 (40.0) 16 (61.5) 2.40 (0.79-7.28)

Karnofsky performance score

70 and above 9 (36.0) 9 (34.6) Reference 0.918

50-60 16 (64.0) 17 (65.4) 0.94 (0.29-3.00)

On ART at enrollment (n=50)

Yes 5 (20.8) 5 (19.2) Reference 0.889

No 19 (79.2) 21 (80.8) 1.11 (0.29-4.18)

Previously treated for TB

No 22 (88.0) 25 (96.2) Reference 0.350

Yes 3 (12.0) 1 (3.8) 0.29 (0.03-3.19)

Sputum smear status (n=49)

Negative 17 (70.8) 14 (56.0) Reference 0.377

Positive 7 (29.2) 11 (44.0) 1.91 (0.60-6.08)

MGIT (sputum) time to detection (days)

�12 9 (36.0) 6 (23.1) Reference 0.373

7-11 7 (28.0) 12 (46.2) 2.57 (0.60-10.98)

�6 9 (36.0) 8 (30.8) 1.33 (0.32-5.58)

Blood culture time to detection (days)

�30 8 (32.0) 6 (23.1) Reference 0.742

22-29 11 (44.0) 12 (46.2) 1.45 (0.37-5.68)

�21 6 (24.0) 8 (30.8) 1.78 (0.38-8.29)

LJ (sputum) culture colony counts

No Growth 5 (20.0) 4 (15.4) 0.565 (0.133-2.399) 0.703

<10 6 (24.0) 4 (15.4) 0.407 (0.115-1.934)

10-100 12 (48.0) 17 (65.4) Reference 0.453

>100 2 (8.0) 1 (3.8) 0.353 (0-3.092)

Abbreviations, LJ- Lowenstein Jensen, MGIT- Mycobacterial Growth Indicator Tube, OR = Odds Ratio.

OR for discordant MTB-lineages, P values for categorical variables were based on the 2-sided Fisher’s exact test.

doi:10.1371/journal.pone.0132581.t003
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or without lung involvement [34, 35]. Moreover, a recent study showed advanced immune sup-
pression to be associated with increased prevalence of mixed-strain MTB infection[36] which
may lead to selection of the most adapted strain to be disseminated. Although not compared
with concurrent pulmonary TB, EPTB has recently been found to be genotypically heteroge-
neous as revealed by whole genome sequence analysis [11]. A recent similar study onMycobac-
terium avium complex (MAC) found high genetic diversity in strains that cause pulmonary
and disseminated disease [37].

As previously described in Uganda [38], we found T2-lineage as the most common lineage
in our population. The lack of an association with particular strain lineages suggests that host
factors predominate in the breakdown towards mycobacteremia. We presumed that our cohort
with weak cellular immunity were more likely to be infected with any lineage irrespective of
fitness. Overall in the main study we had high (42.9%) levels of mycobacteremia in patients
�100 CD4 cells/mm3 [21]. There was no statistically significant association of MTB-lineages
with CD4 cell count. This could be due to the fact that most of the participants had<50 CD4
cells/mm3, which patients are predisposed to severe forms of EPTB [33, 36]. Indeed, other
studies have found no association of lineage with site of disease, suggesting that disease presen-
tation is largely determined by host and/or environmental factors [39, 40]. However, such an
association between lineages in their affinity for either the pulmonary (sputum) or the extra-
pulmonary (blood) compartment may become apparent with even larger studies. Novel deep
sequencing techniques could help determine the true extent of genetic diversity in each com-
partment, yet have not been employed here.

As previously documented, we found high concordance of DST results on isolates from spu-
tum and blood [9, 12, 41], and the low rates of drug resistance could be country specific [42].

Limitations of our study include the methods used to conclusively discriminate non-clonal
variants. The classification of isolates with one locus difference as concordant could have
underestimated the discordance rate, yet is sufficiently conservative to allow for clonal variants
to be classified as concordant [24, 26, 43]. Furthermore use of DNA from cultured isolates may
have introduced bias for detection of mixed infection [30], however, since we sampled the
entire culture for typing, the bias is likely to be less compared to if we had sampled single colo-
nies for typing. Also one would expect patients previously treated for TB to have more genetic
discordance, however, only 1 of the 4 previously treated TB patients had discordant MTB geno-
types in sputum compared to blood. Moreover, as our findings are mostly from patients with
advanced immunosuppression, which group is at highest risk of mycobacteremia, and largely
relate to the predominant lineages of theM. tuberculosis complex in Uganda[38], they may not
be generalizable to patients with higher CD4 counts and those infected with other lineages.

Although we document an unexpectedly high discordance rate of MTB genotypes in this
population, rigorous quality controls implemented in the GCP-compliant ‘parent’ study
decrease the likelihood that this high discordance rate can be attributed to administrative or
laboratory related errors.

Conclusions
Our study reveals high rates of discordance of MTB strains in sputum and blood samples of
HIV-infected TB patients, and these findings may reflect underestimation of the true preva-
lence of mixed MTB infection. In either case, mixed infections of drug-susceptible and drug
resistant strains may be easily missed if only one compartment is sampled, such as in sputum
testing with Xpert MTB/RIF as is now recommended for PLWHA but mainly optimized for
sputum samples[44–46]. Future studies on the course of sequential infections and subsequent
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reactivations, possibly in experimental animals, are needed to understand what triggers con-
current disease with more than oneM. tuberculosis strain.

Supporting Information
S1 Dataset. Laboratory and clinical information for concurrentMycobacterium tuberculo-
sis isolates from sputum and blood of HIV-infected individuals.
(XLS)
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