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Abstract: Statins and bisphosphonates are increasingly recognized as anti-cancer drugs, especially
because of their cholesterol-lowering properties. However, these drugs act differently on various
types of cancers. Thus, the aim of this study was to compare the effects of statins and bisphosphonates
on the metabolism (NADP+/NADPH-relation) of highly proliferative tumor cell lines from different
origins (PC-3 prostate carcinoma, MDA-MB-231 breast cancer, U-2 OS osteosarcoma) versus cells
with a slower proliferation rate like MG-63 osteosarcoma cells. Global gene expression analysis
revealed that after 6 days of treatment with pharmacologic doses of the statin simvastatin and of the
bisphosphonate ibandronate, simvastatin regulated more than twice as many genes as ibandronate,
including many genes associated with cell cycle progression. Upregulation of starvation-markers
and a reduction of metabolism and associated NADPH production, an increase in autophagy,
and a concomitant downregulation of H3K27 methylation was most significant in the fast-growing
cancer cell lines. This study provides possible explanations for clinical observations indicating a higher
sensitivity of rapidly proliferating tumors to statins and bisphosphonates.
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1. Introduction

As previously reported [1], evidence from both in vitro and in vivo data has demonstrated that
drugs such as statins and bisphosphonates targeting the mevalonic acid pathway and consequently
the synthesis of isoprenoids and cholesterol exert, beyond their lipid-lowering effects, pleiotropic
actions, including immune regulation [1,2] and cancer prevention [3,4] as well as epigenetic effects [5].
However, observed differences in the anti-cancer potency of these drugs might be related to cell type
specific inhibitory activities from these drugs on uptake of glucose and other nutrients such as essential
amino acids [6–9].

The anti-tumorigenic effects of statins vary between different types of cancer: the amelioration
of breast cancer prognosis was extensively reviewed [10]; survival or recurrence by statin was
documented in one study with 146,326 participants [11] and other studies with 75,684 [12] or
124,669 [13] women. There is also data available on the beneficial effect of bisphosphonates for
the treatment of breast cancer [14]. The curative effect of bisphosphonates on breast cancer is also
mentioned in recent publications [15] discussing potential options for the treatment of lysyl oxidase
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positive, estrogen receptor negative (LOX+, ER−) breast cancer patients. In prostate cancer patients,
a statin-associated reduction of mortality has been documented in more than 100,000 cases [16].
However, the treatment success also appears to be influenced by mitochondrial DNA mutations and
associated metabolic consequences [17] and non-responders to statin-therapy with persistent high
serum cholesterol still have a higher cancer risk [18].

Epidemiological evidence projecting statins and/or bisphosphonates as anticancer agents is
conflicting, which largely depends on the type of cancer in question [19,20] and, to the best of
our knowledge, no epidemiological data exist on the application of these drugs in osteosarcomas.
Based on the working hypothesis, that statins and bisphosphonate-responses could be linked with
the basic proliferation rate of respective tumor cells, the aim of this study was to elucidate underlying
mechanisms by combining metabolic analyses with transcriptomic and complementary immune
blot analyses.

2. Results

2.1. Cell Cycle

Mevalonate-deprivation related cell-cycle arrest and cell quiescence was first published more than
25 years ago [21]. A quiescence marker resulting from this pioneering study is the downregulation of
the DNA polymerase A1 (POLA1), which we also found downregulated in our study (Table 1).

Table 1. Fold downregulation of DNA polymerase A1 (POLA1).

Cell-line Simvastatin Ibandronate

PC-3 −2.88 −3.15
MDA-MB-231 −2.28 −1.33

U-2 OS −1.24 −1.70
MG-63 −1.13 −1.52

Results of transcriptomic analyses show downregulation of the DNA polymerase A1 (POLA1). Fold downregulation
of, for example, −2.88 means a reduction of gene expression down to 35%, −3.15 to 32%, −2.28 down to 35%,
and 1.70 to 59%. Regulations of +/− 1.5 are not significant.

This is confirmed by the common feature of seven best-regulated genes, which showed a more
than 5-fold reduction in at least two cell lines (upregulation upregulation of sestrin 2 SESN2 and
downregulation of topoisomerase 2A TOP2A, thymidilate synthase TYMS, anillin actin binding protein
ANLN, SESN2, DNA damage inducible transcript 4 DDIT4, and cyclin A2 CCNA2, cyclin B1 CCNB1
referred to a role in regulation of “cell cycle”). (Supplementary Table S1: Amount of “PubMed”—results
with the seven best-regulated genes plus “cell cycle”). Based on these results, we concluded that in
tumor cells statins as well as bisphosphonates primarily induce cell cycle arrest (Figure 1). Indeed,
simvastatin induced cell cycle arrest in G1 in PC-3 prostate carcinoma, MDA-MB-231 breast cancer,
and U-2 osteosarcoma (OS) cells (Figure 1A–C), whereas in MG-63 osteoblast-like cells cell cycle
arrest was increasingly observed in the S-phase. Furthermore, MG-63 was the only cell line where an
ibandronate-induced enrichment in the G2-phase could be observed (Figure 1D).

In agreement with the cell-cycle effects, a remarkable reduction in the mRNA expression of the
S-phase associated cyclins CCNA2 and CCNB1 (Tables 2 and 3) was observed, thus confirming previous
results with atorvastatin [22].

The stem cell-related forkhead box M1 FOXM1 gene, which is known for its activation in the G2/M
phase [23,24], is significantly downregulated in ibandronate-treated as well as in simvastatin-treated
PC-3 and MDA-MB-231 cells. In MG-63 and U-2 OS cells, this regulation was less prominent, probably
because simvastatin induced an S-phase arrest and ibandronate induced rather a G2 arrest in MG-63
cells and an S-phase arrest in U-2 OS cells, despite a G1 arrest upon simvastatin treatment in this cell
line (Table 4).
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Figure 1. The distribution of cell cycle phases was analyzed by flow cytometry in PC-3 prostate cancer
(A); MDA-MB-231 breast cancer (B); U-2 osteosarcoma (C) and MG-63 osteoblast-like (D) cells.

Table 2. Fold downregulation of cyclin A2 (CCNA2).

CCNA2 Simvastatin Ibandronate

PC-3 −12.71 −2.47
MDA-MB-231 −15.84 −1.05

U-2 OS −1.16 −1.13
MG-63 −1.12 −1.03

Results of transcriptomic analyses show downregulation of the cell cycle regulator CCNA2. Fold downregulation
of, for example, −12.71 means a reduction of gene expression down to 8%, −15 to 6.3%, and −2.47 down to 40%.
Regulations of +/− 1.5 are considered as not significant.

Table 3. Fold downregulation of cyclin B1 CCNB1.

CCNB1 Simvastatin Ibandronate

PC-3 −6.68 −1.87
MDA-MB-231 −9.2 −1.1

U-2 OS −1.02 −1.62
MG-63 −1.2 −1.56

Results of transcriptomic analyses show downregulation of the cell cycle regulator CCNB1. Fold downregulation of,
for example, −6.68 means a reduction of gene expression down to 15%, −9.2 to 11%. Regulations of +/− 1.5 are
considered as not significant.

Table 4. Fold downregulation of forkhead box M1 FOXM1.

FOXM1 Simvastatin Ibandronate

PC-3 −5.25 −2.43
MDA-MB-231 −4.00 1.07

U-2 OS −1.14 −1.13
MG-63 −1.22 −1.02

Results of transcriptomic analyses show downregulation of the G2/M phase regulator FOXM1. Fold downregulation
of, for example, −5.25 means a reduction of gene expression down to 19%, −2.43 to 41%, and −4 to 25%. Regulations
of +/− 1.5 are not significant.
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This observation could be partially explained by the fact that the retinoblastoma associated RB
transcriptional corepressor 1 (RB1), which plays a critical role for the exit from the G1 to the S-phase,
is mutated in PC-3 [25] and MDA-MB-231 cells [26].

2.2. Influence of Statins and Bisphosphonates on NADP(H) Production

NADPH is involved in many metabolic reactions. Statins act as inhibitors of the HMG-CoA
reductase, which is itself a NAD(P)H dependent enzyme. As we have shown before, simvastatin
and ibandronate downregulated the proliferation of epithelial and bone related mesenchymal cancer
cells [5]. Building on these results, we were interested if these drugs influence the cellular levels
of NADPH and NADP+ or the ratio between these two metabolites. Therefore, we measured the
concentrations of NADPH and NADP+ as well as the ratio between NADPH/NADP+ (Table 5).

Table 5. Drug-induced increase of NADP+ (in relation to NADPH) is associated with doubling time.

Cell Line Used Conc. (EC50) Simvastatin NADP+/NADPH Vs. Co Doubling Time Citation

PC-3 1 µM 1.54 13.2 h [27]
MDA-MB-231 0.5 µM 2.42 24 h [28]

U-2 OS 3 µM 2.43 28 h [29]
MG-63 10 µM 4.56 38 h [30]

Ibandronate

PC-3 50 µM 1.07 13.2 h [27]
MDA-MB-231 50 µM 0.95 24 h [28]

U-2 OS 50 µM 2.71 28 h [29]
MG-63 50 µM 3.57 38 h [30]

The weaker metabolic effect of ibandronate as compared to simvastatin in all cell lines except
MG-63 could be attributed to the number of genes regulated by this bisphosphonate (Table 6).

Table 6. Drug-induced gene regulation, based on evaluation of respective gene-chips.

Cell Line—Regulation Simvastatin Ibandronate Overlap

MDA—upregulation 516 35 4
MDA—downregulation 1450 60 26

MG63—upregulation 81 278 37
MG63—downregulation 252 574 123

PC3—upregulation 572 290 216
PC3—downregulation 637 334 228
U2OS—upregulation 322 320 78

U2OS—downregulation 74 175 21

Results of transcriptomic Venn-diagram analyses showing the number of genes that were either regulated with
simvastatin or by ibandronate or by both drugs, which is termed as “overlap”.

The effects of ibandronate and simvastatin on NADP+ and NADPH levels in highly proliferative
tumor cells like the epithelial PC-3 and MDA-MB-231 cell-lines as well as the osteosarcoma U-2 OS
cell-line, and in slower proliferating MG-63 osteosarcoma cells after treatment for 72 hours is shown
in Figure 2.

In the epithelial tumor cells PC-3 and MDA-MB231, NADP+ (Figure 2A) and NADPH (Figure 2B)
concentrations decreased significantly after treatment with simvastatin. However, the effect was clearly
milder after exposure to ibandronate. Of note, there was no significant difference in treatment response
between simvastatin and ibandronate in the osteosarcoma cell lines showing a general reduction after
72 h. In the drug responsive cell-lines both, NADP+ and NADPH concentrations were decreased by
more than 60%. Simvastatin significantly increased the NADP+/NADPH ratio in the fast-growing
epithelial derived cell lines (Figure 2C) and both drugs in the bone related mesenchymal cell lines,
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thus confirming a direct antimetabolic effect of bisphosphonates in mesenchymal cell lines such as
U-2 OS [31]. Recent data on the influence of cell cycle regulators (and their stimulation by oncogenes
such as RAS) on metabolism [32,33] underline a close connection between energy metabolism and
proliferation. However, the role of enzymes such as NADPH oxidase NOX4 (Table 7) and NOS (Table 8)
in regulating the equilibrium between NADPH and NADP+ is rather related to the production of
reactive oxygen species in resting cells.
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Although the specific regulation of the NADPH-oxidase NOX4 (Table 7), which is known for its 
role in the production of reactive oxygen species in mesenchymal cells, could provide some 
explanation, there are still open questions relating to the relatively low basal expression of NOX4 
(minus 50% as compared to the cell cycle genes mentioned in Figure 1A–D) in U-2 OS cells down to 
31%.  

Figure 2. Effect of statin and bisphosphonate on NADP(H) production. Cell lines were treated with
EC50-associated concentrations of simvastatin (Sim, 1 µM for PC3, 0.5 µM for MDA-MB-231, 3 µM for
U-2 OS, and 10 µM for MG-63) or ibandronate (Ibn, 50 µM for all cell lines) for 72 h. Then, concentrations
of NADP+ (A) and NADPH (B) were analyzed using the NADP/NADPH Glo Assay (Promega) and
the NADPH/ NADP+ ratio was calculated (C). The “fold”–ratio is given on the y-axis. Bars represent
the mean ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001, control (Con) vs. treatment; † p < 0.05, †† p < 0.01,
††† p < 0.001, Ibn vs. Sim; n = 4.

Table 7. Fold regulation of NADPH-oxidase NOX4.

NOX4 Simvastatin Ibandronate

PC-3 1.53 1.22
MDA-MB-231 1.52 −1.07

U-2 OS −3.22 1.83
MG-63 −1.29 1.11

Results of transcriptomic analyses show downregulation of the NADPH-oxidase NOX4. Fold downregulation of,
for example, −3.22 means a reduction of gene expression down to 31%, −1.29 to 77%.

Although the specific regulation of the NADPH-oxidase NOX4 (Table 7), which is known for its
role in the production of reactive oxygen species in mesenchymal cells, could provide some explanation,
there are still open questions relating to the relatively low basal expression of NOX4 (minus 50% as
compared to the cell cycle genes mentioned in Figure 1A–D) in U-2 OS cells down to 31%.

However, there is a reciprocal relationship of NOX4 with endothelial nitric oxide synthase NOS1,
which showed a 3-fold increase in simvastatin-treated U-2 OS cells (Table 8). Considering an association
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with uncoupling and matrix protein expression, which includes a role of sestrin 2 [34], this could
provide a link towards the above-mentioned impairment of glucose metabolism.

Table 8. Fold regulation of nitric oxide synthase NOS1.

NOS1 Simvastatin Ibandronate

PC-3 −1.18 1.22
MDA-MB-231 1.08 −1.07

U-2 OS 3.56 1.83
MG-63 1.19 1.11

Results of transcriptomic analyses shows upregulation of the endothelial nitric oxide synthase NOS1 in U-2 OS cells.
Regulations of +/− 1.5 are not significant.

Prenyl (decaprenyl) diphosphate synthase subunit 1 PDSS1, a critical enzyme for the
synthesis of coenzyme Q [35] and for the respective NADPH-producing respiratory chain pathway,
was downregulated in all treated cell lines (Table 9).

Table 9. Fold downregulation of prenyl (decaprenyl) diphosphate synthase subunit 1 PDSS1.

PDSS1 Simvastatin Ibandronate

PC-3 −2.43 −2.65
MDA-MB-231 −2.61 −1.03

U-2 OS −1.31 1.00
MG-63 −1.07 −1.15

Results of transcriptomic analyses show downregulation of the Prenyl (decaprenyl) diphosphate synthase subunit 1
PDSS1. Fold downregulation of, for example, −2.43 means a reduction of gene expression down to 41%, −2.65 or
−2.61 to 38%.

2.3. Autophagy

Autophagy is known to act as a temporary survival mechanism in response to stress-induced
damage of the endoplasmic reticulum (ER) and/or nutrient starvation [36].

The respective gene network, which is responsible for phagosome-formation and mitophagy,
has been analyzed (Figure 3). Being key molecules in the autophagy-signaling cascade, DDIT4 and
SESN2 signal damage of the ER whereas nutrient starvation is accompanied by stimulation of ras
homolog family member B RHOB, which initiates a reduction of energy-consuming mitochondria
(mitophagy) and recycling processes of organelles, which are lysed during autophagy. DDIT4 and
SESN2 were significantly upregulated by simvastatin and ibandronate in all treated cell lines, except
for the MDA-MB-231 cells, where DDIT4 was not upregulated by ibandronate. SESN2 is also known
for its antioxidative function and it promotes cell survival by downregulating apoptosis and increasing
autophagy via inhibition of mTOR signaling [37]. A coincidence with stimulation of RHOB, which
is known to be upregulated by nutrient shortage, could indicate an increase in protein degradation
and recycling through an endolysosomal pathway [38], especially in simvastatin-treated PC-3 and
MDA-MB-231 cells (Figure 3A).

We also detected a concurrent upregulation of phagosome-associated markers such as the
autophagy initiating kinase ULK1 (unc-51 like autophagy activating kinase 1, also known as ATG1),
which was upregulated in all investigated cell lines (Figure 3). ULK1 plays a key role in
an autophagy-associated protein complex, which is under control of mTOR [39,40]. A similar pattern
of upregulation was found for LC3 (also known as microtubule associated protein 1 light chain 3 alpha,
MAP1LC3B), which is responsible for the autophagosome-lysosome-fusion. LC3 is also upregulated
by inhibitors of the histone methylase EZH2 [41]. EZH2 is increasingly recognized as a target for the
treatment of various neoplastic diseases, especially those with RAS-mutations [42–44]. Considering
the fact that 3-hydroxy-3-methylglutaryl-CoA (HMGCR) reductase is a direct target of statins and is
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immediately situated at the endoplasmic reticulum, it appears possible that inhibition of HMGCR
causes ER-stress which is known to cause autophagy [41].

Int. J. Mol. Sci. 2017, 18, 1982  7 of 18 

 

degradation and recycling through an endolysosomal pathway [38], especially in 
simvastatin-treated PC-3 and MDA-MB-231 cells (Figure 3A). 

We also detected a concurrent upregulation of phagosome-associated markers such as the 
autophagy initiating kinase ULK1 (unc-51 like autophagy activating kinase 1, also known as ATG1), 
which was upregulated in all investigated cell lines (Figure 3). ULK1 plays a key role in an 
autophagy-associated protein complex, which is under control of mTOR [39,40]. A similar pattern of 
upregulation was found for LC3 (also known as microtubule associated protein 1 light chain 3 alpha, 
MAP1LC3B), which is responsible for the autophagosome-lysosome-fusion. LC3 is also upregulated 
by inhibitors of the histone methylase EZH2 [41]. EZH2 is increasingly recognized as a target for the 
treatment of various neoplastic diseases, especially those with RAS-mutations [42–44]. Considering 
the fact that 3-hydroxy-3-methylglutaryl-CoA (HMGCR) reductase is a direct target of statins and is 
immediately situated at the endoplasmic reticulum, it appears possible that inhibition of HMGCR 
causes ER-stress which is known to cause autophagy [41]. 

 

Figure 3. Results of transcriptomic analyses of autophagy-associated genes from PC-3 (A); 
MDA-MB-231 (B); U-2 OS (C) and MG-63 (D) cells using the Pathvisio tool. Upregulated genes are 
red, downregulated genes are green. ER, endoplasmic reticulum. 

Interestingly, the mitophagy marker PARK2 [45] is upregulated in the cell lines with epithelial 
background and weakly in the fast-growing mesenchymal U-2 OS cell line, suggesting mitophagy in 
these cells. 

Only some genes of the autophagy-associated ATG–family were significantly regulated (Figure 
3A–D), but the high basal expression (7% to 17% of the 18S ribosomal gene) of some genes of this 
family suggests that the abundant expression of these factors would be sufficient to support 
non-canonical autophagy. 

Considering the regulatory influence of microRNAs on autophagy [46], we checked the 
expression levels of microRNAs, where the extent of regulation is associated with cell type. Table 10 
shows the regulation of MIR21, but a significant stimulation was only observable in 
ibandronate-treated U-2 OS cells. 

Figure 3. Results of transcriptomic analyses of autophagy-associated genes from PC-3 (A);
MDA-MB-231 (B); U-2 OS (C) and MG-63 (D) cells using the Pathvisio tool. Upregulated genes
are red, downregulated genes are green. ER, endoplasmic reticulum.

Interestingly, the mitophagy marker PARK2 [45] is upregulated in the cell lines with epithelial
background and weakly in the fast-growing mesenchymal U-2 OS cell line, suggesting mitophagy in
these cells.

Only some genes of the autophagy-associated ATG–family were significantly regulated
(Figure 3A–D), but the high basal expression (7% to 17% of the 18S ribosomal gene) of some genes
of this family suggests that the abundant expression of these factors would be sufficient to support
non-canonical autophagy.

Considering the regulatory influence of microRNAs on autophagy [46], we checked the expression
levels of microRNAs, where the extent of regulation is associated with cell type. Table 10 shows the
regulation of MIR21, but a significant stimulation was only observable in ibandronate-treated U-2 OS cells.

A minus 3-fold (=minus 70%) ibandronate-induced downregulation of MIR21 in the U-2 OS
osteosarcoma cells might be associated with the known drug-induced RAS-inactivation in this cell
line [47].

Table 10. Fold upregulation of MIR21.

MIR21 Simvastatin Ibandronate

PC-3 1.3 −1.2
MDA-MB-231 1.1 1.0

U-2 OS 1.0 3.2
MG-63 1.1 1.0

Results of transcriptomic analyses shows upregulation of the MIR21 in U-2 OS cells. Regulations of +/−1.5 are
not significant.
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2.4. Histone Demethylation as a Sign of Starvation

Recently, it has been demonstrated that statins downregulate the histone methylase EZH2 [48] and
promote autophagy as a result of disturbed uptake of the amino acid methionine [41]. Downregulation
or inhibition of EZH2 decreases histone-3 methylation on lysine 27 and could be associated with the
downregulated cell cycle activity (see also Figure 1) [49,50]. The genome wide expression analysis
in Table 11 shows that treatment of PC-3 and MDA-MB-231 cells resulted in a more prominent
downregulation of this demethylase by simvastatin, while ibandronate only weakly influenced their
expression but no regulation was suggested in both other cell lines.

Table 11. Fold downregulation of the histone methylase EZH2.

EZH2 Simvastatin Ibandronate

PC-3 −1.9 −1.3
MDA-MB-231 −2.2 −1.6

U-2 OS −1.2 −1.1
MG-63 −1.2 −1.1

Results of transcriptomic analyses show downregulation of the histone methylase EZH2. Fold downregulation of,
for example, −2 means a reduction of gene expression down to 50%. Regulations of +/−1.5 are not significant.

Although the expression of the H3K27me3 methylase EZH2 is only moderately suppressed
by simvastatin or ibandronate, a general upregulation of the histone H3 lysine 9 and histone H3
lysine 27 demethylase KDM7A (also known as JHDM1D, Table 12), which is known to be induced
during nutrient starvation, was observed [51]. This indicates a reduction of H3K27me3 methylation
after inhibition of the mevalonate pathway in the analyzed cell lines. This confirms the possible
association with starvation and autophagy, because similar observations were reported to be associated
with hypoxia [52]. Quantitative reverse transcription real time polymerase chain reaction (RT-qPCR)
confirmed the GeneChip data as shown in Figure 4. Moreover, we could confirm a stronger stimulation
in PC-3 and U-2 OS and a weaker regulation in MDA-MB-231 and MG-63 cells.

Table 12. Fold upregulation of histone demethylase KDM7A.

KDM7A Simvastatin Ibandronate

PC-3 5.6 3.8
MDA-MB-231 2.0 1.0

U-2 OS 3.2 4.0
MG-63 1.5 1.7

Results of transcriptomic analyses show upregulation of the histone methylase KDM7A. Fold downregulation of,
for example, 2 means an increase of gene expression up to 200%. Regulations of +/−1.5 are not significant.

Immunoblots confirmed a regulation of the histone demethylase on the protein level (Figure 5A).
The Jumonji histone demethylases (Jmj-KDM) belong to an important class of transcriptional
coactivators because they erase the repressive marks H3K9me2/1, H3K27me2/1, and H4K20 me1. Some
members of this family were identified to play a tumor-suppressive role through the reinforcement of
TP53-driven growth arrest and apoptosis [53], thus representing therapeutic targets [54].

Based on this knowledge, our interest was focused on the protein expressions of the targets from
such histone demethylases, namely methylated histone K27 (Figure 5B), which play a critical role in
the regulation of developmental genes from cancer cells by stabilizing bivalent chromatin [55].

Downregulations to about 80% by simvastatin was observed for histone K27 in PC-3 cells,
in MDA-MB-231, U-2 OS, and MG-63 cells the ibandronate-associated downregulation was about 50%
(Figure 5B).
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Figure 5. The effect of a simvastatin and ibandronate (treatment for 6 days with indicated EC50
concentrations as shown in Table 5) on the protein expression of the histone demethylase KDM7A is
shown. The photographs show KDM7A (95 kD) in the upper lanes and the actin ACTA1 (42 kD) in
the lower lanes for comparisons. “Con” refers to untreated control cells, “Ibn” to ibandronate-treated
cells, and “Sim” to simvastatin-treated cells. Chemo-luminescence for the analysis of protein bands
was measured with an image acquisition. Results of chemiluminescence measurements are given as
means of three immunoblots.

3. Discussion

In our previous studies, we demonstrated that statins and bisphosphonates suppress the
one-carbon metabolism and induce epigenetic alterations in tumor cells [5]. Statins act through
inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) by contrast to the bisphosphonates,
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which act several steps downstream in this pathway as inhibitors of farnesyltransferase. This leads to
an accumulation of isopentenyl-pyrophosphate (IPP), which also acts as a genoprotective agent and
thus could be responsible for a weaker effect on gene-regulation [56], as shown in Table 6.

Based on these results, in this study we studied the effect of such mevalonate pathway inhibitors
on metabolic processes. It was a challenge to find out the background of drug-responses of cancer
cell-types, which are characterized by remarkable differences not only in their growth rates but
also in their epithelial or mesenchymal background. A key metabolite related to cell proliferation
rate is NADPH, which is essential for the synthesis of dTMP and therefore for DNA synthesis and
replication during cell division and replication. For synthesis of dTMP, it is generated by an enzymatic
reaction involving three enzymes (thymidylate synthetase (TYMS), dihydrofolate reductase (DHFR),
serine hydroxymethyltransferase 1 and 2 (SHMT1/2) where DHFR needs NADPH to provide
5,10-methylene-THF. Importantly, further NADPH producing reactions and pathways like glycolysis
include the NADPH-producing pentose-phosphate cycle as well as the KREBS or tricarboxylic acid
cycle [57,58].

The differences in NADP(H) levels measured in this study after treatment with simvastatin
or ibandronate could be linked to a general downregulation of the energy metabolism. Indeed,
ibandronate had just a minor effect on NADPH, which was significantly reduced by simvastatin
in PC-3 and MDA-MB-231 cells (Figure 2A,B). Thus, we could not confirm a previous report indicating
that simvastatin might protect MG-63 osteosarcoma cells from oxidative stress [59], which could be
a result of an induction of the anti-apoptotic BCL2 apoptosis regulator by the runt related transcription
factor 2 (RUNX2) in response to the treatment with hydrogen peroxide in that study [60]. As both genes
had about the same basal expressions in the cell lines that were investigated in this study and were not
significantly regulated, it rather appears possible that reduction of NADPH is a general sign for reduced
energy metabolism in treated cells, also because data on the influence of simvastatin and ibandronate
on the production of reactive oxygen species (ROS) appear contradictory (Supplementary Table S2
showing respective literature citations). Additionally, a comparative analysis of our transcriptomic
data from Venn diagrams showed that simvastatin had a stronger impact on gene regulation than
ibandronate in all investigated cell lines with the exception of MG-63 osteosarcoma cells (Table 6).
However, it remains to be established if this is related to the (relatively) slow proliferation rate or to
the osteogenic lineage of MG-63 cells or their different cell cycle response, which showed an arrest in
the G2 phase.

Statins and bisphosphonates associated starvation affect mTOR-signaling resulting in an impaired
uptake of nutrients such as essential amino acids including methionine [61,62], which is responsible
for previously observed epigenetic alterations [5] and glucose metabolism [63–65]. This results
in the stimulation of sestrin (SESN2) and inhibition of the mTOR [64,66,67] and RHOB pathway
leading to stimulation of autophagy [68–71], as well as the downregulation of fatty acid synthase
FASN [72]. The latter is partially associated with the upregulation of RHOB and sestrin [63,64,69] in
mevalonate-dependent or independent manner.

Regarding prostate cancer, it has been postulated that ibandronate exerts its anti-proliferative
effect through a reduction in the prenylation of RAC and via disruption of the NADPH oxidase
complex [73]. The expression of RAC (gene name AKT1, not regulated in our study) at the protein
level and the associated NADPH oxidases is cell type dependent and mirrors the mechanism
of how bisphosphonates attenuate osteoclasts [74–76]. As simvastatin downregulates the DNA
methyltransferase DNMT1 to a higher extent than the demethylating agent decitabine, a cell-line
specific epigenetic reaction, which appears to be present in all investigated cell lines except U-2 OS,
cannot be excluded [5].

The divergent responses induced by the tested drugs may lead to the hypothesis that the
ectodermal (epithelial) origin of MDA-MB-231 and PC-3 cells versus the mesothelial origin of
the osteosarcoma cell lines U2-OS and MG-63 might play a role in the observed differences.
Furthermore, mutations in the retinoblastoma gene (RB1) as found in MDA-MB-231 and PC-3
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cells [25,26] but not in MG-63 and U-2OS cells might also be partially responsible for the observed
effects [77,78]. However, as the fast proliferating osteosarcoma cell line Saos-2 is more sensitive towards
bisphosphonate-treatments [79] than U-2 OS or MG-63 cells, it appears that the critical parameter is
just the slower growth rate of MG-63 and U-2 OS cell lines and not the mesothelial background.

Recently, it has been shown that the above-mentioned downregulation of energy metabolism
could play a role in the maintenance of a stem-cell-like status, where an increased autophagy plays
a decisive role [80]. Inhibitors of the mevalonate pathway are known to induce lysosomal activity and
associated effects on autophagy [81].

SESN2, which is a key molecule of the autophagy pathway [36], was significantly upregulated in
most of our treated cell lines (Figure 3). A concordant stimulation of the small GTPase RHOB could
indicate an increase in protein degradation through an endolysosomal pathway [38], especially in
simvastatin-treated PC-3 and MDA-MB-231 cells. SESN2 belongs to the highly conserved gene family,
playing a key role in processes of adaptation to extreme climatic conditions in Antarctica [68]. Their
primary function of SESN2 is to sensor lysine availability for further transport to mTOR via the GATOR
complex that consists of a series of GTPases. SESN2 is upregulated upon stoppage of lysine import,
as in situations of nutrient deprivation, starvation, or intoxication [67,82,83]. The u-regulation of
SESN2 in statin- or ibandronate-treated cells regulates the activity of AMP-activated protein kinase
(AMPK) [66,84,85] via liver kinase B (LKB1) mediated phosphorylation, thus promoting a status of
quiescence [86–89]. Interestingly, in osteoblasts there is also a link between sestrin cell cycle attenuating
activity of vitamin D (VD). In fact, VD induces the production of sestrins and thus leads to a cell
cycle arrest [90].

This has been associated with metabolic processes that are turned down in starving or quiescent
cells, which do not proliferate but appear to be protected against necrosis or apoptosis: it is upregulated
by simvastatin and ibandronate and is known to interact with a complex that interacts with
GTPases of the RAG family to promote mTORC1 translocation to the lysosomal surface named
GATOR2 in an amino-acid-sensitive manner. Thus, it functions as a negative regulator of this
pathway by preventing proper mTORC1 localization to the lysosome in response to essential
amino acids [82] in all investigated cell lines. SESN2 attenuates the import of essential amino acids
such as methionine by inhibiting the NPRL2 (nitrogen permease regulator like 2) gene, which
is also responsible for the uptake of transcobalamin 2 (TCN2) and cobalamin (vitamin B12) [62].
This could be responsible for the downregulation of the one carbon metabolism (folate cycle) and
associated inhibition of the thymidylate synthase and downregulation of epigenetic regulators such as
DNA-methyl-transferases [5]. Data also indicate SESN2 protects cells from glucose starvation-induced
necroptosis [64]. SESN2 regulation has been demonstrated to occur via TP53 dependent and
independent mechanisms [91–94].

The SESN2 [95] gene is closely associated and deacetylated by the NAD–dependent histone
deacetylase SIRT1 by a similar mechanism as described for the retinoblastoma gene RB1, which is
known for its role in the transition from the G1 to the S-phase and mutated in PC-3 and MDA-MB-231
but not in MG-63 and U2-OS cell lines [96].

SESN2 cooperates with the hypoxia-inducible gene REDD1/RTP801 (gene name: DDIT4), which is
part of a pathway, where mTOR inhibition is induced by hypoxia AMPK [97]. This DDIT4 gene
was significantly stimulated in U-2 OS cells both by ibandronate and simvastatin. Inductions of
REDD1/RTP801 together with SESN2 by DNA damage are required for phosphorylation of the
controlling 4E-BP1 (gene name: EIF4EBP1) elongation factor in situations of DNA damage [98].

This gene and its metabolic background is tightly regulated by microRNAs [46], which confers
also to some microRNAs, where the extent of regulation is associated with cell type MIR21 microRNA
(Table 4) which is known to be RAS-activated [47]. Thus, a minus 3-fold ibandronate-induced
downregulation in U-2 OS osteosarcoma cells might be associated with RAS-inactivation in this
cell line.
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As topoisomerase-inhibitors are known to act via the p-JUN-SESN2/AMPK pathway [99],
the observed (both here and in a further study [100]) statin-mediated downregulation of topoisomerase
(DNA) II α (TOP2A) could mimic this effect (see Table S1 in the supplementary materials).

Like SESN2, ANLN is also a Wnt/β-catenin responsive gene [101] and the relation of sestrin to
Wnt/β-catenin and AMPK-signaling and histone deacetylase 5 is well documented [102].

The impact of ANLN on persistence of estrogen receptor positive breast cancer was shown by
respective experiments showing a cell-cycle arrest in G2/M, lowered expression of cyclins D1, A2,
and B1, as well as altered cell morphology [103].

Furthermore, an upregulation of SESN2 (with concomitant downregulation of cell cycle regulators
such as DDIT4, CCNA2, and CCNB1) and silencing of ANLN are known to facilitate but not necessarily
induce apoptosis [104,105].

In addition, a downregulation of methyl-histones appears to be associated with the
above-mentioned mechanisms of growth arrest and starvation. This induces a downregulation of
developmental genes, which is also known to be a sign of quiescence [106]. This could also provide
some explanation for the induction of growth arrest in cancer cells upon treatment with statins
or bisphosphonates.

4. Materials and Methods

4.1. Cell Culture and NADP+/NADPH Analyses

Cell cultures and NADP/NADPH analyses were performed as previously described [5]. Media for
cell cultures were from Sigma-Aldrich (DMEM-F12, St. Louis, MO, USA) or Biochrom (αMEM,
Berlin, Germany).

4.2. Analysis of Gene Expression and Transcriptomics

Gene expression analyses were performed according to described protocols [5] with a quantitative
real time PCR analysis system using a respective machine from Qiagen (Hilden, Germany), followed
by evaluation using the comparative Ct method [107]. For transcriptomics analysis, RNA was analyzed
on Affymetrix Arrays (Type Human Gene 2.0 ST Array, Thermo Fisher Scientific, Waltham, MA, USA)
using the customized service from Kompetenzzentrum für Biofluoreszenz (Regensburg, Germany).
The Pathvisio software [108] was used for detailed evaluation of signaling networks.

4.3. Flow Cytometry Analysis

Flow cytometric analysis for evaluation of cell cycle status was performed as previously
described [109].

4.4.Protein Isolation and Immunoblotting

Whole cell protein extracts were prepared using SDS sample buffer (2% SDS, 100 mM
β-mercaptoethanol, and 125 mM Tris-HCl, pH = 6.8) and heated at 95 ◦C for 5 min.

For immunoblotting analysis, 15 µg of protein extracts were separated on 10% SDS poly-acryl
amide gels, transferred to nitrocellulose membranes (Millipore, Billerica, MA, USA), and blocked
overnight with 10% blocking reagent (Roche, Basel, Switzerland) in 50 mM Tris buffered 125 mM NaCl
solution (pH = 8.0). The following primary antibodies were used: Histone H3K27me2 antibody (pAb)
activemotif no 39345; KDM7A (=JHDM1D) Antibody (PA5-25040, Thermo Fisher Scientific, Waltham,
MA, USA), β-actin (ACTA1, A2066, Sigma-Aldrich, St. Louis, MO, USA), and histone H3 (D1H2, Cell
Signaling Technology, Danvers, MA, USA).

Washing was performed with TN buffer containing 0.01% Tween Binding of the secondary
antibody (anti-rabbit IgG/anti-mouse IgG horseradish peroxidase-coupled) (Santa Cruz, Dallas, TX,
USA) diluted 1:10,000 in 10% blocking solution followed by detection with the BM chemo-luminescence
immunoblotting kit (Roche, Basel, Switzerland), which was carried out as described by the
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supplier. Chemo-luminescence was measured with an image acquisition system (Vilber Lourmat,
Marne-la-Vallée, France). Measurements are given as means of three immunoblots and representative
blots are shown.

5. Conclusions

We would like to conclude with the hypothesis that statins and bisphosphonates may especially
prevent the development and progression of fast-growing cancers by reducing nutrient uptake and
energy metabolism. Thus, a reduction of tumor aggressiveness may be related to the effectiveness of
statins and bisphosphonates in the downregulation of several metabolic pathways. However, it should
be mentioned that these drugs appear to induce a (reversible) status of quiescence rather than cell death
at least in about 30% of the cell population from respective cell lines. However, the overall efficacy
of either type of drug is likely to be limited due to escape from inhibition or death of a significant
proportion of the cell population.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1982/s1.
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