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The conformational dynamics and activation mechanisms of KRAS proteins are of great importance for

targeted cancer therapy. However, the detailed molecular mechanics of KRAS activation induced by GTP

binding remains unclear. In this study, we systematically investigated how GTP/GDP exchange affects

the thermodynamic and kinetic properties of KRAS and explored the activation mechanism using

molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI)

models. Our MD simulation results show that GTP binding significantly enhances the conformational

flexibility of KRAS, and thus promotes its transition to an active conformation with more open switch I

and II regions. MSMs analyses show that KRAS in the GTP-bound state can be transitioned to the active

state more efficiently during the simulation than in the GDP-bound state. In addition, NRI model

calculations showed that GTP binding enhanced residue–residue interactions within the KRAS protein,

especially when the long-range interactions were significantly enhanced. Furthermore, the allosteric

signaling pathways from the P-loop to switch I and II as well as the key amino acid sites along the

pathways were obtained using a graph-based shortest path analysis. Our results can contribute to

a deeper understanding of the mechanism of KRAS allosteric activation and provide a foundation for the

development of targeted therapeutic drugs to regulate KRAS activity.
1. Introduction

The small GTPase family of RAS proteins includes three major
classes: KRAS, HRAS, and NRAS, which act as molecular
switches to control many important cellular signaling pathways,
and thus play a signicant role in the regulation of cell growth,
differentiation, and apoptosis.1,2 RAS proteins are active only
when bound to GTP, but their intrinsic GTPase activity can
hydrolyze GTP to GDP at the appropriate time, thus changing
their conformation to an inactive state. On the other hand,
when the RAS protein is inactive, the guanine exchange factor
(GEF) can facilitate the exchange of GDP with GTP, thereby
reactivating RAS by replacing GDP with GTP (Fig. 1a).3,4 The
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cycle of GTP hydrolysis and GDP-GTP exchange is important for
maintaining the equilibrium between the active and inactive
conformations of the RAS protein as well as for stabilizing the
cellular pathway. However, current studies have shown that
certain mutations in RAS proteins can disrupt this balance
between their active and inactive states, and these mutations
oen result in RAS being in a persistently active state, which can
lead to completely uncontrolled cell proliferation and
apoptosis. To date, mutations in the RAS gene have been
identied in more than 30% of human cancers, with a particu-
larly high prevalence in pancreatic, colorectal, and lung
cancers.5 Among them, KRAS has a signicantly higher muta-
tion rate than HRAS and NRAS, making it a key target for cancer
therapy.6

Crystallographic studies have shown that the structure of
KRAS mainly consists of two parts: the effector lobe (residues 1–
86) and the allosteric lobe (residues 87–166) (Fig. 1b).7 The
effector lobe consists of three parts: switch I, switch II, and the
P-loop (phosphate-binding loop), in which the P-loop (residues
10–17) is mainly responsible for binding to the b-phosphate of
GDP or GTP, whereas switch I (residues 25–40) and switch II
(residues 57–76) are essential for effector binding, and all three
of them undergo a signicant conformational change when
RSC Adv., 2025, 15, 2261–2274 | 2261
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Fig. 1 Structural representation of KRAS in GDP-bound and GTP-bound states. (a) Comparison of the overall structures of GDP-bound andGTP-
bound states. The P-loop is highlighted in red, switch I in blue, and switch II in yellow. The bound GDP and GTP molecules are shown in green.
The transition between the GDP-bound inactive state and the GTP-bound active state is facilitated by SOS-induced nucleotide exchange and
GAP-mediated GTP hydrolysis; (b) ribbon representation of the 3D structure of KRAS. The P-loop, switch I, switch II, and other secondary
structure elements are labeled; (c) superimposition of the GDP-bound (grey) and GTP-bound (green) KRAS structures. The bound GDP and GTP
molecules are shown in cyan and red. Mg2+ ion is shown as the sphere in cyan.
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nucleotides are exchanged.3,8,9 The main role of the allosteric
lobe is mainly to maintain the overall stability of the protein
and its interaction with regulatory proteins such as GEF and
GAP, thus regulating the conformational transition between the
active and inactive states of KRAS. The static structures of KRAS
in the GTP-bound and GDP-bound states are distinctly different
(Fig. 1c). The GTP-bound state is usually characterized by
a more “open” conformation at the nucleotide binding site,
a conformational feature that facilitates its interaction with
downstream effectors such as RAF kinase and PI3K.10 In
contrast, aer hydrolysis of GTP into GDP, the switch region
and P-loop rearrange the conformation to a “closed” character
due to the lack of g-phosphate groups in the switch region and
the P-loop, thus reducing the ability to interact with effector
proteins.10 Although the structures of KRAS in both the active
(GTP-bound) and inactive (GDP-bound) states have been
resolved,11,12 which can provide some static structural basis for
probing the conformational state of the protein, the exact
molecular mechanism by which GTP binding induces confor-
mational changes leading to KRAS activation is still unclear.

In recent years, MD simulations have been widely used to
study the conformational change of KRAS activation,13–15 and
KRAS mutations, particularly at positions 12, 13, and 61, have
been extensively studied due to their signicant impact on KRAS
dynamics. Nayak et al. demonstrated that mutations such as
2262 | RSC Adv., 2025, 15, 2261–2274
G12C, G12D, and G13D disrupt the normal cycling between
active and inactive states, leading to persistent activation of
KRAS.16 Chen et al. revealed that mutations like G12V and D33E
increase the exibility of switch I and switch II regions and alter
correlated motions, affecting their interactions with GDP and
GTP.17 Similarly, Jani et al. reported that mutations in the P-loop
region, such as G12D and G13D, induce rigidity in KRAS and
restrict its ability to transition between intermediate and active
states.18 These ndings highlight how oncogenic mutations
perturb the structural dynamics and regulatory mechanisms of
KRAS, emphasizing its critical role in cancer progression.

Although these studies have provided valuable insights for
understanding its activation mechanism, the thermodynamic
(conformational state distributions) and kinetic properties
(rates of transitions between conformations) of KRAS during
activation, as well as key molecular mechanics involved and
residue networks, especially the long-range interactions and
allosteric signaling pathways to switches I and II, still remain to
inadequately understood.8 Exploring which amino acids play
a major role in KRAS activation and how they affect the activa-
tion process is of signicant importance for the development of
targeted therapies against KRAS activation, especially those
acting at allosteric sites.19,20

Markov state models (MSMs) are now widely used to analyze
the thermodynamic and kinetic properties of conformational
© 2025 The Author(s). Published by the Royal Society of Chemistry
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transitions in biomolecular systems.21–24 MSMs can decompose
continuous trajectories obtained from molecular dynamics
(MD) simulations into discrete states, which makes it possible
to study the long-term behaviors of the system and to compute
the probabilities of distributions of these states and the rates of
transitions between states.25 In addition, with the development
of machine learning techniques, neural relational inference
(NRI) based on graph neural networks provides a new way of
thinking for exploring complex biological systems.26 NRI can
predict patterns of interactions by modeling relationships
between entities (e.g., residues) as edges in a graph to infer
dynamic relationships that are difficult to detect by traditional
methods, and thus is well suited for analyzing biological
complex interaction networks within macromolecules. NRI is
particularly effective in identifying long-range interactions and
metastable communication pathways within proteins and can
help provide insight into how long-distance interactions
between residues can affect the overall conformational changes
of proteins through interactions.

In this study, we performed MD simulations and MSMs
analyses on the GDP- and GTP-bound states of KRAS, and
compared them in terms of conformational exibility, molec-
ular motion, thermodynamic and kinetic properties. The long-
range interaction network between residues in KRAS during
activation was explored by using the NRI model, and the
shortest path algorithm was further used to identify the key
allosteric signaling pathways during activation and the key
residue sites along the pathways. Our study could provide new
insights into the allosteric mechanism of KRAS activation and
aid in the development of anticancer drugs targeting activation-
related alias sites on KRAS.

2. Materials and methods
2.1 Structure preparation and MD simulation

The X-ray crystallographic structure of the GDP-bound KRAS
was obtained from the Protein Data Bank (http://www.pdb.org/)
with PDB ID 4OBE.11 It is noted that 4OBE was chosen because it
represents the wild-type KRAS protein with a nearly complete
sequence and possesses the highest resolution among all
available GDP-bound KRAS crystal structures. Additionally,
4OBE has been widely used as a reference structure in KRAS-
related studies, highlighting its reliability and suitability for
comparative analysis. The structure of the GTP-bound KRAS was
obtained by substituting the GDP molecule with GTP.

All simulations were carried out using the GROMACS 2021.5
soware package27 with the CHARMM36 force eld.28 The initial
structures of GDP-bound KRAS and GTP-bound KRAS were
utilized as the starting congurations. Parameters for the GDP
and GTP molecules were generated via the CHARMM General
Force Field (CGenFF) server.29,30 The structures were then
solvated using the TIP3P water model31 and placed in
a dodecahedral box, ensuring a minimum distance of 1.2 nm
between any protein atom and the box edge. To mimic physi-
ological conditions, the systems were neutralized and brought
to a 150 mM NaCl concentration. Energy minimization of the
systems was performed using the steepest descent algorithm,
© 2025 The Author(s). Published by the Royal Society of Chemistry
followed by two phases of equilibration: a 500 ps NVT equili-
bration and a 300 ps NPT equilibration, both with harmonic
position restraints applied to the heavy atoms of the protein
using a force constant of 1000 kJ mol−1 nm−2. To enhance
sampling and avoid biased conclusions,32 each system under-
went 3 independent 3-ms production MD simulations. Each
replica was initialized with different atomic velocities drawn
from aMaxwell distribution at 300 K, totaling 9 ms of simulation
time per system.

The production MD simulations were conducted with the
following parameters: bond lengths were constrained using the
LINCS algorithm with a 2 fs integration time step;33 long-range
electrostatic interactions were computed using the particle-
mesh Ewald (PME) method34 with a Fourier grid spacing of
0.135 nm and a Coulomb cut-off of 1.0 nm; van der Waals
interactions were treated with the cut-off scheme at 1 nm; the
temperature was maintained at 300 K using the v-rescale ther-
mostat35 with a 0.1 ps time constant; pressure was kept at 1 atm
using the Parrinello–Rahman barostat36 with a 0.5 ps time
constant; and structural snapshots were saved every 10 ps.

To further investigate the role of GDP and GTP in stabilizing
KRAS conformational dynamics, we performed additional MD
simulations on the apo KRAS system (without GDP or GTP
ligands). The initial structure of the apo KRAS was obtained by
removing the GDP molecule from 4OBE. Three independent 3-
ms simulations were conducted, totaling 9 ms of simulation
time, under the same simulation conditions as described for
the GDP- and GTP-bound systems.

2.2 Structural exibility and molecular motion analysis

We used the following GROMACS tools to perform structural and
geometrical analyses of MD trajectories: ‘gmx rms’ to determine
backbone root mean square deviation (RMSD) relative to the
starting structure, ‘gmx rmsf’ to determine per-residue Ca root
mean square uctuation (RMSF), ‘gmx sasa’ to determine contact
area, ‘gmx mindist’ to calculate the number of native contacts
(NNC), ‘gmx hbond’ to determine hbonds (HBs), and gmx energy’
to calculate the potential energy.

Essential Dynamics (ED), also known as the principal
component analysis (PCA) in mathematics, is widely used to
extract the largest amplitude protein motions (also called
collective motions or large-scale concerted motions) from an
MD trajectory. A detailed mathematical description of the ED
method can be found in the literature.37

In this study, ED analyses were performed on the concate-
nated trajectories of KRAS using the GROMACS tools gmx covar
and gmx anaeig. Only the Ca atoms were included in the ED
analyses. The MD trajectories were projected onto the rst
principal component to visualize the primary conformational
changes. Porcupine plots were generated to visually represent
the direction and magnitude of atomic displacements along the
principal components using PyMOL.

2.3 Conformational sampling and Markov state models

We employed the Python library PyEMMA38 to estimate
conformational sampling and analyze MSMs from MD
RSC Adv., 2025, 15, 2261–2274 | 2263
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simulations. The trajectories were rst featured using Ca–Ca
distances between residues in the switch I and switch II regions,
and dimensionality reduction was performed using Time-
lagged Independent Component Analysis (TICA) with a 0.1 ns
lag time to capture slow dynamics.

To evaluate and compare the conformational sampling of
KRAS, the combined trajectories from any two simulations were
processed using TICA, and projection scatter plots were gener-
ated by projecting the structures onto the rst two independent
components. This method provides a visualization of the
conformational state distribution, facilitating the comparison
of different structural states for further analysis. It is worth
noting that the reference trajectories for the inactive and active
states were generated through 1 ns MD simulations of the
inactive (PDB ID: 4OBE) and active (PDB ID: 6M9W) structures
under the same conditions as the main simulations. The short
simulation time was chosen to ensure that the resulting struc-
tures remained close to their respective inactive and active
conformations.

In contrast to the conformational sampling analysis, the
reduced data from TICA were further used for standard MSM
analysis. The reduced data from TICA were clustered into
microstates using the K-means clustering algorithm, repre-
senting distinct conformational states of KRAS. A transition
matrix was constructed by calculating the transition probabili-
ties between microstates over the selected lag time, describing
the kinetics of the conformational transitions in KRAS. The
microstates were further lumped into a smaller number of
macrostates using the PCCA+ (Perron Cluster Cluster Analysis)
algorithm,39 aiding in the identication of metastable states
and their transition pathways. Validation of the constructed
MSM was performed using implied timescales and the
Chapman–Kolmogorov test40 to ensure that the chosen lag time
and clustering scheme accurately captured the system's
dynamics. The MSM was then utilized to analyze the thermo-
dynamic and kinetic properties of the KRAS conformational
transitions. Free energy landscapes41 were constructed using
the rst two independent components from TICA.
2.4 Neural relational inference

Neural Relational Inference (NRI)26,42 was employed to analyze
the long-range interactions and allosteric communication
pathways within KRAS. The NRI framework is based on neural
network models designed to infer the latent interaction struc-
ture within dynamic systems. It consists of an encoder to infer
a probabilistic graph of interactions from input trajectories and
a decoder to predict future states of the system based on this
inferred graph. The NRI python framework code used in this
study was provided by Zhu et al.26,42

The MD simulation trajectories, which included the three-
dimensional coordinates and velocities of the Ca atoms, were
used as input data. Each 3 ms trajectory, originally containing
300 000 frames, was subsampled to 5000 frames to manage
computational load, ensuring uniform coverage. Each simula-
tion system provided three independent 3 ms trajectories,
treated as three separate experiments, resulting in
2264 | RSC Adv., 2025, 15, 2261–2274
a comprehensive dataset. To prepare the input data for the NRI
model, the trajectories were featurized using the 3D coordinates
and velocities of Ca atoms. The position and velocity features
were standardized to a maximum absolute value of 1 to ensure
consistent scaling across all input data. The featurized data
were segmented into timesteps of 50 frames, with an interval of
100 frames between segments. This segmentation was crucial
for capturing both short-term and long-term dynamics. The Ca
atom of each residue in the KRAS protein was treated as a node
in the graph neural network, with the standardized coordinates
and velocities of the Ca atoms serving as input features. The
interaction networks inferred by the NRI model were repre-
sented as interaction matrices, where interaction strengths
(weights) between residues were identied and quantied.

The NRI model was trained using the Adam optimizer with
a learning rate of 0.0005 and a batch size of 1. The learning rate
was reduced by a factor of 0.5 every 200 epochs. Each model was
trained for 500 epochs, with the best-performing model saved
based on validation set performance. The training objective was
to minimize the reconstruction error between the predicted and
actual trajectories, using the mean squared error (MSE) loss
function. Aer training, the NRI model was used to analyze the
interaction networks within KRAS.

The resulting inter-domain interaction matrices were used
as input data for network visualization and analysis in Cyto-
scape soware version.43 The Py4Cytoscape package was utilized
to process the network data within Cytoscape, where trans-
parency mapping was calculated and applied based on the
weight of each edge, and colors were assigned to the edges
according to the color attributes of the nodes. During the
network mapping process, each domain of the KRAS protein
was represented as a node, while the interaction strengths
(weights) between domains were dened as edges. To lter
insignicant interactions, we applied a threshold of 0.2,
retaining only edges with interaction strengths above this value.
This threshold was chosen to balance network sparsity and
information completeness. For pathway analysis, we employed
Dijkstra's algorithm44 to identify the shortest paths between
specied residues.The shortest paths were mapped using
a combination of self-written Python scripts and visualization in
PyMOL soware.

3. Results
3.1 Structural exibility and molecular motion analysis

The stability of our simulations was assessed by calculating the
time-dependent backbone root mean square deviation (RMSD)
values for each replica of the simulation systems (3 × 3 ms). The
RMSD curves for the GDP- and GTP-bound KRAS are presented
in ESI Fig. S1.† As shown in the gure, the RMSD curves indicate
that both systems reached equilibrium aer approximately 500
ns of simulation. To further illustrate the RMSD trends and
address potential deviations between replicates, we additionally
plotted the average RMSD values for each simulation group (ESI
Fig. S2†). As shown in ESI Fig. S2,† the average RMSD values
conrm that the GDP-bound systems exhibit lower overall
uctuations compared to the GTP-bound systems, highlighting
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the increased conformational exibility induced by GTP
binding.

To further ensure the reliability and equilibration of the MD
simulations, we performed a potential energy analysis for the
GDP- and GTP-bound KRAS systems (ESI Fig. S3†). The potential
energy proles of both systems show an initial rapid decrease
within the rst 300 ns, reecting the equilibration process as
the systems transition to a thermodynamically stable state.
Aer 300 ns, the energy proles stabilize and exhibit small
uctuations around their respective mean values, indicating
that both systems have reached equilibrium. Interestingly, the
GTP-bound KRAS system displays slightly lower average
potential energy compared to the GDP-bound system, suggest-
ing enhanced stabilization due to the additional polar interac-
tions introduced by the g-phosphate group of GTP. However,
the GTP-bound system also exhibits larger energy uctuations
compared to the GDP-bound state. These energy uctuations
Fig. 2 Structural flexibility and molecular motion analysis of KRAS. (a) R
states. The RMSF values are plotted for each residue of GDP- (blue line)
regions are highlighted in green, purple, and green; (b) the principal m
towards a closed conformation; (c) the principal motion direction in th
conformation.

© 2025 The Author(s). Published by the Royal Society of Chemistry
may arise from the increased conformational exibility
observed in the GTP-bound state, particularly in the switch I
and switch II regions, as revealed by following RMSF analysis.

To compare the structural exibility of KRAS in GDP-bound
and GTP-bound states, we calculated the per-residue Ca atom
root mean square uctuation (RMSF) values for the different
replicas during simulations (Fig. 2a). As shown in Fig. 2a, the
GTP-bound KRAS exhibits higher RMSF values across several
regions, particularly in switch I, switch II, and P-loop. The
overall higher exibility for the GTP-bound state suggests that it
possesses greater conformational freedom compared to the
GDP-bound state, facilitating the structural changes necessary
for activation. To further investigate the conformational exi-
bility observed in the RMSF analysis, we analyzed the secondary
structure variations of KRAS residues in both GDP-bound and
GTP-bound states. The results (ESI Fig. S4†) show that while the
overall secondary structure remains largely stable, signicant
oot mean square fluctuation (RMSF) of KRAS in GDP- and GTP-bound
and GTP-bound (orange line) KRAS. The P-loop, switch I, and switch II
otion direction in the GDP-bound state, the arrows show a tendency
e GTP-bound state. The arrows show a tendency towards an open

RSC Adv., 2025, 15, 2261–2274 | 2265
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changes occur in critical regions such as switch I, switch II, and
the P-loop. In the GDP-bound state, these regions maintain
a more stable a-helix and b-sheet structure, consistent with
a rigid conformation. In contrast, the GTP-bound state exhibits
increased occurrences of turns and loop elements, particularly
in the switch I and switch II regions, suggesting a transition to
a more exible and dynamic conformation. These observations
are in agreement with the higher RMSF values seen in these
regions, highlighting the role of GTP binding in promoting
structural exibility required for KRAS activation.

Essential dynamics (ED) analysis, also known as principal
component analysis (PCA), was performed on the Ca atoms' 3D
coordinates to further investigate the molecular motion
patterns. The analysis revealed distinct differences between the
GDP- and GTP-bound states. The motion along the rst prin-
cipal component (Fig. 2c) for the GTP-bound KRAS showed
a tendency for the switch I and switch II regions to move apart,
promoting an open conformation. In contrast, the GDP-bound
KRAS exhibited movements towards a closed conformation
(Fig. 2b). These results indicate that the GTP-bound KRAS favors
transitions towards the active form, whereas the GDP-bound
state remains in an inactive conformation.

Intramolecular interactions play a signicant role in deter-
mining the conformational exibility of proteins. To investigate
the mechanism underlying the increased exibility observed
upon GTP binding, we evaluated the intramolecular interac-
tions within the protein by calculating hydrogen bonds, native
contacts, van der Waals interactions, and electrostatic energies.
As shown in Table 1, the number of native contacts (NNC) and
hydrogen bonds (NHB) are reduced in the GTP-bound state,
indicating a more relaxed and less tightly packed structure.
Additionally, the analysis of short-range electrostatic and van
der Waals potential energies reveals slight increases in the GTP-
bound state (Table 1). This suggests that the average distance
between interacting atoms might be greater, leading to weaker
interactions and a more exible overall structure.

The weakened intramolecular interactions of KRAS upon
GTP binding can be attributed to the introduction of a polar
phosphate group in GTP. To further explore the molecular
mechanics of the conformational increase upon GTP binding,
we calculated the contact area between GDP and GTP, respec-
tively, and the KRAS. As shown in ESI Fig. S5,† GTP binding
resulted in a signicant increase in the total contact area
compared with GDP binding, especially in the nonpolar region.
Specically, the nonpolar contact area increased from 7.165 Å2

for GDP binding to 9.865 Å2 for GTP binding, while the total
Table 1 The analysis of intramolecular interactions of KRAS

Protein NNCa NHBb

GDP-bound 187 017(15.6) 112(0.043)
GTP-bound 185 121(3.2) 109(0.040)

a Number of native contacts. A native contact is considered to exist if the di
c Short-range electrostatic potential energy. d Short-range van der Waals p

2266 | RSC Adv., 2025, 15, 2261–2274
contact area increased from 12.496 Å2 for GDP binding to 13.549
Å2 for GTP binding. The increase in contact area suggests that
the phosphate groups in GTP cover the otherwise exposed
hydrophobic regions of the KRAS surface, resulting in a weak-
ening of the hydrophobic forces on the KRAS protein, leading to
structural instability and increased conformational exibility.

We note that using the crystal structure of the GDP-bound
state directly and constructing the GTP-bound state by replac-
ing GDP may introduce some bias. This is due to the intrinsic
differences in the initial conditions of the GDP and GTP states,
which may affect the direct comparison of conformational
exibility. To further validate this issue, we performed
a systematic analysis of the KRAS crystal structures available in
the PDB database, including 12 GDP-bound and 3 GTP-bound
states, and additionally included the structures of 19 GNP
(GTP analog) bound states. In addition, we supplemented the
HRAS and NRAS proteins with 1 crystal structure each of the
GDP- and GTP-bound states, resulting in a total of 28 crystal
structures (14 GDP-bound states, 14 GTP/GNP-bound states).
We performed 1 ms MD simulations of each of these structures
and systematically analyzed their conformational exibility
differences. The results show that the crystal structures of the
GTP-bound states do not exhibit signicantly higher confor-
mational exibility than that of the GDP-bound states in the
simulations, and some of them even show lower exibility (ESI
Fig. S6–S8†). We hypothesize that this result occurs mainly
because the crystal structure represents a conformation of the
protein in a low-energy steady state, where the overall structure
is already more stable. In addition, the g-phosphate group on
the GTP molecule further enhances the stability of the GTP-
bound state by forming additional polar interactions (e.g.,
hydrogen bonding and electrostatic interactions) with the P-
loop, switch I, and switch II regions, leading to its overall
reduced exibility. Notably, our previous simulation results of
constructing the GTP-bound state by replacing GDP actually
reect the dynamic activation process of KRAS aer GTP
replacement of GDP. This biological process involves a transient
structural perturbation that leads to an increase in conforma-
tional exibility and contributes to the transition of KRAS from
the inactive state to the active conformation. However, this
increase in exibility is transient and the overall exibility
decreases as KRAS gradually transitions to a stable active state.
Thus, our simulations capture the dynamics of a transient
increase in conformational exibility during GTP replacement
of GDP, whereas the crystal structure reects the stabilized state
aer activation. This difference emphasizes the dynamic nature
Energy (KJ mol−1)

Coul-SRc LJ-SRd Totale

−48880.2 −4384.18 −53264.38
−48827.3 −4321.31 −53148.61

stance between two atoms is less than 6 Å. b Number of hydrogen bonds.
otential energy. e Total potential energy.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of conformational exibility on different time scales, rather
than the “naturally” higher exibility of the GTP-bound state.

To further validate the stabilizing effects of GDP and GTP
binding on KRAS and to provide a more comprehensive
comparison, we also performed MD simulations on the apo
KRAS system (without GDP or GTP ligands) as a control. RMSD
analysis (ESI Fig. S9†) shows that the apo KRAS system reaches
a stable equilibrium during the simulations. However, RMSF
analysis (ESI Fig. S10†) reveals that the apo KRAS exhibits the
lowest conformational exibility compared to the GDP- and
GTP-bound systems, particularly in the switch I and switch II
regions. These results suggest that both GDP and GTP binding
increase KRAS exibility, likely by destabilizing specic intra-
molecular interactions.
3.2 Conformational sampling and distribution

While the structural exibility and molecular motion analyses
indicated that replacing GDP with GTP in KRAS promotes
a transition towards a more open, active conformation, it
remains uncertain whether the GTP-bound KRAS simulations
conclusively sampled active state structures. To clarify this, we
generated Time-lagged Independent Component Analysis
(TICA) based conformational distribution scatter plots to
examine the conformational sampling and distribution of KRAS
upon GTP binding (details in Methods). The active-state KRAS
structure (PDB ID: 6M9W) was used as a reference for the active
conformation. As described in the introduction, the primary
distinction between the active and inactive states of KRAS lies in
the conformational differences in the switch I and switch II
regions, which are responsible for the open and closed
conformations. Therefore, we selected Ca–Ca distances
between residues in the switch I and switch II regions as
features for our analysis (Fig. 3a). As shown in Fig. 3b, the
conformational distribution scatter plot generated from the
rst two TICA components separates the active and inactive
conformations, conrming that the selected features effectively
distinguish between these two states.

Given the validated effectiveness of the chosen features, the
main 3 × 3 ms MD simulation trajectories were combined with
the active-state structures. The projection scatter plots (Fig. 3d)
revealed that the GTP-bound KRAS simulations exhibited
substantial overlap with the active-state reference structures,
indicating effective sampling of the active conformations.
Conversely, the GDP-bound KRAS simulations showed no
signicant overlap with the active-state structures (Fig. 3c),
demonstrating that the GDP-bound KRAS remained predomi-
nantly in the inactive state throughout the simulations. Our
results indicate that the replacement of GDP with GTP in KRAS
effectively promotes the transition to its active conformation.
This observation is consistent with our earlier results from the
structural exibility and molecular motion analysis, which
indicated higher conformational exibility and a tendency
toward the active state in the GTP-bound KRAS.

In order to gain a deeper understanding of the conforma-
tional state distribution of KRAS in the GDP-bound and GTP-
bound states, we selected the rst two TICA components to
© 2025 The Author(s). Published by the Royal Society of Chemistry
construct the free energy landscape (FEL) of KRAS (Fig. 3e and
f). Fig. 3e shows the FEL of KRAS in the GDP-bound state, which
is a narrow and deep energy basin, and it can be seen that the
conformational diversity of KRAS is lower and the structure is
more stable in this state. In contrast, the FEL of GTP-bound
KRAS (Fig. 3f) presents a wider and shallower energy land-
scape, reecting the rich conformational diversity and lower
structural stability of the protein in this state.
3.3 Thermodynamics and kinetics of conformational
transitions

In order to further elucidate the thermodynamic and kinetic
properties of KRAS conformational transitions, we constructed
MSMs for the MD trajectories of GDP- and GTP-bound KRAS,
respectively. We rst used the VAMP-2 score to determine the
appropriate number of microstate clusters and found that the
tethering equilibrium was optimal when the conformational
clustering was 1000 microstates (ESI Fig. S11†). We chose the
implied time scale to guide the determination of the lag time of
the MSMs, and nally determined the lag time to be 3 ns, which
maximizes the likelihood of capturing detailed information
about the slow motion of the system while ensuring Marko-
vianity (ESI Fig. S12†). The microstates of the two simulated
systems were grouped into four macrostates using PCCA+
(Perron Cluster Cluster Analysis) as shown in Fig. 4a and b.

As shown in Fig. 4, there are signicant differences in the
equilibrium distributions of the GDP- and GTP-bound KRAS
conformational states. For example, in the GDP-bound state,
the representative structure of state 4 is very similar to the
simulated initial structure of the inactive conformational state,
and it dominates all conformational groups, with its confor-
mational proportion as high as 97.38%, while states 1, 2 and 3,
which are more similar to the active state, together account for
less than 2.5% (Fig. 4c), which suggests that the KRAS of the
GDP-bound state basically maintains the inactive conforma-
tional state during the whole simulation. This conclusion is
further conrmed by the mean rst passage time (MFPT)
analysis of the GDP-bound states, as shown in Fig. 4c, the
transition times from states 1, 2, and 3 to state 4 are very short,
i.e., the three conformations converging to the active state can
be easily converted to the inactive state 4, whereas the corre-
sponding inverse transition times (state 4 to the other three
states) are signicantly longer than those of the other three
states. The corresponding reverse transition (state 4 to the other
three states) time is signicantly slower, i.e., the GDP-bound
state of KRAS is very difficult to convert to the active state
during the simulation. In contrast, the distribution of KRAS in
the GTP-bound state is more balanced among multiple states,
with 15.59%, 20.38%, 31.03%, and 32.99% of conformations in
states 1, 2, 3, and 4, respectively (Fig. 4d), and all of them
converge to the relatively open active state. Further MFPT
analysis of KRAS in GTP-bound state also showed that the
transition time between different states was relatively short, and
the states could be easily converted to each other, indicating
that GTP-bound KRAS had high conformational exibility and
conformational diversity during the simulation process, and
RSC Adv., 2025, 15, 2261–2274 | 2267



Fig. 3 TICA analysis and conformational sampling of KRAS. (a) Structural representation of KRAS highlighting the locations of switch I (sw1) and
switch II (sw2) regions; (b) scatter plot using the first two TICA components to separate active (green) and inactive (pink) KRAS states; (c) TICA
scatter plot for the GDP-bound state (pink) compared with active-state structures from a 1 ns simulation (green); (d) TICA scatter plot for the
GTP-bound state (pink) compared with active-state structures from a 1 ns simulation (green); (e) free energy landscape of the GDP-bound KRAS
state using the first two TICA components; (f) free energy landscape of the GTP-bound KRAS state using the first two TICA components.
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that the binding of GTP obviously promoted the transition of
KRAS to the activated state conformation.

To further compare the conformational state distributions
and dynamics, we performed MSM analysis on the apo KRAS
system. The apo KRAS system was decomposed into four major
conformational states, with nearly equal distributions (11.69%,
20.57%, 31.12%, and 36.61%) as shown in Table S1.†Mean rst
passage time (MFPT) analysis revealed that the apo system
2268 | RSC Adv., 2025, 15, 2261–2274
exhibits signicantly faster conformational transitions
compared to the GDP- and GTP-bound systems, reecting its
higher dynamic transition efficiency. Notably, representative
structures of the four states closely resemble the initial apo
structure (derived from PDB ID 4OBE without GDP), indicating
that apo KRAS predominantly adopts a non-active conformation
similar to the GDP-bound state (ESI Fig. S13†).
© 2025 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Markov state models (MSMs) analysis of KRAS conformational states. (a and b) Conformational states of KRAS in the GDP-bound (a) and
GTP-bound (b) states as identified byMSMs. The states are color-coded (S1 to S4) andmapped onto the first two independent components (TIC 1
and TIC 2), illustrating the distribution and separation of different states. (c and d) Transition networks and representative structures for GDP-
bound (c) and GTP-bound (d) KRAS. The arrows indicate the transition probabilities and mean first passage times (MFPT) between states.
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3.4 Interaction network and allosteric pathway analysis

Although the above MSMs analyses indicate that KRAS in the
GTP-bound state is more inclined to adopt an active confor-
mation during the simulation, yet it remains unclear how the
GTP replacement of GDP activates KRAS through allosteric
signaling to the switch region. To further investigate the
molecular mechanics of KRAS activation by GTP, we used the
neural inference relationship (NRI) method to analyze the
changes in the internal residue–residue and domain–domain
(Fig. 5a) interaction network of KRAS aer the replacement of
GDP by GTP, as well as the pathways of allosteric signaling from
the P-loop to the switch I and switch II regions.

Fig. 5b and c show the residue–residue and domain–domain
interaction network of KRAS in both the GDP- and GTP-bound
states as represented by the NRI-derived interaction matrix,
where the color shades represent the interaction strengths
(weights). As shown in Fig. 5b and c, the interaction strength of
the GTP-bound state is signicantly higher than that of the
GDP-bound state, especially around the P-loop and the switch
region, suggesting that the replacement of GDP by GTP signif-
icantly enhances the internal interactions of the KRAS. We
further quantitatively compared the residue–residue interaction
networks of the GTP- and GDP-bound states using several
© 2025 The Author(s). Published by the Royal Society of Chemistry
commonly used graph theoretic metrics (ESI Fig. S14–S18†),
and the results showed that the network of the GTP-bound state
had a shorter average path length, larger average weight, and
larger centrality measure, thus suggesting that the replacement
of GDP by GTP rendered the residue–residue communication
network of KRAS more associative and efficient. Notably,
a focused analysis on the region spanning residues 40–75 (ESI
Fig. S14–S18†), which includes the switch I and switch II
regions, revealed distinct patterns in network properties. In the
GDP-bound state, residues within the 40–55 range exhibited
slightly higher centrality and connectivity values compared to
the GTP-bound state. However, the switch II region (residues
57–70) displayed signicantly greater centrality measures under
GDP binding, indicating tighter residue–residue communica-
tion in this region. In contrast, the GTP-bound state exhibited
higher clustering coefficients across this region, suggesting the
formation of a tighter local interaction network that likely
facilitates KRAS activation by stabilizing dynamic communica-
tion between critical regions.

The network diagrams (Fig. 5d and e) provide a more visual
representation of the inferred domain–domain interactions and
their directionalities. In the GDP-bound state, the network is
sparser with localized connections. In contrast, the GTP-bound
state shows a denser network, with stronger interactions from
RSC Adv., 2025, 15, 2261–2274 | 2269



Fig. 5 Neural relational inference (NRI) analysis of KRAS interaction networks. (a) Domain segmentation of KRAS protein, the switch I and switch
II regions are abbreviated as sw1 and sw2; (b) NRI-derived interaction matrices for GDP-bound and GTP-bound states, where color intensity
represents interaction strength (weight); (c) summarized domain–domain interaction matrices for GDP-bound and GTP-bound states; (d and e)
network diagrams illustrating the inferred domain–domain interactions and their directionalities for GDP-bound (d) and GTP-bound (e) states.

RSC Advances Paper
the P-loop to switch I (sw1), and switch II (sw2), and extending
to distal regions (r1, r2, r3). This suggests that GTP binding
reorganizes the interaction network, propagating activation
signals through specic allosteric pathways. Notably, the P-loop
exhibits increased outbound interactions (out-degree), rein-
forcing its role as a signal initiator. The enhanced signal
reception by switch I highlight its critical role in KRAS activa-
tion, while switch II also shows increased signal emission,
though to a lesser extent. Overall, these results support the P-
loop's role as a signal relay center, facilitating communication
to the switch regions.

We further used the shortest path method (Dijkstra algo-
rithm) to analyze and compare the allosteric signaling paths
from the P-loop to reach switch I and switch II, respectively, in
the interaction network of GDP- and GTP-bound binding states
of KRAS. Since all three structural regions contain a high
number of residues, we selected the three nodes with the
highest centrality values as the representative nodes of each
region (if there were more than three nodes with the highest
centrality values, the three nodes with the highest weights were
ltered according to the weight values), and thus nine possible
signaling paths each for the P-loop-switch I and the P-loop-
switch II were generated for both states (ESI Tables S1 and
S2†), and the paths with the highest probability among the nine
paths for each were subsequently selected and displayed in the
concentric circle network diagrams (Fig. 6a and b) and
2270 | RSC Adv., 2025, 15, 2261–2274
molecular surface diagrams (Fig. 6c and d), respectively. It is
worth mentioning that the concentric circle network diagrams
Fig. 6c and d show all the nodes (all residues) of the whole
protein system and are arranged according to the centrality
(importance) of the nodes in descending order from the center
outwards.

In the GDP-bound state (Fig. 6a, c and ESI Table S2†), there
are no intermediate nodes in the shortest paths from the P-loop
to switches I and II, which suggests that the interactions
between the signal departure and arrival regions are more direct
and relatively simpler. In addition, as shown in Fig. 6a, KRAS
has more nodes closer to the center (larger centrality values) in
the GDP-bound state for switches I and II compared to the GTP-
bound state, suggesting that these regions are more centralized
and structurally rigid in the GDP-bound state, thus limiting the
functional activity of the protein. In contrast, in the GTP-bound
state (Fig. 6b, d and ESI Table S3†), the shortest paths from the
P-loop to switches I and II contained intermediate nodes, sug-
gesting that the replacement of GDP by GTP in KRAS is asso-
ciated with greater structural exibility and a wider range of
dynamic interactions (enhanced complexity of the network). For
example, the two paths with the highest probability leading
from the P-loop to switch I and switch II, respectively, in the
GTP-bound state are [11, 69, 28] and [11, 107, 74], both of which
contain intermediate nodes. The increase in intermediate
nodes reects the increase in network complexity, which is
© 2025 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Allosteric pathway transmission in KRAS. (a) Concentric circle network diagram for GDP-bound KRAS. Nodes are sized by degree
centrality and arranged from the center outward, highlighting the shortest paths from the P-loop (purple) to switch I (pink) and switch II (green).
Black and blue arrows indicate the shortest paths; (b) concentric circle network diagram for GTP-bound KRAS, showing a more distributed
network with intermediate nodes in the shortest paths from the P-loop to switch I and switch II; (c) spatial representation of the shortest paths on
the protein surface for GDP-bound KRAS. Direct interactions dominate, with the P-loop (blue) acting as the starting point and switch I and switch
II as endpoints; (d) spatial representation of the shortest paths on the protein surface for GTP-bound KRAS.
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crucial for allosteric signaling. In the GDP-bound state,
although the connection between the P-loop and the switching
region is more direct, this direct connection may limit the
signaling efficiency because of the lack of a complex interme-
diate network to efficiently amplify and transmit the signal. In
the GTP-bound state, the increase of intermediate nodes
provides more transmission paths and “transit stations” for the
signal, which not only helps the signal to be transmitted from
the P-loop to the switch I and switch II regions, but also
amplies the signal through the complex network to promote
the activation of KRAS more effectively. It is worth mentioning
that this pathway ending at switch I also passes through residue
69 of switch II, suggesting that when GTP replaces GDP, it also
increases the interaction between switch I and switch II, which
is crucial for the activation of the KRAS protein. In addition, in
the GTP-bound state, the node positions of switch I and switch
II were more dispersed in the concentric circle network graph
compared to the GDP-bound state (Fig. 6b), suggesting that the
node centrality of these two regions decreased compared to the
GDP-bound state, and thus similarly reecting that GTP
replacement of GDP increased the complexity the KRAS residue
interaction network, which in turn enhanced the efficiency of
© 2025 The Author(s). Published by the Royal Society of Chemistry
allosteric signaling to facilitate the transition of KRAS from the
inactive to the active state.
4. Discussion

Despite extensive studies, the precise molecular mechanisms by
which GTP binding induces conformational changes leading to
KRAS activation remain incompletely understood.45,46 Investi-
gating these activationmechanisms is of signicant importance
for developing targeted cancer therapies.20,47 In this study, we
utilized molecular dynamics (MD) simulations,48 Markov State
Models (MSMs),21,22 and Neural Relational Inference (NRI)42 to
elucidate the molecular mechanics of KRAS activation, focusing
on conformational dynamics, residue interactions, particularly
long-range interactions, and the pathways of GTP-mediated
allosteric signal transduction within the molecule.

Our RMSD and RMSF analyses demonstrate that GTP
binding signicantly enhances the conformational exibility of
KRAS, particularly in the switch I and switch II regions. This
increased exibility enables KRAS to explore a wider range of
conformations, providing the structural foundation for activa-
tion. Free Energy Landscapes (FELs) further support these
RSC Adv., 2025, 15, 2261–2274 | 2271
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ndings, showing that the GTP-bound state occupies a broader,
shallower energy basin, reecting greater conformational
diversity. In contrast, the GDP-bound state remains conned to
a narrow, deep energy basin, indicative of a stable, inactive
conformation. These results suggest that GTP binding increases
KRAS's ability to sample various conformational states,
enhancing its activation potential. Essential Dynamics (ED)
analysis further conrms that GTP binding promotes structural
changes toward an active-like conformation, with the switch
regions moving apart into an open conguration, unlike the
more closed GDP-bound form. These observations align with
the allosteric mechanisms proposed in recent studies.49,50 For
instance, Yang et al. highlighted that the switch-II region plays
a pivotal role in KRAS oncogenic activation through dynamic
allosteric regulation, which involves conformational reorgani-
zation to accommodate functional changes.49 Weng et al. (2024)
conducted a systematic energy analysis and mutation study,
identifying multiple allosteric sites in the KRAS protein,
including the switch-II and P-loop regions, and highlighting
their potential importance in inhibitor design.50 Furthermore,
current studies have shown that many mutations can inuence
the activation process of KRAS by affecting the conformational
exibility of the switch regions and the P-loop.16–18,51–53

The increased conformational exibility of KRAS in the GTP-
bound state can be attributed to the reduction of its intra-
molecular stabilizing interactions, such as a decrease in the
number of hydrogen bonds and natural contacts compared to
the GDP-bound state, as well as an increase in van der Waals'
energy and electrostatic energy, which suggests that KRAS
becomes structurally looser and more unstable aer the
substitution of GTP for GDP, and therefore possesses increased
conformational exibility as well as conformational switching
potential. To investigate the molecular mechanic behind the
increased exibility and reduced interactions, we calculated the
contact area between GTP/GDP and KRAS. Calculations show
that GTP, upon replacing GDP, covers the previously exposed
hydrophobic surface of KRAS due to the addition of a polar
phosphate group to the molecule, resulting in a weakening of
the hydrophobic force, which leads to a looser structure as well
as an increase in conformational exibility. The weakened
hydrophobic force further enhances the desolvation effect and
entropy increases as water molecules are repelled from the
hydrophobic region, leading to a decrease in the free energy of
the system and further contributing to the increased exibility
of KRAS. In addition, the increased phosphate groups aer the
exchange of GTP and GDP may also generate new polar non-
covalent interactions with some groups on the surface of the
KRAS protein, and such interactions may disrupt the equilib-
rium of the original interaction network within the protein, i.e.,
produce the effect of pulling one hair and affecting the whole
body through the so-called 'buttery effect', leading to the
formation and breakage of non-covalent bonds within the
protein, and accompanied by signicant enthalpy changes, thus
increasing the exibility of the protein's conformation. This
disruption and reorganization of the interaction network
accompanied by enthalpy changes lays the foundation for KRAS
allosteric activation signaling, as analyzed in the NRI results.
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Although the above analyses on protein conformational
exibility and molecular motion patterns indicate the potential
and motion trend of KRAS to shi to the active state aer GTP
substitution for GDP, however, whether KRAS in the GTP-bound
state is realistically sampled to the activated state conformation
during simulation as well as the thermodynamic and kinetic
properties of KRAS during activation need to be further
analyzed and elucidated. Our TICA-based conformational
sampling scatter plot shows that the sampled conformations of
GTP-bound KRAS during the simulation highly overlap with the
control conformations of the active state we selected, while the
sampling of GDP-bound KRAS is restricted to the inactive state
only, which suggests that GTP replaces GDP to efficiently acti-
vate the KRAS.MSM-based cluster analysis can further reveal the
specic conformational state distribution (thermodynamic
properties) during activation. We calculated that more than
97% of the conformations are in the inactive state. However, the
GTP-bound protein shows a much broader conformational
distribution and a large proportion of conformations are in the
active-like state, suggesting that GTP binding allows for
a broader conformational sampling of KRAS, which greatly
increases the likelihood of a transition to the active state.
Kinetic analyses also revealed to us signicant differences
between the two states. In the GDP-bound state, the transition
to the active-like state is both infrequent and slow, whereas in
the GTP-bound state, the transition is much more rapid and
frequent. This dynamic change reects the increased exibility
of the GTP-bound state, which favors the transition of KRAS to
its active form.

Our results further highlight the role of GDP and GTP in
modulating KRAS dynamics by comparing with the apo KRAS
system. While the apo KRAS system exhibits the lowest
conformational exibility, its dynamic transitions are signi-
cantly faster than those observed in the nucleotide-bound
systems. These ndings suggest that both GDP and GTP
binding stabilize KRAS structure but with distinct effects: GDP-
bound KRAS remains in a non-active conformation, whereas
GTP binding promotes transitions toward the active state.
Structural analysis of the apo system further conrms that, in
the absence of nucleotide binding, KRAS predominantly adopts
a conformation similar to the GDP-bound state, reinforcing the
hypothesis that GTP binding plays a unique role in driving
KRAS activation.

While increased exibility provides the potential for KRAS to
sample various conformations, which has been demonstrated
by MSM analysis, it does not fully explain why KRAS specically
transitions into its active state. To investigate how GTP binding
directs KRAS toward activation, we conducted an NRI analysis to
examine the reorganization of the interaction network and how
long-range interactions facilitate allosteric signaling. The
results of our NRI analyses show that the complexity of the
residue–residue interaction network is greatly increased upon
GTP binding, and in particular the long-range interactions
between the P-loop and the switch I and switch II regions
become more pronounced, while the reorganization of these
interactions effectively facilitates the delivery of the allosteric
signals triggered by GTP binding and directs the regions of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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switches I and II to the active conformation. In addition, our
NRI analysis identied pathways by which the allosteric effects
of GTP binding are transmitted through the protein's internal
interaction network, and these pathways involve key interme-
diate residues that ensure efficient signaling from the P-loop to
the switch I and switch II regions to activate KRAS. The dynamic
interplay between the P-loop and switch regions, as observed in
our shortest-path analyses, corroborates ndings from kinetic
and thermodynamic allostery studies in Ras proteins, which
emphasize the importance of long-range allosteric communi-
cation in regulating protein function.54

In summary, our study presents a mechanistic model of
KRAS activation driven by GTP binding. The introduction of
a polar phosphate group disrupts hydrophobic interactions and
increases the contact area with KRAS, particularly in nonpolar
regions. These changes reduce hydrophobic forces, destabiliz-
ing the compact structure and promoting higher conforma-
tional exibility. The combined entropic and enthalpic effects,
along with the reorganization of the interaction network
observed in NRI analysis, enhance KRAS's ability to sample
active-like conformations. The allosteric signals initiated by
GTP binding propagate from the phosphate group to key
regions, including switch I and switch II, driving them into an
open, active conformation. This network reorganization
provides new insights into KRAS's allosteric regulation and
presents potential therapeutic targets for modulating its acti-
vation pathways. The specic residues involved in signal
transmission between the P-loop and switch regions represent
key nodes within this network. These residues could serve as
potential targets for allosteric inhibitors designed to modulate
KRAS activity. By targeting these critical interaction points, it
may be possible to disrupt the activation process, providing
a novel approach for developing therapies aimed at KRAS-
driven cancers.
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