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Aim: The aim of this study was to explore factors related to neurological deterioration
(ND) after spontaneous intracerebral hemorrhage (sICH) and establish a prediction
model based on random forest analysis in evaluating the risk of ND.
Methods: The clinical data of 411 patients with acute sICH at the Affiliated Hospital of
Jining Medical University and Xuanwu Hospital of Capital Medical University between
January 2018 and December 2020 were collected. After adjusting for variables,
multivariate logistic regression was performed to investigate the factors related to the
ND in patients with acute ICH. Then, based on the related factors in the multivariate
logistic regression and four variables that have been identified as contributing to ND in
the literature, we established a random forest model. The receiver operating
characteristic curve was used to evaluate the prediction performance of this model.
Results: The result of multivariate logistic regression analysis indicated that time of onset
to the emergency department (ED), baseline hematoma volume, serum sodium, and
serum calcium were independently associated with the risk of ND. Simultaneously, the
random forest model was developed and included eight predictors: serum calcium,
time of onset to ED, serum sodium, baseline hematoma volume, systolic blood
pressure change in 24 h, age, intraventricular hemorrhage expansion, and gender. The
area under the curve value of the prediction model reached 0.795 in the training set
and 0.713 in the testing set, which suggested the good predicting performance of the
model.
Conclusion: Some factors related to the risk of ND were explored. Additionally, a
prediction model for ND of acute sICH patients was developed based on random
forest analysis, and the developed model may have a good predictive value through
the internal validation.
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INTRODUCTION

Spontaneous intracerebral hemorrhage (sICH) was a major
cause of disability and death worldwide, accounting for 10%–
15% of strokes each year (1). Its annual incidence was 10–30
per 100,000 individuals and the mortality rate was 35%–52%
within 1 month (2–4). Neurological deterioration (ND) was a
devastating complication after ICH (5, 6). As ICH progresses
rapidly, ND develops within the first 24 or 48 h after
symptom onset (7, 8). Although stroke treatment has made
some progress in recent years, ND was still a common
complication in the early stage of ICH and the prognosis was
relatively poor (9). Therefore, it is particularly important that
early detection of patients at high risk for ND and effective
clinical intervention could improve patients’ outcomes.

Several studies have investigated the risk factors of ND in
patients with ICH (10, 11). One study has reported that large
hematoma volumes and early hematoma enlargement (HE)
were influencing factors of ND (12). Apart from that, older
age, intraventricular hemorrhage (IVH), and HE-related
factors [elevated systolic blood pressure (SBP)] have also been
implicated as risk factors of ND after ICH (7, 12, 13). The
prognosis of ND in patients with acute ICH was associated
with the joint action of multiple factors; therefore, the
establishment of an effective prediction model has an
important clinical application value for risk assessment.
However, to the best of our knowledge, existing studies based
on the imageology characters to construct the prediction score
associated with ND in patients with acute ICH, which
generally was slightly complicated and not applicable to all
patients (14, 15). In recent years, the random forest model
(16), as a key data mining approach in machine learning, has
been widely used in the prediction model. It could identify
risk predictors by leveraging large data repositories and
improve the performance of risk prediction; simultaneously, it
also has high accuracy and the ability for estimating the
variable importance during classification (17).

Herein, the present study aimed to explore and describe
factors related to ND after sICH. Importantly, we established
a random forest model in predicting the outcome of ND, with
a goal of evaluating the patients’ conditions and identifying
those patients at high risk of ND in order to implement early
interventions for patients.
METHODS

Patient Selection
In this case–control study, the clinical data of 413 patients with
acute sICH between January 2018 and December 2020 were
collected from the Affiliated Hospital of Jining Medical
University (n = 218) and Xuanwu Hospital Capital Medical
University (n = 195). Inclusion criteria: (1) patients with age
≥18 years; (2) patients complying with the American Heart
Association/American Stroke Association ICH guidelines
published in 2010; and (3) patients with complete medical
records (including baseline data, laboratory tests, imaging
Frontiers in Surgery | www.frontiersin.org 2
data, treatment records, and prognostic data). Exclusion
criteria: (1) patients with ICH caused by craniocerebral
trauma, brain tumor, or cerebrovascular malformation; (2)
patients taking anticoagulant or antiplatelet drugs before the
onset of the illness; (3) patient who died within 7 days of
hospitalization; and (4) patients with congenital or acquired
coagulation factor deficiency or platelet abnormalities. There
are abnormal body temperatures of two patients in the
baseline information, 3.6 and 70°C respectively, so these two
samples are deleted. Selected patients were divided into the
ND group and the non-ND group. This study was approved
by the Institutional Review Board of the Affiliated Hospital of
Jining Medical University (approval No. 2021C023) and
Xuanwu Hospital Capital Medical University (approval No.
[2019]085).
Neurological Deterioration
ND was defined as an increase in the National Institutes of
Health Stroke Scale (NIHSS) of ≥4 points or a decline in the
Glasgow Coma Scale (GCS) of ≥2 points from onset to 7th
day (18). Herein, we measured the NIHSS or GCS for patients
at the onset of 24 h and on the 7th day after onset, separately,
to identify the patients with ND.
Variables’ Collection
At admission, data collected included the patients’ age, gender,
Body Mass Index (BMI), time of onset to emergency
department (ED), SBP on admission, diastolic blood pressure
(DBP) on admission, body temperature, baseline hematoma
volume, history of high blood pressure (HBP), smoking
history, drinking history, other medical history, serum sodium,
serum calcium, hemoglobin (Hb), white blood cell (WBC)
count, platelet (PLT) count, activated partial thromboplastin
time, international normalized ratio (INR), fibrous protein,
blood glucose, serum creatinine, troponin, total cholesterol
(TCHO), low-density lipoprotein cholesterin (LDL-C), high-
density lipoprotein cholesterol (HDL-C), triglyceride (TG),
bleeding part, IVH, IVH expansion, subarachnoid expansion,
DBP change in 24 h, SBP change in 24 h, hematoma volume
change in 24 h, blend sign, spot sign, leukodystrophy, lacuna
cerebri, and brain atrophy (any central or cortical reduction).
The hematoma volume was calculated according to the
Coniglobus formula (19): V = a × b × c × 1/2 (where a
represents the longest diameter of hematoma at the level of
maximum hematoma area, b represents the longest diameter
perpendicular to the longest diameter at the level of maximum
hematoma area, and c represents the number of layers with
bleeding in CT images). The proportion of missing values for
most of the included variables was less than 7%, which were
filled using multiple imputation. There are 91 (22.14%)
missing values in hematoma volume change in 24 h. After
filling in the baseline volume of hematoma and the volume of
hematoma at 24 h of onset, the volume of hematoma at 24 h
minus the volume of baseline hematoma was calculated.
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Development and Validation of the Random
Forest Model
The random forest model, as an integrated learning method that
combines multiple decision tree, could randomly select the
variables in each decision tree as predictors (16). It is worth
noting that the random forest model could deal with the
problem of certain data loss and provide the important score
of each variable (17). In the present study, we made the total
samples to randomly split into the training set for the
development of the prediction model and the testing set for
the internal validation with a ratio of 7:3. In order to improve
the generalization ability of the established random forest
model, variables that have been identified as contributing to
ND in the literature were recruited into the model (20, 21).
Herein, we developed a random forest model in predicting the
risk of ND after sICH and calculated the importance scores of
each variable, which suggested the predictive value of each
variable for predicting ND. Additionally, we used the area
under (AUC) the receiver operating characteristic (ROC)
curve to assess the predicted performance of this random
forest model.

Statistical Analysis
In the present study, we adopted the Shapiro test to test the
normality of measurement data. Mean ± standard deviation
(Mean ± SD) described the normally distributed measurement
data, and differences of the ND group and non-ND group
were compared by the t-test. The non-normally distributed
measurement data were displayed as median and quartiles [M
(Q1, Q3)], and the Mann–Whitney U-test was used to
perform the between-group comparisons. And categorical data
were presented by the number of cases and the constituent
ratio [N (%)], and the χ2 test was adopted for the
comparisons between the ND group and non-ND group.

First, we conducted the descriptive statistics of baseline data
and difference analysis between the ND group and the non-ND
group. Multivariate logistic analysis was used to investigate the
factors related to the ND in patients with acute ICH after
adjusting for relevant confounding factors. Then, the random
forest model in predicting the risk of ND after sICH was
developed in the training set and was validated in the testing
set by the ROC curve. Finally, the testing set was divided into
five subgroups according to different bleeding sites to verify
the prediction results of the prediction model. The odds ratio
(OR) and 95% confidence interval (CI) were calculated. The
statistical analyses were performed using R (4.0.3) and Python
(3.8.3) software. All statistical tests were two-sided, and
p < 0.05 was considered to be statistically significant.
RESULTS

Baseline Characteristics
After deleting two samples with the abnormal body
temperatures from Xuanwu Hospital Capital Medical
University, a total of 411 patients were finally recruited for
this case–control study, who were divided into the ND group
Frontiers in Surgery | www.frontiersin.org 3
(n = 178) and the non-ND group (n = 233). The characteristics
of the ND and non-ND groups are compared in Table 1. The
results showed that the median time of onset to ED of the
non-ND group was longer than that of the ND group [24 h
vs. 8 h, Z = 4.412, p < 0.001]. The median SBP at admission in
the non-ND group was lower than that of patients in the ND
group [160.00 mmHg vs. 166.50 mmHg, Z =−2.191, p = 0.028].
The median baseline hematoma volume of patients in the
non-ND group was smaller than that of patients in the ND
group [18.00 ml vs. 20.50 ml, Z =−2.572, p = 0.010]. The
average body temperature at admission was lower in the non-
ND group [36.61°C vs. 36.76°C, t =−2.331, p = 0.021]. In
laboratory indicators, the serum sodium, the proportion of
IVH, the hematoma volume change within 24 h of onset in
the non-ND group was lower than that of the ND group. The
median serum calcium of the non-ND group was higher than
that of the ND group. Detailed information is shown in Table 1.
The Factors Related to the Neurological
Deterioration
After adjusting for age, gender, IVH expansion, and SBP change
in 24 h, multivariate logistic regression indicated that the time of
onset to ED (OR = 0.991, 95% CI, 0.983–0.997), baseline
hematoma volume (OR = 1.015, 95% CI, 1.005–1.025), serum
sodium (OR = 1.069, 95% CI, 1.024–1.121), and serum
calcium (OR = 0.328, 95% CI, 0.154–0.664) were
independently associated with the risk of ND (Figure 1).
Because data were filled, a sensitivity analysis was carried out,
and the conclusion was basically the same as that before the
interpolation (Figure 2).
Establishment and Performance of the
Random Forest Model
Not only that, we made these subjects to randomly divide into
the training set (n = 287) for the development of the
prediction model and the testing set (n = 124) for the internal
validation. As shown in Table 2, no significant differences
were displayed between the training set and testing set
regarding the baseline characteristics of subjects (p > 0.05),
which indicated the balance of data division in the training set
and testing set.

In order to improve the generalization ability of the
established random forest model, four variables that have been
identified as contributing to ND in the literature were
recruited into the model (20, 21). Finally, the random forest
model was composed of eight factors: serum calcium, the time
of onset to ED, serum sodium, baseline hematoma volume,
SBP change in 24 h, age, IVH expansion, and gender. The
importance scores of the included variables are listed in
Figure 3, and the result displayed that serum calcium was the
most significant for the risk of ND. Individual histograms
showed the predictive effect of the model in the overall data
set (Figure 4). The result also suggested that when the
predicted probability was lower than 0.451, the individual was
considered to have no risk of ND; conversely, the individual
2022 | Volume 9 | Article 886856
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TABLE 1 | Differential analysis of baseline information.

Variables Total (n = 411) Group Statistics p

Non-ND group (n = 233) ND group (n = 178)

Gender, n (%) χ2= 0.258 0.611

Male 268 (65.21) 149 (63.95) 119 (66.85)

Female 143 (34.79) 84 (36.05) 59 (33.15)

Age (years), Mean ± SD 59.43 ± 12.60 58.80 ± 12.87 60.25 ± 12.23 t = −1.160 0.247

BMI (kg/m2), M (Q1, Q3) 25.04 (22.56, 27.43) 25.25 (22.53, 27.77) 24.80 (22.59, 26.54) Z = 1.678 0.093

Time of onset to ED (h), M (Q1, Q3) 13.00 (3.00, 48.00) 24.00 (4.00, 48.00) 8.00 (2.00, 24.00) Z = 4.412 <0.001

SBP on admission (mmHg), M (Q1, Q3) 162.00 (142.50, 183.00) 160.00 (140.00, 180.00) 166.50 (149.25, 187.00) Z =−2.191 0.028

DBP on admission (mmHg), M (Q1, Q3) 91.00 (80.00, 104.50) 90.00 (80.00, 104.00) 91.50 (80.00, 105.00) Z =−0.799 0.425

Body temperature (°C), Mean ± SD 36.68 ± 0.60 36.61 ± 0.45 36.76 ± 0.75 t = −2.331 0.021

Baseline hematoma volume (ml), M (Q1, Q3) 20.00 (10.00, 35.00) 18.00 (10.00, 30.00) 20.50 (10.00, 50.00) Z =−2.572 0.010

Hypertension, n (%) 273 (66.42) 149 (63.95) 124 (69.66) χ2= 1.232 0.267

Smoking history, n (%) 145 (35.28) 81 (34.76) 64 (35.96) χ2= 0.021 0.884

Drinking history, n (%) 151 (36.74) 84 (36.05) 67 (37.64) χ2= 0.052 0.820

Other medical history, n (%) 108 (26.28) 63 (27.04) 45 (25.28) χ2= 0.083 0.773

Serum sodium (mmol/l), M (Q1, Q3) 140.00 (137.75, 142.35) 139.80 (137.00, 142.00) 140.30 (138.00, 143.00) Z =−2.664 0.008

Serum calcium (mmol/l), M (Q1, Q3) 2.18 (2.06, 2.25) 2.21 (2.10, 2.27) 2.13 (2.01, 2.21) Z = 4.444 <0.001

Hemoglobin (g/l), M (Q1, Q3) 138.00 (124.00, 150.00) 138.00 (126.00, 150.00) 137.50 (120.25, 149.75) Z = 1.006 0.315

WBC count (109/L), M (Q1, Q3) 8.80 (7.12, 12.00) 8.60 (6.77, 11.30) 8.90 (7.54, 12.37) Z =−2.175 0.030

PLT count (109/L), M (Q1, Q3) 212.00 (176.50, 249.00) 220.00 (186.00, 252.00) 206.00 (170.25, 246.00) Z = 2.006 0.045

Activated partial thromboplastin time (s), M (Q1, Q3) 31.60 (27.90, 35.60) 32.10 (28.40, 36.30) 30.95 (27.40, 35.45) Z = 1.607 0.108

INR (s), M (Q1, Q3) 1.02 (0.97, 1.09) 1.01 (0.96, 1.08) 1.04 (0.97, 1.11) Z =−2.397 0.017

Fibrous protein (g/l), M (Q1, Q3) 3.30 (2.70, 4.11) 3.40 (2.70, 4.13) 3.20 (2.64, 3.91) Z = 1.370 0.171

Blood glucose (mmol/l), M (Q1, Q3) 6.40 (5.44, 8.02) 6.20 (5.40, 7.50) 6.60 (5.56, 8.68) Z =−2.377 0.017

Serum creatinine (umol/l), M (Q1, Q3) 60.40 (51.65, 73.40) 59.80 (51.30, 72.00) 62.20 (52.47, 74.00) Z =−1.460 0.145

Troponin, ug/l, M (Q1, Q3) 0.12 (0.01, 1.05) 0.67 (0.01, 1.08) 0.08 (0.01, 1.01) Z = 0.048 0.962

TCHO (mg/dl), M (Q1, Q3) 4.13 (3.50, 4.84) 4.23 (3.56, 4.95) 4.09 (3.42, 4.71) Z = 1.854 0.064

LDL-C (mg/dl), M (Q1, Q3) 2.51 (1.92, 3.12) 2.60 (2.00, 3.17) 2.46 (1.81, 3.01) Z = 1.906 0.057

HDL-C (mg/dl), M (Q1, Q3) 1.15 (0.96, 1.36) 1.18 (0.97, 1.38) 1.12 (0.95, 1.32) Z = 1.341 0.180

Triglyceride (mg/dl), M (Q1, Q3) 1.16 (0.84, 1.61) 1.19 (0.87, 1.63) 1.13 (0.80, 1.61) Z = 1.113 0.266

Bleeding part, n (%) χ2= 4.448 0.349

Others 90 (21.90) 56 (24.03) 34 (19.10)

Basal ganglia 199 (48.42) 111 (47.64) 88 (49.44)

Brain stem 25 (6.08) 10 (4.29) 15 (8.43)

Brain lobe 74 (18.00) 44 (18.88) 30 (16.85)

Cerebellum 23 (5.60) 12 (5.15) 11 (6.18)

IVH, n (%) 132 (32.12) 61 (26.18) 71 (39.89) χ2= 8.079 0.004

IVH expansion, n (%) 27 (6.57) 17 (7.30) 10 (5.62) χ2= 0.230 0.632

Subarachnoid expansion, n (%) 9 (2.19) 6 (2.58) 3 (1.69) Fisher 0.738

DBP change in 24 h (mmHg), M (Q1, Q3) 13.00 (5.00, 27.00) 13.00 (4.00, 25.00) 13.00 (5.00, 28.00) Z =−1.103 0.321

SBP change in 24 h (mmHg), M (Q1, Q3) 19.00 (3.00, 43.50) 16.00 (2.00, 41.00) 20.50 (5.00, 50.75) Z =−1.667 0.098

Hematoma volume change in 24 h (ml), M (Q1, Q3) 0.00 (0.00, 15.00) 0.00 (0.00, 10.00) 3.00 (0.00, 20.00) Z =−2.846 0.008

Blend sign, n (%) 51 (12.41) 25 (10.73) 26 (14.61) χ2= 1.062 0.303

Spot sign, n (%) 90 (21.90) 48 (20.60) 42 (23.60) χ2= 0.369 0.544

Leukodystrophy, n (%) 105 (25.55) 60 (25.75) 45 (25.28) χ2= 0.000 1.000

Lacuna cerebri, n (%) 139 (33.82) 79 (33.91) 60 (33.71) χ2= 0.000 1.000

Brain atrophy, n (%) 59 (14.36) 24 (10.30) 35 (19.66) χ2= 6.453 0.011

ND, neurological deterioration; BMI, body mass index; ED, Emergency Department; SBP, systolic blood pressure; DBP, diastolic blood pressure; IVH, intraventricular hemorrhage;
WBC, white blood cell; PLT, platelet; INR, international normalized ratio; TCHO, total cholesterol; LDL-C, low-density lipoprotein cholesterin; HDL-C, high-density lipoprotein
cholesterol.
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FIGURE 1 | The factors related to the neurological deterioration in patients with acute intracerebral hemorrhage by multivariate logistic analysis.

FIGURE 2 | The factors related to the neurological deterioration in patients with acute intracerebral hemorrhage by multivariate logistic analysis (before interpolation).

TABLE 2 | Differences between the training set and testing set.

Variables Total (n = 411) Training set (n = 287) Testing set (n = 124) Statistics p

Onset to ED Arrival (h), M (Q1, Q3) 13.00 (3.00, 48.00) 13.00 (3.00, 48.00) 15.50 (3.00, 48.00) Z = 0.286 0.776

SBP on admission (mmHg), M (Q1, Q3) 162.00 (142.50, 183.00) 160.00 (141.50, 183.00) 165.00 (145.75, 180.75) Z = 0.617 0.537

Baseline hematoma volume (ml), M (Q1, Q3) 20.00 (10.00, 35.00) 20.00 (10.00, 30.00) 20.00 (12.00, 40.00) Z = 1.274 0.203

Serum sodium (mmol/l), M (Q1, Q3) 140.00 (137.75, 142.35) 140.00 (137.70, 142.05) 140.00 (137.98, 142.85) Z =−0.063 0.950

Serum calcium (mmol/l), M (Q1, Q3) 2.18 (2.06, 2.25) 2.19 (2.07, 2.25) 2.17 (2.05, 2.25) Z =−0.677 0.498

IVH expansion, n (%) 27 (6.57) 16 (5.57) 11 (8.87) Z = 1.237 0.307

Brain atrophy, n (%) 59 (14.36) 41 (14.29) 18 (14.52) χ2= 0.000 1.000

SBP Change in 24 h (mmHg), M (Q1, Q3) 19.00 (3.00, 43.50) 19.00 (2.00, 43.00) 20.00 (5.00, 45.25) Z = 0.775 0.439

Age (years), Mean ± SD 59.43 ± 12.60 59.89 ± 13.88 59.23 ± 12.03 t = 0.458 0.647

Gender (female), n (%) 143 (34.79) 45 (36.29) 98 (34.15) χ2= 0.094 0.760

ED, Emergency Department; SBP, systolic blood pressure; IVH, intraventricular hemorrhage.

Gao et al. A Prediction Model for ND
has the risk of ND when the predicted probability was higher
than 0.451.

Online prediction system: https://github.com/Ischmodel/
Ischmodelpredictor.
Frontiers in Surgery | www.frontiersin.org 5
Table 3 shows the performance of the random forest model
in the training set and testing set. The AUC of this model was
0.795, with a sensitivity of 0.737, a specificity of 0.688, a
positive predictive value (PPV) of 0.787, and the negative
2022 | Volume 9 | Article 886856
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FIGURE 3 | The feature importance diagram of the random forest model.

Gao et al. A Prediction Model for ND
predictive value (NPV) of 0.626 in the training set. The internal
validation was conducted to assess the efficacy of the prediction
model using the testing set and the results revealed that the
AUC was 0.713, and the sensitivity, specificity, PPV, and NPV
of the prediction model were 0.697, 0.667, 0.768, and 0.613,
respectively (Table 3). The ROC curves of the model are
shown in Supplementary Figure 1 (training set) and
Supplementary Figure 2 (testing set).

The testing set was divided into different subgroups
according to different bleeding sites, and the prediction model
was verified in the subgroup population. It was found that
when the bleeding site was the basal ganglia [AUC (95% CI)
= 0.729 (0.724–0.734)], the brain lobe [(AUC (95% CI) = 0.714
(0.707–0.721))] and other bleeding sites [(AUC (95% CI) =
0.791 (0.786–0.797))], the model had a certain predictive
ability (Supplementary Figure 3).
DISCUSSION

In this case–control study, the result indicated that the time of
onset to ED, baseline hematoma volume, serum sodium, and
serum calcium were independently associated with the risk of
Frontiers in Surgery | www.frontiersin.org 6
ND. Additionally, we also established a random forest model
in predicting the risk of ND in patients with acute sICH
based on some important factors, including serum calcium,
the time of onset to ED, serum sodium, baseline hematoma
volume, SBP change in 24 h, age, IVH expansion, and gender.
The results showed that the developed random forest model
may have a good performance in predicting ND risk of acute
ICH patients.

Electrolyte disturbance is a common complication of ICH,
which has a close relationship with the prognosis of ICH (22).
Previous studies indicated that patients with ICH were prone
to have sodium disturbances, which may be related to the
syndrome of inappropriate secretion of antidiuretic hormone
(SIADH) (22, 23). Sodium disturbances might be associated
with perihematomal edema expansion, which caused a poor
outcome for patients with ICH (24). Simultaneously, patients
with ICH are also prone to have calcium disturbances, which
may be associated with coagulation (24). Calcium ion, as a
coagulation factor in the human body, is active in most
coagulation responses (25). When patients suffered from ICH,
cerebral edema, cerebral ischemia, and hypoxia would occur
(26). It may cause cell membrane damage, which would lead
to a transfer of plentiful calcium ions into cells and a
2022 | Volume 9 | Article 886856
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FIGURE 4 | Individual histograms.

TABLE 3 | Prediction effect of the random forest model.

Variables AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Training set 0.795 (0.793–0.797) 0.737 (0.686–0.788) 0.688 (0.634–0.741) 0.787 (0.739–0.834) 0.626 (0.570–0.682)

Testing set 0.713 (0.710–0.716) 0.697 (0.617–0.778) 0.667 (0.584–0.750) 0.768 (0.694–0.842) 0.613 (0.495–0.669)

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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reduction of blood calcium (27). In addition, ICH could trigger
a coagulation where calcium ions would be consumed, leading
to the development of low serum calcium (28). Our study
found that serum sodium and serum calcium was related to
the risk of ND. Dastur et al. mentioned in the study on sICH
that controls the serum sodium level was beneficial to
hematoma expansion reduction (29). A recent study
conducted by Mao et al. (27) indicated that the low serum
calcium level was associated with a higher risk of HE and
poor prognosis after ICH. HE and ND were all common
complications of ICH. Leira et al. (30) conducted a
multicenter, prospective study to identify factors that
predicted or were related to ND in sICH patients, and the
results demonstrated that high SBP within 48 h were
Frontiers in Surgery | www.frontiersin.org 7
independent predictors of ND. In this present study, we
further investigated SBP change on admission and found that
SBP change in 24 h was an important factor for predicting
ND. In addition, hematoma volume was also found to be
independently correlated with ND (21, 31), which was
consistent with our findings.

Another important result of this study was that the
establishment of the random forest model to predict the risk
of ND after sICH. According to the feature importance scores
given in the random forest model, the abscissa was the Gini
importance score. The Gini importance score is defined as the
Gini impurity difference of the sample set before and after
passing a sample feature classification node, that is, the larger
the difference, indicated that the higher the score, the more
2022 | Volume 9 | Article 886856
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important the variable was (32, 33). Among them, serum
calcium was the variable with the highest Gini score. Serum
calcium was involved in platelet function during coagulation
and plays an important role in cerebral injury after ICH. The
serum calcium level was related to impaired hemostasis and
HE (27, 29). The overall results of our study demonstrated
that serum calcium and serum sodium were important
predictors for ND in acute sICH patients. Prior studies tend
to establish predictive models using logistic regression analysis
and prediction score (21, 31). Miyahara et al. (8) developed a
HEAVN prediction score using heterogeneity, peripheral
edema, anticoagulant use, volume >30 mL on initial CT, and
niveau formation that can be routinely assessed in clinical
practice to estimate the probability of HE and ND after sICH.
In our study, the AUC value of the prediction model reached
0.795 in the training set and 0.713 in the testing set, which
suggested the good predicting value of the model. Not only
that, it was found that our model had a certain predictive
ability when the bleeding site was the basal ganglia, lobes, and
other bleeding sites. Moreover, the AUC of the basal ganglia
subgroup, lobes subgroup, and other bleeding sites subgroup
was 0.729, 0.714, and 0.791, respectively, indicating the
effectiveness of the random forest model in clinical application.

In this study, four influencing factors obtained in logistic
regression analysis and four variables that have been identified
as contributing to ND in the literature were used to establish
the random forest model, which may improve the generali-
zation ability of the established random forest model.
Moreover, the testing set was divided into different subgroups
according to different bleeding sites, and the prediction model
was verified in the subgroups. The effectiveness of the random
forest model in the clinical application was demonstrated.
There were some limitations in our study. First, inadequate
population diversity may cause a poor efficacy of the
established model when used in other populations. Second, we
excluded some patients who died within 7 days of
hospitalization; therefore, the established model only might
apply to patients who will survive for more than 7 days. These
should be cautious in interpreting the results. Future studies
will further include more patients with acute sICH who came
from different centers in China, to evaluate the predictive
value of the developed model.
CONCLUSION

In short, time of onset to ED, baseline hematoma volume, serum
sodium, and serum calcium were associated with the risk of ND.
Additionally, a prediction model for ND of acute sICH patients
Frontiers in Surgery | www.frontiersin.org 8
was developed based on random forest analysis, and the
developed model may have a good predictive value through the
internal validation. We believed that the developed random
forest model may act as a simple tool to evaluate the population
at high risk of exacerbation of ND symptoms, thereby helping
clinicians to identify who would need early intervention.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Affiliated Hospital of Jining Medical
University (approval No. 2021C023) and Xuanwu Hospital
Capital Medical University (approval No. [2019]085). The
patients/participants provided their written informed consent
to participate in this study.
AUTHOR CONTRIBUTIONS

DQG and XJZ designed and wrote the manuscript. YZZ
contributed to data collection and data analysis. RJZ
contributed to the literature search. YYQ critically reviewed,
edited, and approved the manuscript. All authors contributed
to the article and approved the submitted version.
FUNDING

This study is supported by the Key Research and Development
Project of China during the 13th Five-Year Plan.
(No.2017YFC1308405).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/article/10.3389/fsurg.2022.886856/
full#supplementary-material.
Supplementary Figure 1 | The receiver operating characteristic curves for the
training set of the random forest model.

Supplementary Figure 2 | The receiver operating characteristic curves for the testing
set of the random forest model.

Supplementary Figure 3 | The receiver operating characteristic curves of the
subgroup analyses.
REFERENCES

1. de Oliveira Manoel AL. Surgery for spontaneous intracerebral hemorrhage.
Crit Care. (2020) 24(1):45. doi: 10.1186/s13054-020-2749-2

2. Li Y, Fang W, Tao L, Li M, Yang Y, Gao Y, et al. Efficacy and safety of
intravenous nimodipine administration for treatment of hypertension in
patients with intracerebral hemorrhage. Neuropsychiatr Dis Treat. (2015)
11:1231–8. doi: 10.2147/ndt.s76882

3. Godoy DA, Núñez-Patiño RA, Zorrilla-Vaca A, Ziai WC, Hemphill 3rd JC
Intracranial hypertension after spontaneous intracerebral hemorrhage: a
systematic review and meta-analysis of prevalence and mortality rate.
Neurocrit Care. (2019) 31(1):176–87. doi: 10.1007/s12028-018-0658-x
2022 | Volume 9 | Article 886856

https://www.frontiersin.org/article/10.3389/fsurg.2022.886856/full#supplementary-material
https://www.frontiersin.org/article/10.3389/fsurg.2022.886856/full#supplementary-material
https://www.frontiersin.org/article/10.3389/fsurg.2022.886856/full#supplementary-material
https://doi.org/10.1186/s13054-020-2749-2
https://doi.org/10.2147/ndt.s76882
https://doi.org/10.1007/s12028-018-0658-x
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Gao et al. A Prediction Model for ND
4. Al-Kawaz MN, Hanley DF, Ziai W. Advances in therapeutic approaches for
spontaneous intracerebral hemorrhage. Neurotherapeutics. (2020) 17
(4):1757–67. doi: 10.1007/s13311-020-00902-w

5. Ho YN, Hsu SY, Lin YT, Cheng FC, Lin YJ, Tsai NW, et al. Predictive factors
of neurologic deterioration in patients with spontaneous cerebellar
hemorrhage: a retrospective analysis. BMC Neurol. (2019) 19(1):81. doi: 10.
1186/s12883-019-1312-8

6. Liu P, Liu S, Feng N, Wang Y, Gao Y, Wu J. Association between neurological
deterioration and outcomes in patients with stroke. Ann Transl Med. (2020) 8
(1):4. doi: 10.21037/atm.2019.12.36

7. Specogna AV, Turin TC, Patten SB, Hill MD. Factors associated with early
deterioration after spontaneous intracerebral hemorrhage: a systematic
review and meta-analysis. PLoS ONE. (2014) 9(5):e96743. doi: 10.1371/
journal.pone.0096743

8. Miyahara M, Noda R, Yamaguchi S, Tamai Y, Inoue M, Okamoto K, et al.
New prediction score for hematoma expansion and neurological
deterioration after spontaneous intracerebral hemorrhage: a hospital-based
retrospective cohort study. J Stroke Cerebrovasc Dis. (2018) 27(9):2543–50.
doi: 10.1016/j.jstrokecerebrovasdis.2018.05.018

9. Tsou YJ, Lan KP, Fan JS. Relationship between changes in prehospital blood
pressure and early neurological deterioration in spontaneous intracerebral
hemorrhage. Adv Emerg Nurs J. (2019) 41(2):163–71. doi: 10.1097/tme.
0000000000000239

10. Lim JX, Han JX, See AAQ, Lew VH, Chock WT, Ban VF, et al. External
validation of hematoma expansion scores in spontaneous intracerebral
hemorrhage in an Asian patient cohort. Neurocrit Care. (2019) 30
(2):394–404. doi: 10.1007/s12028-018-0631-8

11. You S, Zheng D, Delcourt C, Sato S, Cao Y, Zhang S, et al. Determinants of
early versus delayed neurological deterioration in intracerebral hemorrhage.
Stroke. (2019) 50(6):1409–14. doi: 10.1161/strokeaha.118.024403

12. Lord AS, Gilmore E, Choi HA, Mayer SA. Time course and predictors of
neurological deterioration after intracerebral hemorrhage. Stroke. (2015) 46
(3):647–52. doi: 10.1161/strokeaha.114.007704

13. Morotti A, Poli L, Leuci E, Mazzacane F, Costa P, De Giuli V, et al.
Subarachnoid extension predicts lobar intracerebral hemorrhage expansion.
Stroke. (2020) 51(5):1470–6. doi: 10.1161/strokeaha.119.028338

14. Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, et al.
Predicting hematoma expansion after primary intracerebral hemorrhage.
JAMA Neurol. (2014) 71(2):158–64. doi: 10.1001/jamaneurol.2013.5433

15. Wang X, Arima H, Al-Shahi Salman R, Woodward M, Heeley E, Stapf C,
et al. Clinical prediction algorithm (BRAIN) to determine risk of
hematoma growth in acute intracerebral hemorrhage. Stroke. (2015) 46
(2):376–81. doi: 10.1161/strokeaha.114.006910

16. Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute
kidney injury in the ICU using random forest model. Int J Med Inform.
(2019) 125:55–61. doi: 10.1016/j.ijmedinf.2019.02.002

17. Yang L, Wu H, Jin X, Zheng P, Hu S, Xu X, et al. Study of cardiovascular
disease prediction model based on random forest in eastern China. Sci Rep.
(2020) 10(1):5245. doi: 10.1038/s41598-020-62133-5

18. Morotti A, Charidimou A, Phuah CL, Jessel MJ, Schwab K, Ayres AM, et al.
Association between serum calcium level and extent of bleeding in patients
with intracerebral hemorrhage. JAMA Neurol. (2016) 73(11):1285–90.
doi: 10.1001/jamaneurol.2016.2252

19. Gao Y, Fu X, Yu L, Zhang D, Lu Z, Cui K, et al. DNA hypomethylation of
DOCK1 leading to high expression correlates with neurologic deterioration
and poor function outcomes after spontaneous intracerebral hemorrhage.
Evid Based Complement Alternat Med. (2021):1186458. doi: 10.1155/2021/
1186458

20. Rodriguez-Luna D, Piñeiro S, Rubiera M, Ribo M, Coscojuela P, Pagola J,
et al. Impact of blood pressure changes and course on hematoma growth
in acute intracerebral hemorrhage. Eur J Neurol. (2013) 20(9):1277–83.
doi: 10.1111/ene.12180

21. Law ZK, Dineen R, England TJ, Cala L, Mistri AK, Appleton JP, et al.
Predictors and outcomes of neurological deterioration in intracerebral
hemorrhage: results from the TICH-2 randomized controlled trial. Transl
Stroke Res. (2021) 12(2):275–83. doi: 10.1007/s12975-020-00845-6
Frontiers in Surgery | www.frontiersin.org 9
22. Liu J, Li Q, Ren J, Liang X, Zhang Q, Han Y. Association of sex with serum
potassium, sodium, and calcium disorders after hypertensive intracerebral
hemorrhage. World Neurosurg. (2020) 141:e367–73. doi: 10.1016/j.wneu.
2020.05.137

23. Soudan K, Qunibi W. Severe hypernatremia following treatment of the
syndrome of inappropriate antidiuretic hormone secretion. Am J Med Sci.
(2012) 343(6):507–9. doi: 10.1097/MAJ.0b013e318245faaf

24. Loggini A, El Ammar F, Mansour A, Kramer CL, Goldenberg FD, Lazaridis
C. Association between electrolyte levels at presentation and hematoma
expansion and outcome in spontaneous intracerebral hemorrhage: a
systematic review. J Crit Care. (2021) 61:177–85. doi: 10.1016/j.jcrc.2020.10.
029

25. Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian
J Anaesth. (2014) 58(5):515–23. doi: 10.4103/0019-5049.144643a

26. Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman
M, et al. Guidelines for the management of spontaneous intracerebral
hemorrhage: a guideline for healthcare professionals from the American
Heart Association/American Stroke Association. Stroke. (2015) 46(7):
2032–60. doi: 10.1161/STR.0000000000000069

27. Mao J, Jiang W, Liu G, Jiang B. Serum calcium levels at admission is
associated with the outcomes in patients with hypertensive intracerebral
hemorrhage. Br J Neurosurg. (2019) 33(2):145–8. doi: 10.1080/02688697.
2019.1571162

28. Sun J, Liu W, Zhu R, Wu Y, Yang L. The relationship between low serum
calcium level and intracerebral hemorrhage hematoma expansion: a
protocol of systematic review and meta-analysis. Medicine (Baltimore).
(2020) 99(3):e18844. doi: 10.1097/MD.0000000000018844

29. Dastur CK, Yu W. Current management of spontaneous intracerebral
haemorrhage. Stroke Vasc Neurol. (2017) 2(1):21–9. doi: 10.1136/svn-2016-
000047

30. Leira R, Dávalos A, Silva Y, Gil-Peralta A, Tejada J, Garcia M, et al. Early
neurologic deterioration in intracerebral hemorrhage: predictors and
associated factors. Neurology. (2004) 63(3):461–7. doi: 10.1212/01.wnl.
0000133204.81153.ac

31. Sun W, Pan W, Kranz PG, Hailey CE, Williamson RA, Sun W, et al.
Predictors of late neurological deterioration after spontaneous intracerebral
hemorrhage. Neurocrit Care. (2013) 19(3):299–305. doi: 10.1007/s12028-
013-9894-2

32. Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, et al.
A comparison of random forest and its Gini importance with standard
chemometric methods for the feature selection and classification of spectral
data. BMC Bioinformatics. (2009) 10:213. doi: 10.1186/1471-2105-10-213

33. Liu Y, Guo Y, Wu W, Xiong Y, Sun C, Yuan L, et al. A machine learning-
based QSAR model for benzimidazole derivatives as corrosion inhibitors
by incorporating comprehensive feature selection. Interdiscip Sci. (2019) 11
(4):738–47. doi: 10.1007/s12539-019-00346-7
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as
a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.
Copyright © 2022 Gao, Zhang, Zhang, Zhang and Qiao. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
2022 | Volume 9 | Article 886856

https://doi.org/10.1007/s13311-020-00902-w
https://doi.org/10.1186/s12883-019-1312-8
https://doi.org/10.1186/s12883-019-1312-8
https://doi.org/10.21037/atm.2019.12.36
https://doi.org/10.1371/journal.pone.0096743
https://doi.org/10.1371/journal.pone.0096743
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.018
https://doi.org/10.1097/tme.0000000000000239
https://doi.org/10.1097/tme.0000000000000239
https://doi.org/10.1007/s12028-018-0631-8
https://doi.org/10.1161/strokeaha.118.024403
https://doi.org/10.1161/strokeaha.114.007704
https://doi.org/10.1161/strokeaha.119.028338
https://doi.org/10.1001/jamaneurol.2013.5433
https://doi.org/10.1161/strokeaha.114.006910
https://doi.org/10.1016/j.ijmedinf.2019.02.002
https://doi.org/10.1038/s41598-020-62133-5
https://doi.org/10.1001/jamaneurol.2016.2252
https://doi.org/10.1155/2021/1186458
https://doi.org/10.1155/2021/1186458
https://doi.org/10.1111/ene.12180
https://doi.org/10.1007/s12975-020-00845-6
https://doi.org/10.1016/j.wneu.2020.05.137
https://doi.org/10.1016/j.wneu.2020.05.137
https://doi.org/10.1097/MAJ.0b013e318245faaf
https://doi.org/10.1016/j.jcrc.2020.10.029
https://doi.org/10.1016/j.jcrc.2020.10.029
https://doi.org/10.4103/0019-5049.144643a
https://doi.org/10.1161/STR.0000000000000069
https://doi.org/10.1080/02688697.2019.1571162
https://doi.org/10.1080/02688697.2019.1571162
https://doi.org/10.1097/MD.0000000000018844
https://doi.org/10.1136/svn-2016-000047
https://doi.org/10.1136/svn-2016-000047
https://doi.org/10.1212/01.wnl.0000133204.81153.ac
https://doi.org/10.1212/01.wnl.0000133204.81153.ac
https://doi.org/10.1007/s12028-013-9894-2
https://doi.org/10.1007/s12028-013-9894-2
https://doi.org/10.1186/1471-2105-10-213
https://doi.org/10.1007/s12539-019-00346-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org

	A Prediction Model for Neurological Deterioration in Patients with Acute Spontaneous Intracerebral Hemorrhage
	INTRODUCTION
	METHODS
	Patient Selection
	Neurological Deterioration
	Variables’ Collection
	Development and Validation of the Random Forest Model
	Statistical Analysis

	RESULTS
	Baseline Characteristics
	The Factors Related to the Neurological Deterioration
	Establishment and Performance of the Random Forest Model

	DISCUSSION
	CONCLUSION
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	SUPPLEMENTARY MATERIAL
	REFERENCES


