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Niche shifts and environmental 
non-equilibrium undermine 
the usefulness of ecological 
niche models for invasion risk 
assessments
Arman N. Pili   1,2,3 ✉, Reid Tingley3, Emerson Y. Sy2,4, Mae Lowe L. Diesmos2,5,6 & 
Arvin C. Diesmos1,2,7

Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based 
predictions of alien species’ potential distributions and, consequently, their usefulness for invasion risk 
assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hylarana 
erythraea, Rhinella marina, Hoplobatrachus rugulosus, and Kaloula pulchra) in their native and 
Philippine-invaded ranges to investigate niche changes that have unfolded during their invasion and, 
with this, assessed the extent of niche conservatism and environmental equilibrium. We investigated 
how niche changes affected reciprocal transferability of ecological niche models (ENMs) calibrated using 
data from the species’ native and Philippine-invaded ranges, and both ranges combined. We found 
varying levels of niche change across the species’ realized climatic niches in the Philippines: climatic 
niche shift for H. rugulosus; niche conservatism for R. marina and K. pulchra; environmental non-
equilibrium in the Philippine-invaded range for all species; and environmental non-equilibrium in the 
native range or adaptive changes post-introduction for all species except H. erythraea. Niche changes 
undermined the reciprocal transferability of ENMs calibrated using native and Philippine-invaded range 
data. Our paper highlights the difficulty of predicting potential distributions given niche shifts and 
environmental non-equilibrium; we suggest calibrating ENMs with data from species’ combined native 
and invaded ranges, and to regularly reassess niche changes and recalibrate ENMs as species’ invasions 
progress.

The large-scale redistribution of alien species – i.e., species whose presence in a region is attributed to human 
activities that enabled them to overcome fundamental biogeographical barriers (sensu Richardson et al.1) – is a 
defining feature of the Anthropocene2,3. Alien species’ invasions can alter the ecology of recipient environments4,5 
and have socio-economic impacts on recipient jurisdictions6. Recognizing these impacts, world nations have 
committed to develop and implement science-based biosecurity policies and strategies in response to ongoing 
and future alien species invasions7,8, for biodiversity conservation9 and sustainability10.

Invasion risk assessments assess the ecological and socio-economic impacts of alien species’ invasions, pro-
ducing the needed information to prioritize alien species and areas for biosecurity intervention7,11. Invasion risk 
assessment activities include predicting the potential distribution (i.e., climatically suitable areas) of invading 
and/or potentially invasive alien species11. These predictions can be made through ecological niche modelling 
(ENM; aka species distribution modelling)12–15 – a correlative statistical tool that quantifies species-environment 
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relationships to define a species’ climatic niche16–19. Potential distributions of alien species can then be predicted 
by projecting ecological niche models across spatio-temporal space, enabling researchers and environmental 
managers to assess geographical invasion risks and identify areas where an alien species can potentially enter, 
establish, spread, and cause significant impacts (i.e., susceptible and sensitive sites sensu McGeoch et al.20)13. 
These predictions can, therefore, help in implementing effective biosecurity strategies15.

Alien species’ potential distributions are traditionally predicted based on ENMs calibrated using species’ 
native range data21. This approach assumes that species inhabit the entire spatial extent of climatically suitable 
areas in their native range (i.e., environmental equilibrium)16,22,23, and, thus, that native ENMs accurately capture 
the full extent of a species’ climatic niche12. Notably, this approach assumes that species’ climatic niches are con-
served across space and time (i.e., niche conservatism sensu Wiens and Graham24) and, therefore, that species will 
only occupy areas in recipient regions that are climatically similar to those in their native range14,21,25. However, 
alien species have shown marked climatic niche shifts during invasion (i.e., divergence of climatic niche; sensu 
Broennimann et al.26), with prevalence varying across taxa (e.g., plants26,27, invertebrates28–30, and vertebrates31 
such as amphibians32,33, birds34, reptiles32,35). Climatic niche shifts may be caused by changes in a species’ funda-
mental niche (i.e., the abiotic limits that define where they can persist; sensu Grinnell36) due to adaptive changes 
post-introduction37, changes in a species’ realized climatic niche (i.e., the subset of the fundamental niche in 
which a species can persist subject to dispersal limitations and biotic interactions; sensu Hutchinson38), or both, 
due to, for example, enemy release39. ENMs calibrated using data from the native range fail to account for climatic 
niche shifts and, therefore, may underpredict alien species’ potential distributions in invaded regions.

An alternative approach is to calibrate ENMs with data from a species’ invaded range, which, in theory, 
can capture climatic niche shifts in invading alien species26,29,40–42. However, most alien species’ invasions are 
incomplete (i.e., they have not occupied the full extent of their potential distribution), reflecting environmental 
non-equilibrium in the invaded range23,25,41,43. Moreover, alien species’ invasions in many parts of their invaded 
ranges are poorly documented or not documented at all44–46. To offset limitations of ENMs calibrated using data 
from native or invaded ranges, past studies have suggested calibrating ENMs using data from the global range 
(i.e., native and invaded ranges) of an alien species41,42, but this approach is also affected by data limitations in 
the species’ invaded ranges. These limitations of ENMs have raised doubts on their usefulness for invasion risk 
assessments23,40–42.

Quantifying and comparing alien species’ realized climatic niches in their native and invaded ranges provide  
insight into the extent of niche changes, enabling assessment of niche conservatism and, possibly, environ-
mental equilibrium26,27,47. Thus, quantifying realized climatic niche changes can help assess and communicate 
limitations and uncertainties of ENM predictions, making it a complementary step in alien species’ ENM exper-
iments23,27,42,47,48. Realized climatic niches can be quantified and compared in various ways, of which the most 
widely used methodological frameworks are the unified COUE (i.e., centroid shift, overlap, unfilling, and expan-
sion) framework47 and the n-dimensional hypervolume framework49,50. The COUE framework was purposively 
developed to assess climatic niche conservatism among phylogenies and species’ populations across space and 
time47. The COUE framework estimates occurrence densities of two entities’ (e.g., species, populations) realized 
climatic niches in a gridded environmental space to decompose niche changes into three niche metrics: niche 
stability (i.e., the proportion of the invaded niche overlapping the native niche), niche unfilling (i.e., the pro-
portion of the native niche non-overlapping the invaded niche), and niche expansion (i.e., the proportion of the 
invaded niche non-overlapping the native niche)27. Centroid shift can also be visualized from the topologies of 
two entities’ occurrence densities in gridded environmental space. Researchers can then compute niche overlap 
using a similarity index and quantitatively test alternative hypotheses of niche conservatism – niche equivalency 
tests whether two realized climatic niches in two ranges are equivalent or conserved in the strictest sense, whereas 
niche similarity tests whether two realized climatic niches are more similar than random niches48,51.

An alternative method to quantify realized climatic niches is the n-dimensional hypervolume framework49,50, 
which follows Hutchinson’s38 description of the fundamental niche. This method first transforms two entities’ 
climatic or functional (trait-based) niches into hypervolumes within a multidimensional space and, subsequently, 
compares hypervolumes by calculating indices of hypervolume similarity and metrics of hypervolume distance 
(centroid and minimum distance) and intersection (volume of intersection, unique fractions). Despite differences 
in the conceptual theories of the two frameworks, case studies employing both approaches are rare, although one 
case study of realized climatic niche shifts in an invading alien amphibian species found similar results between 
the two approaches33.

Here we quantified realized climatic niche changes to assess niche conservatism and environmental equilib-
rium of alien amphibian species in the Philippines and, subsequently, assessed the implications of niche changes 
for ENM predictions and their usefulness in invasion risk assessments. Six alien amphibian species have been 
introduced in the Philippines: the green paddy frog (Hylarana erythraea [Schlegel, 1837]) in 1880s, the cane 
toad (Rhinella marina [Linnaeus, 1758]) in 1930s, the American bullfrog (Lithobates catesbeianus [Shaw, 1802]) 
in 1960s, the Chinese bullfrog (Hoplobatrachus rugulosus [Wiegmann, 1834]) in 1990s, the Asiatic painted toad 
(Kaloula pulchra Gray, 1831) in 2000s, and the greenhouse frog (Eleutherodactylus planirostris [Cope, 1862]) 
in 2010s52,53. Pili et al.52 reviewed their invasion history and updated their current invasion status and distribu-
tion in the Philippines. Rhinella marina and L. catesbeianus were intentionally introduced in the Philippines for 
biocontrol and food, respectively; meanwhile, H. erythraea, H. rugulosus, K. pulchra, and E. planirostris were 
unintentionally introduced as a contaminant of transported commodities or stowaways on vehicles and cargo52. 
All species except L. catesbeianus are now fully-invasive and continue to spread across the country through 
leading-edge dispersal, as contaminants of transported commodities, and/or as stowaways on vehicles and 
cargo52. The potential ecological and socio-economic changes caused by alien amphibian species invasions54,55 
emphasize the urgency for researchers and managers to assess the invasion risk of these species, to inform 
biosecurity7,11.
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We first quantified and compared the realized climatic niches of H. erythraea, R. marina, H. rugulosus, and 
K. pulchra in their native ranges (native niche) and Philippine-invaded ranges (Philippine niche) to investigate 
climatic niche changes that may have unfolded during their invasion, and to assess niche conservatism and envi-
ronmental equilibrium. We did not include L. catesbeianus and E. planirostris because of the limited data on 
these species in the Philippines. We quantified realized climatic niche changes using both the COUE47 and the 
n-dimensional hypervolume frameworks49,50. We described species climatic niches and environmental back-
grounds using eight environmental variables representing a combination of means, extremes, and seasonality 
that are known to be ecologically relevant to amphibians and are not highly inter-correlated. We further tested for 
niche conservatism using niche equivalency and niche similarity tests48,51. We then investigated the implications 
of climatic niche changes for niche-based predictions of species’ potential distributions by calibrating ENMs 
using data from the Philippine-invaded (Philippine ENMs) and native ranges (native ENMs), and both ranges 
combined (combined range ENMs). Recognizing that different ENM approaches can yield varying predictions of 
potential distributions despite being calibrated with the same data (e.g., presence, absence/pseudo-absence, and 
environmental variables), we quantified ENMs of the four alien species using eight statistical approaches. We then 
created ensemble models (EMs) for each set of ENMs and used these to predict the species’ potential distributions 
in the Philippines and in their respective native ranges. Ensemble models identify the signals (i.e., high agreement 
among models) and filter the noises (i.e., high disagreement) from different ENMs, yielding a lower mean error 
than any of the constituent ENMs and their resulting predictions56. We related observed niche changes to aspects 
of the species’ invasion history in the Philippines52 and to predictions of potential distributions. We conclude with 
a discussion on the implications of our findings for invasion risk assessments.

We focused our niche shift analyses on the Philippines because we have a relatively robust species’ occurrence 
dataset on the distribution of the alien amphibians in the Philippines57. Data in other invaded ranges of these spe-
cies are limited, especially for H. erythraea, H. rugulosus, and K. pulchra (data on the invaded range of R. marina is 
similarly poor, with the exception of Australia33). Including other invaded ranges in the analysis would therefore 
poorly represent the species’ global invaded niches. Importantly, including data from additional jurisdictions 
in which these species are alien would unlikely change our conclusions, because these additional data would be 
swamped by the higher number of Philippine records57.

Results
Varying levels of realized climatic niche change.  Following the COUE framework47, we first quantified 
the occurrence densities of the native and Philippine niches in a weighted biplot of the first two principal com-
ponents (PCs) of a Principal Components Analysis (PCA) calibrated using pooled environmental backgrounds 
in the species’ native and Philippine-invaded ranges. The first two PCs captured ~71–76% of the variation in the 
environmental data. Supplementary Table S1 (online) shows the correlations between environmental variables 
and PCs. The topology of occurrence densities across the species’ native and Philippine niches in PC biplots 
revealed: that the Philippine niche of H. erythraea is a subset of its native niche, whereas the other species showed 
partial overlap between native and Philippine niches58; high to complete niche stability for all species at the inter-
section of the 75th percentile of environmental backgrounds (I75; 93–100%) and at the intersection of the complete 
environmental background (I100; 91–100%); low to moderate niche unfilling for all species at I75 (6–24%) and 
at I100 (13–30%); and zero to low niche expansion for all species at I75 (0–7%) and I100 (0–9%) (Fig. 1; Table 1). 
Rhinella marina and H. rugulosus showed niche expansion into non-analogous environmental space (i.e., cli-
mates found in the Philippine environmental background but not in the species’ native range environmental 
background). Rhinella marina, H. rugulosus, and K. pulchra shifted their niche centroids to warmer and wetter 
climates in the Philippines (negligible centroid shift in H. erythraea; Fig. 1; see also Supplementary Figs. S1–S4).

Niche equivalency and similarity tests.  Species’ native and Philippine niches showed low niche overlap 
(Schoener’s index of niche overlap [D]) (Table 1), with the lowest overlap in H. rugulosus (D = 0.10) and the high-
est in K. pulchra (D = 0.26). Comparing observed niche overlap values to null distributions (i.e., overlap values 
estimated from niches constructed by randomly re-allocating pooled occurrences to both niches) revealed that 
native and Philippine niches were more similar than expected by chance for R. marina and K. pulchra (P ≤ 0.01; 
Table 1; see Supplementary Fig. S5). Meanwhile, niches were more similar than randomly generated niches 
only for K. pulchra (P = 0.01 for both randomization methods). There was also a trend toward the niches of H. 
erythraea and R. marina being more similar than randomly generated niches for one of the two types of niche 
similarity tests (P = 0.06 for N ↔ P randomization test). For the case of H. rugulosus, niche equivalency was 
rejected, whereas the results of the two niche similarity tests were inconclusive. We further quantified climatic 
niche changes using four (for H. erythraea) to five (for R. marina, H. rugulosus, and K. pulchra) PCs to explore 
alternative PC biplots (see Supplementary Figs. S6–9 and Tables S2).

Dissimilar multidimensional hypervolumes of realized climatic niches.  We compared species’ 
native and Philippine niches using the n-dimensional hypervolume framework49,50. Here, we quantified the native 
and Philippine niches using multidimensional hypervolumes, derived from four (for H. erythraea) to five (for R. 
marina, H. rugulosus, and K. pulchra) PCs used in the COUE framework. Examining the topology and geometry 
of the hypervolumes of the native and Philippine niches in multidimensional environmental space revealed: 
low similarity at both the 75th percentile probability boundary of hypervolumes (H75; Jaccard Similarity Index 
J = 0.04–0.18) and entire probability boundary of hypervolumes (H100; J = 0.11–0.24); low to moderate inter-
section at both H75 (4.73–18.38%) and H100 (11.22–22.37%); varying levels of unique fractions of the Philippine 
niche at H75 (15–81%) and H100 (8–57%); short centroid distances in H. erythraea at H75 (0.24) and H100 (0.62) 
relative to the other species (1.23–1.66 at H75; 1.30–1.80 at H100); and short minimum distances between hyper-
volumes at H75 (0.05–0.15) and H100 (0.11–0.17) (Figs. 2–3; Table 2; see Supplementary Figs. S10–13).
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Undermined performance of native and Philippine EMs.  Ensemble models of Philippine ENMs 
(Philippine EMs) predicted high climatic suitability in many areas in the Philippines where the species are known 
to occur (Figs. 4–7). This was supported by the scores of the Area Under the Receiver Operating Characteristic 
Curve (AUC) and by True Skill Statistics (TSS) derived from projecting Philippine EMs to the evaluation data-
set (Eeval; see methods), wherein AUC scores were fair (H. erythraea, H. rugulosus) to good (R. marina, K. pul-
chra), and TSS scores were consistently high (>0.50) (Table 3; see Supplementary Figs. S14–17). In contrast, 
the Philippine EMs of all species underpredicted climatically suitable areas in the native range (Figs. 4–7). The 
AUC of the Philippine EMs, when projected to the species’ presence/pseudo-absence dataset in the native range 
(Enat), ranged from failed (R. marina and H. rugulosus) to poor (H. erythraea and K. pulchra), whereas TSS scores 
were slightly better than random (Table 3; see Supplementary Figs. S14–17). Projecting values of environmental 

Figure 1.  The native (blue) and Philippine (red) niches of Hylarana erythraea (a), Rhinella marina (b), 
Hoplobatrachus rugulosus (c), and Kaloula pulchra (d) as depicted by the biplot of the first two PCs. Grey areas 
represent overlap of the species’ native and Philippine niches. The solid and dashed contour lines respectively 
represent the intersection of 75% (I75) and 100% (I100) of available environments in the native range (blue) 
and in the Philippine-invaded range (red). Solid arrows point to the direction of centroid shift from the 
species’ native niches’ occurrence density centroid to the that of Philippine niche. Dashed arrows represent the 
distance and direction between the positions of the centroids of the occurrence density of the environmental 
backgrounds in the native range and the Philippines along the PC biplots. The correlation circle shows the 
distribution of eight environmental variables along with the PC biplot: bio 1 = annual mean temperature; bio 4 
= temperature seasonality; bio 5 = maximum temperature of warmest month; bio 6 = minimum temperature 
of coldest month; bio 12 = annual precipitation; bio 15 = precipitation seasonality; bio 16 = precipitation of 
wettest quarter; bio 17 = precipitation of driest quarter.
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Hylarana erythraea Rhinella marina Hoplobatrachus rugulosus Kaloula pulchra

Niche change metrics I75 I100 I75 I100 I75 I100 I75 I100

  Stability (%) 100 100 100 100 93 91 98 98

  Unfilling (%) 24 30 7 13 6 16 10 18

  Expansion (%) 0 0 0 <1 7 9 2 2

Overlap (Schoener’s D) 0.13 0.10 0.10 0.26

Equivalency test
(P value) 1.00 0.001 1.00 0.01

Similarity test
(P value)

N ↔ P N → P N ↔ P N → P N ↔ P N → P N ↔ P N → P

0.06 0.14 0.06 0.16 0.42 0.76 0.01 0.01

Table 1.  Summary results of three niche change metrics (stability, unfilling, and expansion), overlap index 
(Schoener’s D), and niche equivalency and similarity tests (P values). I75 and I100 represent respectively the 
intersection of 75% and 100% of available environments in the native and Philippine-invaded range. N ↔ P and 
N → P represent the randomization methods employed in the niche similarity test.

Figure 2.  The hypervolumes of the native niche (blue) and Philippine niche (red) of Hylarana erythraea (a) and 
Rhinella marina (b) in multidimensional environmental space defined by four (for H. erythraea) to five (for R. 
marina) PCs. The solid contour lines represent the entire boundary of hypervolumes(H100). The filled circles 
represent the centroids of the hypervolumes of the native niche (blue) and Philippine niche (red). Opaque dots 
represent true species’ occurrence records, whereas transparent dots represent random records derived from 
Gaussian kernel density estimation.
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variables in the Philippines to those in species’ native ranges revealed vast extents of clamping of several environ-
mental variables – predictions in these areas are therefore uncertain (see Supplementary Figs. S18–21).

Ensemble models of native ENMs (native EMs) predicted low climatic suitability in many areas in the 
Philippines where the species are known to occur (Figs. 4–7). Projecting native EMs to the species’ presence/
pseudo-absence dataset in the Philippine-invaded range (Einv) produced AUC scores ranging from no better than 
random (H. rugulosus), failed (R. marina and K. pulchra), to poor (H. erythraea), whereas TSS scores ranged from 
no better than random (H. rugulosus) to slightly better than random (Table 3; see Supplementary Figs. S14–17). 
Interestingly, native EMs predicted high climatic suitability in extensive areas in the Philippines that the species 
have not yet invaded. In contrast, native EMs produced good predictions of the species’ native range (Figs. 4–7). 
When projected to its Eeval dataset, the native EMs of all species scored fair (H. erythraea), good (R. marina), to 
excellent (H. rugulosus, K. pulchra) AUC values, and high TSS scores (Table 3; see Supplementary Figs. S14–17). 
Projecting values of environmental variables in the species’ native ranges to those in the Philippines revealed vast 
extents of clamping of several environmental variables (see Supplementary Figs. S18–21).

When projected to the Philippines and the native range, EMs of combined range ENMs (combined range 
EMs) predicted high climatic suitability in many areas where the species are known to occur, as well as in 
areas in the Philippines where the species have not yet invaded (Figs. 4–7). When projected to Einv and Enat, the 
combined-range EMs of all species had fair to excellent AUCs. Meanwhile, the combined-range EMs of most 

Figure 3.  The hypervolumes of the native niche (blue) and Philippine niche (red) of Hoplobatrachus rugulosus 
(a) and Kaloula pulchra (b) in multidimensional environmental space defined by five PCs. The solid contour 
lines represent the 100% percentile probability boundary of hypervolumes(H100). The filled circles represent the 
centroids of the hypervolumes of the native niche (blue) and Philippine niche (red). Opaque dots represent true 
species’ occurrence records, whereas transparent dots represent random records derived from Gaussian kernel 
density estimation.
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species had lower TSS when projected to Einv and Enat relative to Eeval (Table 3; see Supplementary Figs. S14–17). 
Projecting values of environmental variables in the species’ combined ranges to either their native range or the 
Philippines revealed negligible clamping of environmental variables.

Discussion
Our findings revealed varying levels of niche change across four alien amphibian species introduced to the 
Philippines: high niche stability and low to moderate niche unfilling across all species, and insignificant to sub-
stantial niche expansion in all species except H. erythraea. All species except H. erythraea occupied hotter and 
wetter climates in the Philippines. Niche overlap was low for all species. Despite the low overlap, niche equiva-
lency tests revealed niche conservatism in R. marina and K. pulchra, and niche similarity tests revealed niche 
conservatism in K. pulchra and to a lesser extent in R. marina and H. erythraea. The native and invaded niches of 
H. rugulosus were not equivalent, although niche similarity tests were inconclusive. Nonetheless, niche expansion 
in analogous (i.e., climates found in both the Philippines and each species’ native range) and non-analogous 
environmental space provide evidence of niche shift in H. rugulosus. Niche unfilling revealed environmental 
non-equilibrium in the Philippine-invaded range for all species, whereas niche expansion revealed environmen-
tal non-equilibrium in the native range and/or adaptation in the invaded range for all species except H. eryth-
raea. Hypervolume centroid distances consistently supported a shift in the niche centroids of all species except 
H. erythraea. Meanwhile, hypervolume intersection metrics generally revealed substantial unique fractions of 
Philippine niches, which is overall inconsistent with the findings of the COUE niche change metrics. Consistent 

Figure 4.  Predicted potential distribution of Hylarana erythraea in its native range and in the Philippines 
(columns) projected by EMs calibrated using data from the Philippine-invaded range, native range, and 
combined ranges (rows). Hylarana erythraea is native to South Asia, mainland Southeast Asia, and parts of 
maritime Southeast Asia (Borneo, Indonesia [Sumatra, Java, Lombok, and Riau Islands]). White dots represent 
species occurrence records, which were thinned to improve visibility. Relative climatic suitability increases from 
cold to warm colours. The maps were created using QGIS Geographic Information System software (v. 3.14; 
http://qgis.osgeo.org) and projected using WGS 1984 Coordinate Reference System.
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Hylarana erythraea Rhinella marina Hoplobatrachus rugulosus Kaloula pulchra

H75 H100 H75 H100 H75 H100 H75 H100

Similarity Index (Jaccard) 0.15 0.14 0.18 0.24 0.05 0.11 0.18 0.22

Hypervolume distance metrics

  Centroid 0.24 0.62 1.66 1.70 1.60 1.80 1.28 1.30

  Minimum 0.05 0.13 0.13 0.11 0.15 0.17 0.15 0.17

Hypervolume intersection metrics

  Volume

      Native niche 64.10 343.64 69.75 340.60 73.14 351.44 18.63 82.81

      PH niche 11.30 54.21 22.42 106.42 22.06 106.71 13.36 57.53

      Union 65.81 348.20 77.86 370.87 90.90 411.93 27.15 114.68

      Intersection 9.60 49.65 14.31 76.15 4.30 46.21 4.85 25.66

  Unique Fraction of the native niche (%) 85 86 79 78 94 87 74 69

  Unique fraction of the Philippine niche (%) 15 8 36 28 81 57 64 55

Table 2.  Summary results of hypervolume similarity index and hypervolume distance and intersection metrics.

Figure 5.  Predicted potential distribution of Rhinella marina in its native range and in the Philippines 
(columns) projected by EMs calibrated using data from the Philippine-invaded range, native range, and 
combined ranges (rows). Rhinella marina is native to tropical Americas. White dots represent species 
occurrence records, which were thinned to improve visibility. Relative climatic suitability increases from cold to 
warm colours. The maps were created using QGIS Geographic Information System software (v. 3.14; http://qgis.
osgeo.org) and projected using WGS 1984 Coordinate Reference System.
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with the findings of the niche overlap tests based on Schoener’s D, values of Jaccard hypervolume similarity index 
were consistently low for all species. Finally, we found that native and Philippine EMs showed poor reciprocal 
transferability – that is, climatic characteristics of the Philippine niche poorly predicted the potential distribution 
of the species in the native range, and vice versa. Combined range EMs produced relatively better predictions of 
potential distributions across both native and invaded ranges.

Our findings build on previous studies32,33, contributing to our growing understanding of climatic niche 
changes during the invasion of alien species, in general, and alien amphibian species, in particular. Our study is 
the first to assess niche changes in H. erythraea, H. rugulosus, and K. pulchra. Meanwhile, our findings of niche 
conservatism in the Philippine-invaded range of R. marina is somewhat consistent with the findings of Li et 
al.32 – that is, the realized climatic niche of R. marina is conserved in its Indomalayan invaded range (includ-
ing the Philippines); our findings showed niche equivalency and to a lesser extent similarity in R. marina in its 
Philippine-invaded range (Table 1), whereas Li et al.32 showed niche similarity (P = 0.02; niche equivalency test 
was not conducted) in its Indomalayan invaded range. The inconsistent results of the niche similarity test between 
our study and Li et al.32 were likely driven by the differences in the scale and geographic extent of our analysis 
(Philippines only vs. Indomalayan realm, respectively). Our study also extends the work of Tingley et al.33, who 
examined niche shifts across the native vs. Australian-invaded range of R. marina.

The observed niche shifts could either be due to shifts in the species realized climatic niches in their invaded 
ranges27, to a shift in the species’ fundamental niches (e.g., changes in their environmental tolerances) during the 

Figure 6.  Predicted potential distribution of Hoplobatrachus rugulosus in its native range and in the 
Philippines (columns) projected by EMs calibrated using data from the Philippine-invaded range, native 
range, and combined ranges (rows). Hoplobatrachus rugulosus is native to East Asia (China and Taiwan) and 
mainland Southeast Asia. White dots represent species occurrence records, which were thinned to improve 
visibility. Relative climatic suitability increases from cold to warm colours. The maps were created using 
QGIS Geographic Information System software (v. 3.14; http://qgis.osgeo.org) and projected using WGS 1984 
Coordinate Reference System.
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course of invasion26,37, or both. Realized climatic niche shift is in line with the notion that species occupy a subset 
of their fundamental niche in their native range – indicating environmental non-equilibrium – due to dispersal 
limitations and/or biotic interactions59,60. In contrast, fundamental niche shift may be caused by adaptive changes 
post-introduction37. In the case of R. marina, we detected expansion of the species’ Philippine niche into analo-
gous and non-analogous environments. Phenotypic changes have been observed over the course of the species’ 
invasion in Australia61,62. However, Tingley et al.33, by combining ecophysiological and correlative models, found 
that R. marina fails to occupy a substantial fraction of its fundamental niche in its native South American range, 
plausibly due to biotic interactions with closely related species. More importantly, they showed that R. marina has 
successfully filled its fundamental niche in its Australian-invaded range, reflecting realized climatic niche shift. 
In our analysis, the captured environmental backgrounds in the native range (derived from biomes intersect-
ing the species’ range) are likely more environmentally restricted than the fundamental niche, and the detected 
non-analogous climates in the Philippines are likely within the species’ fundamental niche. Meanwhile, for H. 
rugulosus, discriminating whether realized or fundamental niche shift explains the observed niche expansion 
in non-analogous environmental space would require mechanistic approaches based on experimental measure-
ments of the species’ fundamental niche26,33,63.

We extended our main analysis by quantifying niche changes in the COUE framework47 using alternative 
biplots constructed from combinations of the first four to five PCs. Interestingly, alternative biplots revealed 
inconsistent support for niche equivalency and similarity, and in some cases, high variance in niche change met-
rics (see Supplementary Table S2). Nonetheless, we argue that the biplots of the first two PCs, as presented here, 

Figure 7.  Predicted potential distribution for Kaloula pulchra in their native range and in the Philippines 
(columns) projected by EMs calibrated using data from the Philippine-invaded range, native range, and 
combined ranges (rows). Kaloula pulchra is native to Southern East Asia (China), eastern South Asia 
(Bangladesh and India), mainland Southeast Asia, and some parts of maritime Southeast Asia (Singapore 
and Indonesia [Sulawesi]). White dots represent species occurrence records, which were thinned to improve 
visibility. Relative climatic suitability increases from cold to warm colours. The maps were created using 
QGIS Geographic Information System software (v. 3.14; http://qgis.osgeo.org) and projected using WGS 1984 
Coordinate Reference System.
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provide the most reliable results, since they explain the highest amount of variation in the environmental data 
(>71%). The fact that the COUE framework is limited to analysing niches in two dimensions at a time is a sig-
nificant limitation. To overcome this limitation, we further quantified species’ climatic niche changes using the 
n-dimensional hypervolume framework49,50. Using four to five PCs that collectively captured ~99% variance in 
the environmental data, our findings again revealed varying levels of niche changes among species, which were 
generally inconsistent with our findings derived using COUE framework’s niche change metrics. This highlights 
the difficulty of quantifying niche changes, as well as testing for niche conservatism and shift, due to varied con-
ceptual theories underpinning different methodological frameworks. Nonetheless, the n-dimensional hypervol-
ume framework, as currently implemented, does not account for environmental availability in each range (and 
thus analogous and non-analogous environments) and does not give greater weight to PCs that explain more 
environmental variation. To this end, we base our conclusions regarding niche conservatism and environmental 
equilibrium primarily from the findings revealed by the COUE framework.

Should we anticipate future niche changes in the four alien amphibian species’ Philippine niches? We found 
niche unfilling for all species, revealing environmental non-equilibrium in the species’ Philippine niches. This 
supports the findings of Pili et al.52 that all species’ invasions in the Philippines are incomplete, and that the 
species continue to spread. Moreover, for all species, PC biplots revealed analogous environmental space that is 

Philippine ENMs Philippine EM Native ENMs
Native 
EM

Combine range 
ENMs

Combined 
range EM

(a) Area Under the Receiver Operating Characteristic Curve (AUC)

Hylarana erythraea

Eeval 0.75 (0.60–0.80) 0.72 0.69 (0.57–0.79) 0.70 0.78 (0.58–0.82) 0.81

Einv — — 0.59 (0.48–0.70) 0.65 0.75 (0.61–0.86) 0.81

Enat 0.63 (0.47–0.72) 0.61 — — 0.72 (0.57–0.85) 0.80

Rhinella marina

Eeval 0.65 (0.50–0.71) 0.87 0.83 (0.78–0.89) 0.86 0.82 (0.78–0.88) 0.85

Einv — — 0.55 (0.48–0.59) 0.56 0.58 (0.48–0.71) 0.60

Enat 0.56 (0.44–0.65) 0.59 — — 0.84 (0.80–0.93) 0.88

Hoplobatrachus rugulosus

Eeval 0.74 (0.58–0.81) 0.79 0.88 (0.54–0.93) 0.93 0.92 (0.80–0.96) 0.95

Einv — — 0.48 (0.30–0.72) 0.44 0.68 (0.41–0.86) 0.82

Enat 0.52 (0.29–0.77) 0.55 — — 0.93 (0.81–0.98) 0.96

Kaloula pulchra

Eeval 0.69 (0.47–0.8) 0.80 0.85 (0.74–0.91) 0.90 0.85 (0.68–0.88) 0.88

Einv — — 0.56 (0.36–0.76) 0.59 0.68 (0.45–0.90) 0.77

Enat 0.56 (0.39–0.77) 0.61 — — 0.88 (0.79–0.94) 0.93

(b) True Skill Statistics (TSS)

Hylarana erythraea

Eeval 0.40 (0.26–0.55) 0.66* 0.32 (0.18–0.50) 0.62* 0.42 (0.22–0.54) 0.65*
Einv — — 0.10 (–0.02–0.28) 0.20 0.35 (0.16–0.56) 0.30

Enat 0.13 (0.04–0.22) 0.09 — — 0.21 (0.02–0.41) 0.34

Rhinella marina

Eeval 0.20 (−0.01–0.34) 0.54* 0.51 (0.40–0.63) 0.67* 0.51 (0.44–0.63) 0.63*
Einv — — 0.04 (−0.07–0.11) 0.05 0.05 (0.00–0.11) 0.08

Enat 0.06 (−0.09–0.18) 0.02 — — 0.54 (0.46–0.71) 0.60

Hoplobatrachus rugulosus

Eeval 0.39 (0.17–0.53) 0.77* 0.61 (0.08–0.72) 0.84* 0.68 (0.58–0.76) 0.79*

Einv — — −0.04 
(−0.23–0.42) −0.10 0.17 (0.00–0.50) 0.31

Enat 0.00 (−0.40–0.37) 0.01 — — 0.72 (0.62–0.87) 0.79

Kaloula pulchra

Eeval 0.30 (−0.06–0.52) 0.82* 0.61 (0.41–0.70) 0.81* 0.55 (0.43–0.61) 0.79*
Einv — — 0.10 (−0.27–0.4) 0.01 0.12 (0.00–0.28) 0.26

Enat 0.07 (−0.18–0.24) 0.16 — — 0.64 (0.48–0.72) 0.72

Table 3.  Evaluation of EMs and their constituent ENMs (columns) of Hylarana erythraea, Rhinella marina, 
Hoplobatrachus rugulosus, and Kaloula pulchra when projected to the 30% evaluation data (Eeval), Philippine-
invaded range (Einv), and native range (Enat) (rows). Performance of ENMs and EMs was evaluated using the 
Area Under the Receiver Operating Characteristic Curve (AUC) (a) and True Skill Statistics (TSS) (b). Since 
ENMs were weighted based on their TSS scores when projected to Eeval, the TSS scores of the resulting EMs 
when projected to Eeval will be equivalent to zero. Here, the TSS scores of EMs when projected to testing data are 
shown instead (*).
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unoccupied in both native and Philippine-invaded ranges. If accessible (in geographic space) and climatically 
suitable, these areas of environmental space present opportunities for future niche expansion. For H. rugulosus, 
PC biplots revealed unoccupied non-analogous environmental space in the Philippines, which presents oppor-
tunities for the species to further shift its Philippine niche. This emphasizes the need for regular reassessments of 
niche conservatism/shift as a species’ invasion progresses.

Our findings do not conform to observed patterns linking niche unfilling with aspects of species’ invasion 
history. Patterns in alien amphibian32, reptile32, and bird31 invasions showed that residency time (i.e., the length 
of time since a species was first introduced) is inversely correlated with the magnitude of niche unfilling. Our 
findings regarding R. marina, which was introduced in the Philippines in 193452, are somewhat conforming with 
this pattern. Meanwhile, the other species showed an inverse pattern; for example, H. rugulosus and K. pulchra, 
respectively introduced only in the 1990s and 2000s52, showed low levels of niche unfilling, whereas H. erythraea 
showed substantial niche unfilling, despite being first introduced in the Philippines for more than a century ago 
in the 1880s52.

Niche unfilling in birds31 and in alien species in disjunct geographic areas (e.g., archipelagic systems)33 have 
been linked to dispersal limitations (e.g., biogeographic barriers)64 and propagule pressure (i.e., the absolute num-
ber of individuals involved in a human-mediated dispersal event and the number of discrete dispersal events)59. 
Similarly, the high niche unfilling in H. erythraea observed here may be due to its dependence on pathways 
characterized by low inter-island propagule pressure, especially during the early periods of its invasion. Hylarana 
erythraea is known to historically disperse inter-island primarily as a contaminant of commodities (agricul-
ture, animals) (sensu Scalera et al.65)52. The trade of these commodities (reflecting propagule pressure) is high 
intra-islands, especially on larger Philippine islands such as Luzon and Mindanao, where rapid and short-distance 
transport is possible and is critical for such perishable commodities. However, inter-island trade of these com-
modities is low, likely limiting the species dispersal throughout the archipelago. This low level of propagule pres-
sure coincides with its spatio-temporal spread in the Philippines, in which it was first introduced and restricted 
among import-dependent small islands in the Central Philippines for more than a century, and only dispersed 
to the country’s major islands of Luzon and Mindanao in the 1990s, where it underwent an increased rate of 
spread52. Meanwhile, high propagule pressure was likely an important contributor to the low levels of niche unfill-
ing in R. marina, H. rugulosus, and K. pulchra. Rhinella marina was initially intentionally dispersed in many parts 
of the Philippines as a biological control agent, where it subsequently dispersed intra-islands primarily via natural 
dispersal. Moreover, the rapid inter-island dispersal of R. marina has been attributed to the Philippines’ depend-
ence on sea transport for trade and travel – this species has been observed to hitchhike on transportation vehicles 
(e.g., ships, boats, trucks)52. The use of multiple alternative introduction and dispersal pathways – providing 
alternative ways for intra- and inter-island dispersal – likely aided H. rugulosus and K. pulchra in negating effects 
of residency time and dispersal limitations, resulting in rapid dispersal throughout the country52.

Predictions of native EMs corroborated previous studies showing that ENMs based on the native range of spe-
cies often underpredict suitable areas in the invaded range26,29,40–42. Specifically, native EMs predicted low climatic 
suitability in many areas in the Philippines where the species occur. The observed poor predictive performance 
of native EMs was likely caused by the observed niche expansion and unfilling in the species Philippine niches. 
Interestingly, our findings, especially for H. erythraea, support previous studies31,35 showing increased predictive 
performance of native ENMs with decreasing niche unfilling and expansion in the invaded range. Meanwhile, 
Philippine EMs support previous studies showing ENMs calibrated using invaded range data may be able to cap-
ture niche shifts that occurred during invasion26,29,40–42. However, due to environmental non-equilibrium often 
observed in alien species in their invaded ranges, ENMs calibrated using invaded range data may fail to capture 
parts of the species’ climatic niche that is occupied in the native range but unoccupied in the invaded range. This 
leads to underprediction of the species’ potential distribution in both the native and invaded ranges22,23,25,41, as 
observed in the predictions of the Philippine EMs. Overall, combined range EMs predicted high climatic suitabil-
ity in areas in the Philippines where the species are known to occur, and predicted areas that are climatically suit-
able but are yet uninvaded by the species. Our findings corroborate those of previous studies in that combining 
data from the native and invaded ranges of an alien species, where available, can offset the predictive limitations 
of ENMs calibrated in only the native or invaded ranges26,29,40–42. We recommend future researchers recalibrate 
combined range EMs as species’ invasions progress, and when data from other ranges of the species are collected 
and/or made available.

Conclusion
Overall, our findings revealed evidence of conservatism in the Philippine niches of R. marina and K. pulchra, and 
a shift in the Philippine niche of H. rugulosus. Meanwhile, for H. erythraea, the extent to which the species’ niche 
has been conserved is less clear. Different aspects of species’ invasion history, such as residency time, dispersal 
limitation, and propagule pressure, can only partially explain the observed changes in the species’ Philippine 

Native 
range

Philippine-invaded 
range

Combined 
ranges

Hylarana erythraea 143 152 295

Rhinella marina 1,581 170 1,751

Hoplobatrachus rugulosus 248 94 342

Kaloula pulchra 164 48 212

Table 4.  Native and Philippine-invaded range occurrence records used to calibrate the ecological niche models.
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niches. The observed niche changes, reflecting niche conservatism/shifts and environmental non-equilibrium, 
likely caused the observed poor reciprocal transferability of native and Philippine EMs and their constituent 
ENMs. Our findings support previous studies showing that ENMs calibrated with data from the combined native 
and invaded ranges, where available, will be most useful in informing invasion risk assessments22,23,35,41,66. In light 
of the implications of niche shifts and environmental non-equilibrium for ENM predictions, we suggest research-
ers and managers routinely incorporate quantification of niche changes into ecological niche modelling experi-
ments23,27,42,47,48. In addition, the fact that the majority of alien species’ invasions are incomplete23,25,41,43, such as 
the case of the four alien amphibian species studied here, emphasizes the need for researchers and managers to 
regularly reassess niche changes in alien species’ invaded ranges as a species’ invasion progress33. Consequentially, 
ENMs must be regularly recalibrated with updated data to reflect concurrent changes in the species’ realized cli-
matic niche in the invaded range33,40,58.

Materials and Methods
Species occurrence and environmental data.  Occurrence records of the four alien amphibian spe-
cies in the Philippines and the species’ native ranges were obtained from the Global Biodiversity Information 
Facility (GBIF)67, collections of local natural history institutions, scientific publications, expert observations, and 
field surveys conducted by the authors (see Supplementary Methods)57. The pooled dataset was cleaned man-
ually so that only high-quality records were used in the analysis; records conforming to these set of conditions 
were retained: (1) georeferenced; (2) with year of record; (3) with “county” or “municipality” locality data (sensu 
Darwin Core Task Group68); (4) inland coordinates and within the ascribed locality (up to the third administra-
tive level [admin2] of the Global Administrative Areas v3.6 [https://gadm.org/]) – assessed in InfoXY v.2 tool of 
speciesLink (http://splink.cria.org.br/); (5) and inside the known native range of the species, as depicted by spe-
cies range maps69–72. To minimize spatial sampling bias, occurrence records were thinned by subsampling records 
to a resolution of one record per 5 km2 (2.5 arc-min)73,74. Initial visual assessment of the spatial distribution of the 
records of R. marina showed sampling bias across its native range, where records were denser in Central America 
relative to other parts of its range. Thus, we further reduced native-range records of R. marina to a resolution of 
10 km2 (5 arc-min)33. We initially planned to omit occurrence data outside the years 1970–2000, to align with the 
temporal reference of the environmental variables (described below)75. However, this would have resulted in the 
omission of a considerable proportion of collected occurrence data (~60–100%), especially data on recent range 
expansions of the species in the Philippines (K. pulchra was first recorded in the 2000s), and would inevitably 
negatively affect our analysis of realized climatic niche changes and our modelling of species’ ecological niches. In 
addition, after our extensive data cleaning process, the final thinned dataset only contained data recorded from 
1950 to present (Table 4).

Environmental variables.  Extreme temperature and precipitation can negatively affect amphibian devel-
opment (e.g., tadpole and egg developmental rates/morbidity), ecophysiology (e.g., locomotor performance, 
communication, sensory systems), and energy acquisition and allocation76–78. Temperature and precipitation 
seasonality alter growth, reproductive cycles, phenology, and prey-predator dynamics79–82. At a broad geograph-
ical scale, precipitation and temperature extremes and seasonality influence amphibian biogeography (popu-
lation declines and extirpations, shifts in geographic distribution, species extinction)83–85. Thus, in quantifying 
realized climatic niche changes and ecological niche modelling, we used environmental variables representing a 
combination of means, extremes, and seasonality that are known to be ecologically relevant to amphibians and 
are not highly inter-correlated (Pearson’s correlation coefficient |r | ≤ 0.7)86: annual mean temperature (bio 1), 
temperature seasonality (bio 4), maximum temperature of the warmest month (bio 5), minimum temperature 
of the coldest month (bio 6), annual precipitation (bio 12), precipitation seasonality (bio 15), precipitation of the 
wettest quarter (bio 16), and precipitation of the driest quarter (bio 17). Bioclimatic variables were obtained from 
WorldClim v.2, and represent averages of monthly minimum, mean, and maximum temperature and of precipi-
tation for 1970-200075 with a spatial resolution of 5 km2 (2.5 arc-minutes).

Quantifying niche changes.  We quantified the native and Philippine niches of the four alien amphibian 
species using the COUE framework47 and the n-dimensional hypervolume framework49,50. We then tested for 
niche equivalency and similarity between the native and Philippine niches of the species48,51. Finally, we assessed 
for niche conservatism and environmental equilibrium based on findings of the methodological frameworks and 
niche equivalency and similarity tests.

COUE Approach.  Using the COUE framework47, we quantified the species’ native and Philippine niches in 
weighted PC biplots and decomposed climatic changes in species’ niche using a unified set of metrics27,47. We 
analyzed this using the ecospat package87 in R v.3.688. We first transformed each species’ global environmental 
space based on the eight environmental variables described above, onto a biplot defined by the first two PCs of a 
PCA. We calibrated the PCA using pooled environmental backgrounds from the species’ native and Philippine 
ranges. We defined ecologically relevant environmental backgrounds following the suggestions of Guisan et al.47. 
In the native range, environmental backgrounds include all the biomes89 inhabited by the species (i.e., biomes 
that are intersected by the species’ native range69–72). In the Philippines, environmental backgrounds included 
the whole of the Philippines. The first two PCs captured ~71–76% of the variation in the environmental data. The 
correlations of environmental variables with the PCs are shown in Supplementary Table S1 (online). We then 
divided the species’ global environmental space, as depicted in a PC biplot, into a grid consisting of 100 ×100 
cells, bounded by the minimum and maximum values in the environmental background. Lastly, we projected the 
scores of the species occurrence records onto the gridded environmental space and grouped the scores per grid 
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cell. We applied a Gaussian kernel density function with a standard bandwidth to estimate the smoothed density 
of occurrences in each cell of the gridded environmental space90. We further quantified the species realized cli-
matic niche using alternative biplots from combinations of the first four (for H. erythraea) to five (for R. marina, 
H. rugulosus, and K. pulchra) PCs (see Supplementary Figs. S6–9).

We visually examined the niches’ occurrence densities in gridded environmental space, as depicted in a PC 
biplot, and categorized their topological interaction into five possible patterns58: (1) complete to near-complete 
overlap of the two niches; (2) the Philippine niche is a subset of the native niche; (3) native niche is a subset of the 
Philippine niche; (4) partial overlap between the two niches; or (5) completely disjunct niches. We decomposed 
niche changes in analogous environmental space into niche stability, niche expansion, and niche unfilling27,47. We 
calculated these indices in I75 (to remove marginal climates resulting from kernel smoothing) and I100 of environ-
ments available in each range. These indices are not confounded by non-analogous climates, making measured 
expansion indicative of changes in the realized niche27. Thus, we also visually assessed niche unfilling and expan-
sion in non-analogous environmental space.

Niche overlap, equivalency, and similarity.  We quantified the overlap between each species’ native and 
Philippine niches using Schoener’s index D of niche overlap91, which estimates the overall similarity between the 
two niches over the global environmental space51. Schoener’s D ranges from zero (no overlap) to one (complete 
overlap)51,91]. We quantified niche conservatism by testing estimates of D under two alternative hypotheses, rep-
resenting two extremes across a spectrum of niche conservatism: (1) niche equivalency which determines whether 
realized niches of two entities in two geographical ranges are conserved in the strictest sense (i.e., whether 
observed niche overlap is effectively indistinguishable when randomly re-allocating pooled occurrences of both 
niches between them), and (2) niche similarity, which estimates whether the realized niche occupied in one range 
is more similar to the niche occupied in the other range than randomly generated niches48,51

For each species, we tested the hypothesis of niche equivalency by simulating two niches based on randomly 
permuted pooled occurrence records of the native and Philippine niches (the simulated niches maintain the same 
number of occurrence records as that observed between the native and Philippine niches). The overlap between 
the two simulated niches was then estimated using Schoener’s D. This process was repeated 1,000 times to gener-
ate a null distribution of niche overlap values of simulated randomly permuted niches and to confidently reject/
accept the hypothesis of niche conservatism. We inferred niche conservatism if the observed niche overlap was 
greater than 95% of null distribution values (using the “greater” test of ecospat.niche.equivalency.test function in 
the ecospat package, which is a one-tailed test). In contrast, observed values outside the density of 95% of null 
distributions suggest a significant difference in niches48,51.

We tested for niche similarity by simulating two niches based on occurrence densities with randomly placed 
centroids in the environmental background using two randomization tests: (1) centroids randomly placed in both 
the native and Philippine range (N ↔ P) and (2) centroid randomly placed in the Philippine-invaded range only 
(N → P)48,51. The simulated niches maintain the same number of occurrence records as that observed between the 
native and Philippine niches. This process was repeated 1,000 times, randomly shifting the centroid of simulated 
occurrence densities in each repeat, to generate a null distribution of niche overlap values of simulated random 
niches and to confidently reject/accept the hypothesis of niche conservatism. We inferred niche conservatism if 
the observed overlap value was greater than 95% of null distribution values (using the “greater” test of ecospat.
niche.similarity.test function in the ecospat package)48,51.

n-dimensional hypervolume framework.  We analysed the multidimensional hypervolumes of species’ 
native and Philippine niches using the hypervolume package92 in R v.3.688. Using the Gaussian kernel density 
estimation method, we generated multidimensional hypervolumes of species native and Philippine niches from 
homogeneously distributed random records. These random records were derived from the Gaussian kernel 
density estimates of the distributions of species’ occurrence records in multidimensional environmental space 
comprising of the same four (for H. erythraea) to five (for R. marina, H. rugulosus, and K. pulchra) PCs used in 
the COUE framework, which collectively capture ~99% of variation in environmental data. The bandwidth for 
Gaussian kernel density estimates was estimated separately for each species niche using the Silverman band-
width estimator (see Supplementary Table S3)89. The hypervolumes of the species’ native and Philippine niches 
were compared using a similarity index (Jaccard) and niche changes were decomposed using hypervolume dis-
tance (minimum distance, centroid distance) and intersection (volume of the intersection, the unique fraction 
of hypervolumes) metrics93. We calculated the hypervolume metrics and similarity index in H75 (to remove mar-
ginal climates resulting from kernel smoothing) and in H100.

Ecological niche modelling.  We modelled the realized climatic niches of the four alien amphibian spe-
cies using eight statistical approaches: (1) Generalized Additive Model (GAM)94, (2) Generalized Linear Model 
(GLM)95, (3) Multivariate Adaptive Regression Splines (MARS)96; a classification technique – (4) Classification 
and Regression Trees (CART)97; machine learning techniques –(5) Artificial Neural Networks (ANN)98, (6) 
Random Forests (RF)99, (7) Boosted Regression Trees (BRT)100, and (8) Maximum Entropy (Maxent)101. We cal-
ibrated ENMs with the same eight environmental variables used to quantify the realized climatic niche changes 
and occurrence records from the species’ (1) Philippine-invaded range, (2) native range, and (3) combined ranges. 
We tested for environmental variable clamping to identify locations where values of variables were outside the 
range used for calibrating ENMs – predictions in these areas are uncertain. This was done by projecting values of 
environmental variables from one range to another (e.g., the Philippines to species’ native range). Barbet-Massin 
et al.102 laid-out optimal settings in generating and weighting pseudo-absences for different statistical techniques 
used in ENM. Here, we generated and weighted pseudo-absences to yield good to optimal ENM performance 
across the eight statistical techniques102. We generated pseudo-absence data by randomly sampling 10,000 
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background points from areas where the species has no presence records and across all the biomes89 inhabited 
by the species (same environmental backgrounds used in COUE framework). For each statistical approach, we 
equally weighted the presences and pseudo-absences used to calibrate the ENMs by setting a neutral (0.5) preva-
lence. We conducted the analysis using the biomod2 package103,104 in R v.3.688. We ran all ENMs with the default 
parameters of the statistical techniques.

Prior to modelling, we randomly split each presence/pseudo-absence dataset (datasets for native, Philippine, 
and combined range ENMs) into two parts: 70% for training and 30% for evaluation (Eeval). By assigning a specific 
subset for evaluation, the EMs (discussed below) and its constituent ENMs were evaluated using the same data, 
ensuring a fair evaluation between the performances of EMs compared to ENMs104. For each species, we further 
sub-sampled the training data subset randomly to 70% training and 30% testing. This was repeated 10 times to 
account for uncertainty due to random subset selection, resulting in 10 random sub-samples of training-testing 
data. We modelled each sub-sample of training-testing data using the eight statistical approaches described above, 
generating 80 Philippine ENMs, 80 native ENMs, and 80 combined ENMs per species.

To evaluate predictive performance, we projected the ENMs to their respective Eeval. To evaluate reciprocal 
transferability, we projected the Philippine ENMs to the entire presence/pseudo-absence dataset in the native 
range (Enat), native ENMs to the entire presence/pseudo-absence dataset in the Philippine-invaded range (Einv), 
and combined ENMs to both Enat and Einv. We then computed for the AUC105 and the TSS106. We interpreted the 
AUC values based on Swets et al.107, where values >0.90 = excellent, >0.80–0.90 = good, >0.70–0.80 =fair, 
>0.60–0.70 = poor, and >0.50–0.60 = fail. Meanwhile, TSS values range from –1 to 1, where 1 indicates perfect 
agreement and values zero or less indicate performance no better than random106.

For each species, we combined each set of ENMs (80 Philippine ENMs; 80 native ENMs; 80 combined ENMs) 
to build a consensus ensemble model where each ENM was weighted by its TSS scores (i.e., better performing 
models contribute more to the EM)56,104. We then evaluated the EMs using the evaluation datasets used in eval-
uating their constituent ENMs (Eeval and Enat for Philippine EMs; Eeval and Einv for native EMs; Eeval, Einv, and Enat 
for combined range EMs). To predict species’ potential distributions, we projected species’ EMs to the Philippines 
and their respective native ranges.

Data availability
All data was gathered from publicly available sources and are available in the online registry of the Global 
Biodiversity Information Facility (HerpWatch Pilipinas, Inc.;57 see Supplementary Methods).
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