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Abstract

The basis of several recent methods for drug repurposing is the key principle that an efficacious drug will reverse the
disease molecular ‘signature’ with minimal side effects. This principle was defined and popularized by the influential
‘connectivity map’ study in 2006 regarding reversal relationships between disease- and drug-induced gene expression
profiles, quantified by a disease-drug ‘connectivity score.’ Over the past 15 years, several studies have proposed variations in
calculating connectivity scores toward improving accuracy and robustness in light of massive growth in reference drug
profiles. However, these variations have been formulated inconsistently using various notations and terminologies even
though they are based on a common set of conceptual and statistical ideas. Therefore, we present a systematic
reconciliation of multiple disease-drug similarity metrics (ES, css, Sum, Cosine, XSum, XCor, XSpe, XCos, EWCos) and
connectivity scores (CS, RGES, NCS, WCS, Tau, CSS, EMUDRA) by defining them using consistent notation and terminology. In
addition to providing clarity and deeper insights, this coherent definition of connectivity scores and their relationships
provides a unified scheme that newer methods can adopt, enabling the computational drug-development community to
compare and investigate different approaches easily. To facilitate the continuous and transparent integration of newer
methods, this article will be available as a live document (https://jravilab.github.io/connectivity_scores) coupled with a
GitHub repository (https://github.com/jravilab/connectivity_scores) that any researcher can build on and push changes to.

Key words: drug repositioning/repurposing; disease gene signature; CMap and LINCS L1000; similarity metrics; connectivity
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Introduction
The past few decades have seen a rapid increase in computa-
tional, experimental and clinical drug repositioning/repurposing
approaches owing to the appeal of reduced costs and drug
discovery time [1–3]. Drug repurposing works on the principle
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that drugs have multiple modes of action, targets and off-
targets which can be exploited to identify new indications [1].
This principle has been leveraged to identify novel therapeutic
candidates for several diseases [1, 4]. Approaches and resources
for drug repurposing have been broadly summarized and
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discussed elsewhere [2, 5]. With the accumulation of massive
drug and disease data collections, computational methods
and databases have now become an indispensable component
of the drug repurposing workflow [2, 6]. Nearly all these
methods leverage high-throughput gene expression profiles
abundantly available for drugs and diseases to find novel
associations [7–9]. These expression profiles can be used to
derive a characteristic molecular imprint, i.e. a signature, of a
disease or drug perturbation in a tissue [10]. Large compendia of
such transcriptomic signatures have been created for thousands
of drugs based on the differential gene expression of various cell
lines with or without drug perturbation. Computational methods
then use these compendia to predict repurposed candidates for a
disease either based on the (dis)similarity of a drug’s expression
signature to that disease’s expression signature [11] or based on
similarity to the signatures of other drugs previously linked to
the disease [12, 13].

In this article, we will focus on these widely used expression-
based methods for drug repurposing collectively referred to as
‘drug-disease connectivity analysis’ [11]. A typical instance of
this analysis is presented in Figure 1 where novel drug indica-
tions for a particular disease of interest are identified based on
the extent to which the ranked drug-gene signature is a ‘reversal’
of the disease gene signature ([14, 15] Figure 1). Connectivity-
based drug repurposing has been used to discover drugs in
various cancers and non-cancer diseases [3].

From its inception in 2006, the exact method for connectivity
analysis has evolved, with a series of proposed modifications
over the past decade and a half (Figure 2). The first method for
connectivity analysis [7] builds on the classic paper by Subra-
manian et al. [16] that proposed the Gene Set Enrichment Analy-
sis (GSEA) method. GSEA uses a modified Kolmogorov–Smirnov
statistic (KS) [17]—referred to as ‘enrichment score’ (ES)—to
evaluate if genes in a certain pathway appear toward the top
or bottom of a gene (differential) expression profile. Lamb et al.
[7] built a reference database (Connectivity Map or CMap, which
we refer to as CMap 1.0 in this article) with gene expression
profiles for thousands of small molecules and proposed the first
method for connectivity analysis based on GSEA. This method
compares a query signature (disease) to each of the ranked drug-
gene expression profiles in their reference database and ranks
all the drugs based on their connectivity scores. A connectivity
score ranges between −1 (indicating a complete ‘drug-disease’
reversal) and + 1 (indicating perfect ‘drug-disease’ similarity).
Another study adapted this connectivity score calculation and
used it to find compounds in the L1000 LINCS collection [8] that
could be repurposed for three cancer types [18]. This study quan-
tified the reversal relationship between the drug and disease
by computing the Reverse Gene Expression Score (RGES). Finally,
CMap 1.0 itself was further updated by expanding the Library
of Integrated Network-based Cellular Signatures (LINCS) L1000
to more than 1.3 million profiles [19] (referred to as CMap 2.0
in this article). Along with the expansion of data, the CMap 2.0
study also proposed another variation of the connectivity score
called the weighted connectivity score (WCS) that uses GSEA’s
weighted Kolmogorov–Smirnov enrichment statistic along with
ways to normalize the resulting score and correcting them fur-
ther to account for background associations.

Another class of connectivity scores has been developed that
uses the level of differential expression of genes in its calcu-
lations, thus distinguishing itself from the approaches men-
tioned above that invariably use just the gene ranking [20–23].
Jointly referred to as pairwise similarity measures, they use the
drug/disease differential-expression values of either all genes

or just the most perturbed genes (called ‘extreme’ metrics).
One such score called connection strength score (CSS) reflects
the strength of the correlation between the signed ranks of
genes in the disease and drug profiles [23]. In other cases, final
scores are derived by summing gene scores (Sum, XSum) or by
calculating the correlation between the drug and disease profiles
using any one of several correlation metrics (XSpe, XCor, Cosine,
XCos) [20, 21]. The cosine metrics have been further modified
to reduce the impact of lowly expressed genes (EWCos) [22].
With the advent of numerous connectivity scores, a recent study
has developed an approach called the Ensemble of Multiple
Drug Repositioning Approaches (EMUDRA) that normalizes and
integrates four metrics (EWCos, Cosine, XSpe and XCor) into one
score [22].

Connectivity scores and methodologies have been evaluated
in the past to assess their performance in predicting drug–drug
relationships or drug-disease relationships. The performance of
CMap 1.0 was evaluated in predicting drug–drug relationships
using the Anatomical Therapeutic Chemical classification [20,
24], and in predicting drug-disease relationships [25]. Further-
more, a recent review [26] assessed advances that have been
made in CMap 1.0 and computational tools that have been
applied in the drug repurposing and discovery fields. Lin et al.
[27] further evaluated connectivity approaches that use L1000
data [8], including six different scores that are used to predict
drug–drug relationships.

All these proposed variations of the connectivity score share
a common set of conceptual and statistical ideas. Yet, they
have been formulated inconsistently using varied notations and
terminologies in the original papers and in the aforementioned
evaluation studies. This lack of consistency in the precise for-
mulaic notation makes it difficult to seamlessly understand the
subtle differences and the intuition underlying each score. For
example, the connectivity score referred to as Reverse Gene
Expression Score (RGES) [18] directly builds on the Connectivity
Score, ‘CS’ [7]. Another example is the WCS in CMap 2.0 [19] that is
a bidirectional weighted version of ‘ES’ used in GSEA [16]; in this
case, they are named and notated quite differently though they
are essentially direct, simple variants of each other. ‘ZhangScore’
in [27] and ‘WSS’ in [22] refer to the connection strength C in [23].
In this article, we develop a systematic scheme that defines in
the aforementioned methodologies using consistent notations
and terms. Additionally, we provide summary tables throughout
the article to relate our consistent scheme with the previously
published ones.

A taxonomy of connectivity scores
We begin by creating a standardized set of notations and terms
to denote the various concepts and quantities required to define
the different connectivity scores. In its most widely used form, a
connectivity score between a disease and a drug is computed
by comparing the genes significantly upregulated (S+

X ) and
downregulated (S−

X ) by the disease (relative to a healthy control)
to a ranked list of genes ordered based on their differential
expression in response to a drug (

−→
R ). A good connectivity score

usually manifests as a lower negative value since it is designed
to indicate a reversal relationship between the disease and the
drug on genes. Such a score is achieved when genes in S+

X appear

at the bottom of
−→
R and/or when genes in S−

X appear at the top

of
−→
R . When there is no relationship or when S+

X appears at the

top and/or when S−
X appears at the bottom of

−→
R (indicating a

similarity between the disease and drug signatures), the drug
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Figure 1. Drug-disease connectivity. A. Gene expression signatures. Gene expression signatures. R
→

and S
→

are rank-ordered drug and disease gene expression signatures

going from the most significantly upregulated genes to the most significantly downregulated genes. S is the full set of genes with disease data. Without any loss

in generality, only the subset of disease genes that are also part of R are considered throughout (i.e. ⊆ R). S+ and S− correspond to the set of most upregulated and

downregulated sets of disease genes, respectively. B. Connectivity. Positions of S+ and S− disease genes in the ranked drug list, R
→

, determine the signs of enrichment

scores (ES; ESup, ESdown). Positive connectivity is defined as the case when the disease signature and drug profile show similar perturbations, i.e. when ESup is positive

and/or when ESdown is negative. This happens when S+ predominantly appears toward the top of the drug profile or when S− appears predominantly toward the

bottom of the drug profile (scenarios 1 and 4). Conversely, negative connectivity is defined as the case when the disease signature and drug profile show dissimilar

perturbations, i.e. when ESup is negative and/or when ESdown is positive. This happens when S+ predominantly appears toward the bottom of the drug profile or when

S− appears toward the top of the drug profile (scenarios 2 and 3). Negative connectivity indicates drug reversal of disease signature.

Table 1. General Notations

Notation Description

R the full set of genes with drug perturbation data
S the full set of genes with disease perturbation data (i.e. query) (Figure 1); Without any loss in generality, only the

subset of disease genes that are also part of R are considered throughout (i.e. S ⊆ R)
gri, gsi ith gene in set R or set S (i.e. drug or disease gene)
NR, NS number of genes in gene sets R or S
S+, S− disease upregulated or downregulated genes; S+ ⊆ S, S− ⊆ S, S+ ∪ S− = S
RX, SX subset of drug genes (R) or disease genes (S) with the most extreme gene scores (either from the top or bottom)

defined based on a user-specified threshold of fold-change and/or significance; RX ⊆ R; SX ⊆ S
S+

X , S−
X the upregulated and downregulated subsets of SX, the genes with the extreme disease gene scores; S+

X ∪ S−
X = SX−→

R ,
−→
S rank-ordered drug or disease gene list (i.e. ordered version of R or S) from the highest to the lowest gene scores

(e.g. Figure 1 shows
−→
R )−−→

Rabs,
−−→
Sabs absolute rank-ordered drug or disease gene list from the highest to the lowest absolute gene scores−→

RX,
−→
SX rank-ordered gene list for RX and SX

rdrg(), rdis() rank function for drug or disease that takes one or more genes as input and returns a vector of their ranks in
−→
R

or
−→
S , respectively

rabs
drg (), rabs

dis () absolute rank function for drug or disease that takes one or more genes as input and returns a vector of their
absolute ranks in

−→
R or

−→
S , respectively

vdrg(), vdis() score function for drug or disease that takes one or more genes as input and returns a vector of their gene
scores in

−→
R or

−→
S , respectively

sgndrg(), sgndis() sign function for drug or disease that takes one or more genes as input and returns the signs of their gene
scores (+1 or − 1) in

−→
R or

−→
S , respectively

t each treatment instance (i.e. a treated-and-vehicle-control pair) that results in a single drug profile R or
−→
R

ND total number of drug profiles (R or
−→
R ) in the reference database

Nd number of drug profiles (R or
−→
R ) in the reference database that corresponds to a specific drug d

is considered unlikely to be efficacious in treating that disease.
These scenarios are depicted in Figure 1. The general notations,
which we use throughout this work, are presented in Table 1 and
Figure 2.

Building on these general notations and terms, in the rest
of this article, we develop and present a systematic scheme

that defines the formulations of several drug-disease similar-
ity metrics and connectivity scores using consistent notations
and terms (Table 1; Figure 2), detailed formulation and summary
tables (Tables 2–8; Figure 3) that will enable researchers to relate
our consistent scheme back to the notations and terminology
used in the original publications.
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Figure 2. A taxonomy of connectivity scores. A. Relationship between disease-drug similarity metrics and connectivity scores. B. Detailed definitions of connectivity

scores in A. C. A brief history of connectivity scores. CMap-based connectivity scores: 2005–06. The first connectivity score, CS, was proposed in CMap 1.0 [7]. This score

was derived based on a modified KS statistic proposed as part of GSEA [16]. 2017. (a) A later study [18] proposed a new score RGES that combines the ESs (used by CS)

in a new way and shows an inverse correlation with drug efficacy. The same study also proposed heuristics to combine the RGES values across multiple instances of

the same drug, derived from different dosages and treatment times, into a summarized score sRGES. (b) The CMap 2.0 study [19], which included the generation of the

massive LINCS resource, proposed yet another set of connectivity scores, WCS, NCS and τ , that build on CS. While CS is based on gene ranks alone, WCS uses a ‘weighted’

ES from GSEA [16] that takes the gene perturbation levels into account. WCS scaled by appropriate mean values gives NCS. Finally, the entire LINCS dataset is exploited

to perform an additional permutation-based correction of NCS to finally obtain τ . Pairwise similarity metrics and connectivity scores: 2008. The connectivity score CSS

was proposed to include the ranks of all the genes along with their direction of perturbation to calculate drug-disease similarity, followed by a correction based on

scores for all other drugs in the database [23]. 2013–2018. Others [20–22] proposed a set of simple pairwise similarity metrics to calculate drug-disease associations

that incorporate the magnitude and direction of gene differential expression under both the drug and the disease (more below). A new connectivity score, EMUDRA,

integrates multiple pairwise scores to leverage the benefits of all of them [22].

Table 2. GSEA Notations

Current Notation Previous Notation Description

KS − Kolmogorov–Smirnov
ES − enrichment score
ESup, ESdown − ES for upregulated gene set (S+

X ) or downregulated gene sets (S−
X )

wES p the weight assigned to positions in
−→
R when calculating ES

grj gj a gene in
−→
R at index j

vdrg(grj) rj the drug-response score of gene grj in drug gene list
−→
R ; this score is used to rank the genes in

−→
R

N′
SX

NR the sum of absolute drug gene score (vdrg(grj)) of every
−→
R gene in SX weighted by wES

Phit(SX, i) − the fraction of genes in SX (‘hits’) weighted by their drug gene score (vdrg(grj))
Pmiss(SX, i) − the fraction of genes not in SX (‘misses’)

NR, NSX N, NH number of genes in
−→
R or SX

Gene set enrichment analysis

Nearly all connectivity scores developed thus far begin with the
calculation of some form of an ES that captures the relation-
ship between a drug and a disease. The basis of all these ES
formulations is the GSEA [16], which was originally developed

to assess the enrichment (overrepresentation) of predefined
biological gene sets (e.g. pathways, targets of a regulator) at
the top or bottom of a list of genes ranked by their extent of
differential expression in response to an experimental factor
of interest. Enriched gene sets are then hypothesized to be
biologically relevant to that experimental factor. When adapted
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Table 3. CMap 1.0 Notations

Current Notation Previous Notation Description

CS Si connectivity score; normalized connectivity score across all treatment instances
t i treatment instances
cs si connectivity score for each treatment instance
ES ks enrichment score

rdrg(gsi) V(j) position of gsi in
−→
R

NR, NSX t, n number of genes in
−→
R and SX

Table 4. RGES and sRGES Notations

Current Notation Previous Notation Description

RGES − reverse gene expression score
sRGES − summarized reverse gene expression score
f (dose(t), time(t)) f (dose(i), time(i)) the difference in RGES between a target condition and reference condition, modeled as a function

of dose and time
cor(cell(t), disease) cor(cell(i), disease) the average Spearman correlation between the expression profiles of a cell line cell(t) and the

disease of interest
ES KS enrichment score
Nd N number of treatments for a given drug (d)
t i treatment instances

Table 5. CMap 2.0 Notations

Current Notation Previous Notation Description

WCS WTCS; wc,t weighted connectivity score; also used to refer to a specific instance of the weighted connectivity
score of a given cell line c and perturbagen type dt

c − cell line
dt t drug type
k i index of each drug in the reference database; k = 1,2,3, . . . ,Nd

μ+
c,dt, μ−

c,dt μ+
c,t, μ−

c,t absolute values of means of positive and negative raw weighted connectivity scores, respectively

ND N total number of drug profiles (
−→
R ) in the reference database

SX q disease gene set (i.e. query)−→
R r rank-ordered gene list (drug)

Table 6. CSS Notations

Current Notation Previous Notation Description

CSS c Connection Strength Score−→
R R rank-ordered drug list (i.e. reference profile)
S s unordered disease signature (i.e. disease gene set)−→
S s ordered disease signature (i.e. disease gene list)
gsi gi ith gene in set S

css(
−→
R , S), css(

−→
R ,

−→
S ) C(R, s) raw connection strength score between

−→
R and S or between

−→
R and

−→
S

rabs
drg (gsi) × sgndrg(gsi) R(gi) the signed position of gsi in

−→
R

rabs
dis (gsi) × sgndis(gsi) S(gi) the signed position of gsi in

−→
S

sgndis(gsi) S(gi) disease gene’s regulation status in disease profile (S or
−→
S ); assigned to +1 and − 1 for genes with

upregulation and downregulation status, respectively

NS m number of genes in S that appears in
−→
R (equivalent to number of genes in S since S ⊆ R)

Table 7. EWCos Notations

Current Notation Previous Notation Description

i, j − indices of genes and drug instances in CMap 2.0; i = 1, 2, .., NS, j = 1, 2, . . . , ND

wij wi weight calculated using the logistic sigmoidal function given specifically to each gene gri for drug
instance j in the CMap 2.0

xij xi raw expression value of each gene gri for drug instance j in CMap 2.0
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Table 8. Disease-Drug Similarity Measures

Similarity Metric Disease Information Drug Information Symmetric? Connectivity Score(s)

ES (uw) [16] SX
−→
R No CS [7], RGES [18]

ES (w) SX
−→
R , vdrg(R) No WCS, NCS, τ [19]

css (o) [23] rdis(S), sgndis(S) rdrg(R), sgndrg(R) Yes CSS [23]
css (u) S+

X , S−
X rdrg(R), sgndrg(R) No CSS

Sum [20, 21] S+, S− vdrg(R) No -
XSum [20, 21] S+

X , S−
X vdrg(RX) No -

Cosine [22] vdis(S) vdrg(R) Yes EMUDRA [22]
XCos [20, 21] vdis(SX) vdrg(RX) Yes -
XCor [20, 21] vdis(SX) vdrg(RX) Yes EMUDRA

XSpe [20, 21]
−→
SX

−→
RX Yes EMUDRA

EWCos [22] vdis(S) vdrg(R) Yes EMUDRA

This table shows the disease- and drug-specific information required for the calculation of the nine similarity metrics: ES, css, Sum, XSum, Cosine, XCos, XCor, XSpe and
EWCos, their symmetry, and their associated connectivity scores. The classic ES, which is based on the signed KS statistic [16], can take two forms: unweighted (uw) and
weighted (w). The unweighted form—as used by the connectivity scores CS [7] and RGES [18]—takes as input the set of most perturbed genes from the disease (SX) and

the rank ordering of genes in the drug profile (
−→
R ). The weighted form—as used by scores WCS, NCS and τ [19]—takes an additional input of drug gene perturbation values

that are used to weight the genes at each position in the ranked profile. Another class of pairwise similarity metrics uses rank and/or differential expression values
from both the disease and the drug to calculate disease-drug association. For instance, the connection strength score css [23] uses ranks and perturbation directions of
all genes (not just the most perturbed) from the disease (rdis(S), sgndis(S)) and the drug (rdrg(R), sgndrg(R)). css can be adapted to the case when only unordered disease

gene sets are available (S+
X , S−

X ). Metrics such as Sum use membership information from the disease (S+, S−) with the level of differential expression of genes from the
drug (vdrg(R)) [20, 21]. Cosine and EWCos use the perturbation values of genes from both the disease (vdis(S)) and the drug (vdrg(R)) [22]. EWCos differs from Cosine in how
the former mitigates the effect of noisy differential expression signals from genes with low expression [22]. The so-called ‘extreme’ metrics—XSum, XCos, XCor and
XSpe—are equivalent to their parent versions except that the inputs are restricted to the most perturbed genes [20, 21].

to the question of drug repurposing, a method like GSEA can be
used to assess the enrichment of sets of genes associated with
a disease at the top or bottom of a list of genes ranked by their
extent of differential expression in response to a drug (Figure 1).
In this section, we present the formulation of ES using our new,
consistent notation (Table 2; Figure 3).

Enrichment score

GSEA is a weighted signed version of the classical Kolmogorov–
Smirnov test. It takes two inputs: (i) a disease gene set composed
of a set of genes significantly perturbed in response to a dis-
ease (denoted SX ⊆ S), and (ii) a rank-ordered list (

−→
R ) of drug

genes (in decreasing order of vdrg(grj), a score based on the level
differential-expression of each gene grj in response to the drug).
Using these two inputs, GSEA quantifies the level of association
between the disease and the drug by calculating an ES based on
the following steps:

1. For each position i in the rank-ordered list (
−→
R ) from top to

bottom,
1.1. if the gene is in SX, calculate:

Phit
(
SX, i

) =
∑

grj ∈ SX

j ≤ i

∣∣vdrg
(
grj

)∣∣wES

N′
SX

, where

N′
SX

=
∑

grj∈SX

∣∣vdrg
(
grj

)∣∣wES

1.2. if the gene is not in SX, calculate:

Pmiss
(
SX, i

) =
∑

grj /∈ SX

j ≤ i

1
NR − NSX

1.3. calculate the positional ES (esi)

esi = Phit
(
SX, i

) − Pmiss
(
SX, i

)

2. Finally, calculate the final ES:

ES = maxi (esi) (1.1)

the maximum positional ES. Here, NR and NSX are the number of
genes in the drug (R) and disease (SX) gene sets. wES is the weight
assigned to each position in the drug profile

−→
R . When wES = 0,

N′
SX

= ∑
grj∈S |vdrg(grj)|0 = NS, which results in

Phit
(
SX, i

) =
∑

grj ∈ SX

j ≤ i

∣∣vdrg
(
grj

)∣∣0

N′
SX

=
∑

grj ∈ SX

j ≤ i

1
N′

SX

.

Thus, Phit(SX, i) and Pmiss(SX, i) are both empirical distribution
functions of the positions of the disease genes (i.e. SX) and the
positions of the non-disease genes (i.e. R − SX), respectively, in
the drug gene list

−→
R . Therefore, when wES = 0, ES (the signed

maximum distance between the two functions) reduces to a
signed two-sample Kolmogorov–Smirnov (KS) statistic:

ES = max
(
Phit

(
SX, i

) − Pmiss
(
SX, i

))
= sign

(
Phit

(
SX, i

) − Pmiss
(
SX, i

)) × KS (1.2)

where

KS = max | FSX (i) − FR−SX (i) |

is the classical two-sample KS statistic, with FSX and FR−SX being
the empirical distribution function of SX and R − SX, respectively,
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Figure 3. Similarity metrics and the drug reversal phenotype. The figure shows

expected signs of the disease-drug similarity metrics (last three columns) for

all eight scenarios (rows) of overlap between the drug and disease signatures

(depicted in first and second columns), each leading to drug reversal out-

comes of different strengths and directions (depicted in the ‘Outcome’ column).

Specifically, these scenarios correspond to combinations of upregulated and

downregulated disease genes (S) and their relative position in the drug profile

(R
→

). The top three scenarios (coded in blue) correspond to favorable outcomes

of the drug fully or partially reversing the disease gene signature. The bottom

three scenarios (coded in red) correspond to unfavorable outcomes of the drug

not reversing the disease gene signature. The middle two scenarios (coded in

gray) indicate neutral outcomes. ESup and ESdown: enrichment scores of upregu-

lated and downregulated disease genes, respectively; Pairwise similarity metrics:

collectively refers to css, Sum, XSum, Cosine, XCos, XCor and EWCos.

defined as follows:

FSX (i) = 1
NSX

NSX∑
j = 1

grj ∈ SX

1j≤i, FR−SX (i) = 1
NR − NSX

NR∑
j = 1

grj /∈ SX

1j≤i

where 1j≤i is the indicator variable that takes the value 1 when-
ever j ≤ i and 0 otherwise.

When wES = 1, ES becomes a weighted signed two-sample KS
statistic with each position j in the drug gene list

−→
R weighted

by the drug-response score vdrg(grj). Setting wES to one is rec-
ommended for GSEA. We point the reader to the original GSEA
publication for a discussion of statistics when wES is set to lesser
or greater than one.

Summary

• ES ranges from −1 to +1.

• ES is the maximum deviation from zero encountered
between the empirical distributions of the disease and
non-disease genes in drug gene list

−→
R .

• A positive ES indicates disease gene set enrichment toward
the top of drug gene list

−→
R .

• A negative ES indicates disease enrichment at the bottom
of

−→
R .

• When SX is randomly distributed in
−→
R , the magnitude of

ES is small but if a large proportion of genes in SX is con-
centrated at the top or bottom of

−→
R , the magnitude of ES is

large.
• When calculated separately for genes upregulated (S+

X ) and
downregulated (S−

X ) by the disease, good drug candidates
that show a reversal relationship with the disease profile
have a negative ESup and a positive ESdown (Table 2; Figure 3).

• Revised notations used in this GSEA section are summa-
rized in Table 2.

Connectivity map 1.0: disease-drug
connectivity score (CMap 1.0)
The connectivity map 1.0 (CMap 1.0) project pioneered the iden-
tification of drug candidates based on their ability to reverse
disease gene expression profiles [7]. Key to this project was the
creation of a large collection of reference gene expression pro-
files of multiple human cell lines that are treated with 164 small
molecules, including approved drugs. The expression profiles
were generated using Affymetrix microarrays. The original CMap
1.0 study and several others focused on cancer [28], inflamma-
tory bowel disease [14] and spinal muscular atrophy [29] have
used this reference library of drug profiles for drug repurposing.
In all these cases, the starting point is a disease ‘signature’
defined by the sets of genes upregulated and downregulated in
the disease. This signature is compared to each drug profile in
the reference library using a GSEA-like analysis that results in
an ES for each of the upregulated and downregulated disease
gene sets separately. The ES captures the level and direction of
association of the disease gene set with that drug. Then, the ‘up’
and ‘down’ ES are combined into a single connectivity score (CS)
for the disease with respect to that drug. Finally, for the given
disease, drug candidates are identified as those that have low
negative CS. In this section, we present the formulation of CMap
1.0 using our new, consistent notation (Table 3).

ES calculation

The drug-disease ES in CMap 1.0 is adapted from GSEA. Instead
of using GSEA’s signed two-sample KS test formulation that
compares the positions of SX genes to those of R−SX genes, CMap
1.0 uses a signed one-sample KS test to compare the empirical
distribution of the positions of SX genes in

−→
R compared to a

reference uniform distribution (of disease genes in the drug gene
list):

ES =
{

a , if a > b
− b , if b > a

(2.1)

where

a = NS
max

i=1

[
i

NS
− rdrg

(
gsi

)
NR

]

b = NS
max

i=1

[
rdrg

(
gsi

)
NR

−
(
i − 1

)
NS

]
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This formulation is used to calculate an ESup and an ESdown

value for the genes upregulated (S+
X ) and downregulated (S−

X ) by
the disease, respectively.

Connectivity score (CS) calculation—normalization
across treatment instances

These two scores are then used to calculate a raw connectivity
score cs:

cs =
{

ESup − ESdown, if sign
(
ESup

) �= sign (ESdown)

0, otherwise

The final connectivity score is calculated by normalizing the
raw score by dividing by the maximum or minimum of raw
scores across treatment instances, depending on the sign of cs,
bringing it back to range between −1 and + 1:

CS =

⎧⎪⎪⎨
⎪⎪⎩

cs
maxt(cs)

, if cs > 0

−cs
mint(cs)

, if cs < 0
(2.2)

Summary

• ESup and ESdown represent the association between the
upregulated (S+

X ) and downregulated (S−
X ) disease genes (SX)

with the ranked drug gene list (
−→
R ).

• CS is the connectivity score that combines ESup and ESdown

per drug treatment and normalizes them across treatments.
Similar to ES, CS ranges from −1 to +1.

• Lower CS indicates a better reversal relationship between
the disease and the drug.

• Revised notations used in this CMap 1.0 section are summa-
rized in Table 3.

Reverse gene expression score
The Connectivity Map project was subsequently expanded into
the NIH LINCS program by using a cost-effective gene-expression
assay called L1000 [19]. The L1000 platform measures only about
1,000 carefully chosen genes with the rest of the transcrip-
tome estimated by an imputation model trained using publicly
available genome-scale expression data [9]. The pilot phase of
the LINCS program included data for about 20,000 compounds
assayed on about 50 human cell lines across a range of doses to
result in over 1 million L1000 profiles.

The focus of the study by Chen et al. [18] was to use this LINCS
data to not only capture expression-based drug-disease reversal
relationships but also evaluate if these reversals correlate with
independently measured drug efficacies. Toward this goal, the
authors selected compounds with both efficacy data in ChEMBL
[30] and gene expression LINCS data. Using these two datasets,
this study showed that the distribution of connectivity scores
(CS) from CMap 1.0 [7] is enriched at 0 and that these scores
do not correlate well with IC50 values. To address this issue, the
authors proposed a new connectivity score called the RGES. In
this section, we present the formulation of RGES using our new,
consistent notation (Table 4).

In CMap 1.0, the connectivity score for a drug is set to zero
if ESup and ESdown, the ES for the upregulated and downregulated
disease gene sets, have the same signs. RGES, on the other hand,

is computed as the difference between absolute values of the two
ES values:

RGES =| ESup | − | ESdown | (3.1)

Summary

• The RGES connectivity score is based on the difference
between the absolute values of the scores of the upregulated
and downregulated disease genes regardless of whether
they are enriched at the top or the bottom of the drug gene
list,

−→
R .

• Similar to ES and CS, RGES ranges from −1 to +1.
• RGES is inversely correlated with drug efficacy.
• Revised notations used in this RGES subsection are summa-

rized in Table 4.

Summarization of RGES

Since the LINCS dataset contains multiple profiles correspond-
ing to the same drug assayed on multiple cell lines, concentra-
tions and time points, the study also proposed summarizing a
drug’s RGES values across these various conditions into a single
score called the Summarization of Reverse Gene Expression
Score (sRGES). sRGES is estimated by first setting the condition
that corresponds to 10 μM and 24 h (the most common in the
LINCS database) as the ‘reference’ condition and setting all other
conditions as ‘target’ conditions. Then, for a specific cell line, a
drug’s RGES in a target condition is assumed to be dependent
on the target condition’s dose and time relative to the reference
condition, quantified using a heuristic ‘awarding function’ (f ):

f
(
dose(t), time(t)

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α, dose(t) < 10μM and time(t) < 24h
β, dose(t) < 10μM and time(t) ≥ 24h
γ , dose(t) ≥ 10μM and time(t) < 24h
0, dose(t) ≥ 10μM and time(t) ≥ 24h

Target conditions are first divided into four groups (as in the
equation above), and the value of the function for each target
group (e.g. dose(t) < 10μM and time(t) < 24h) is estimated by
averaging the difference in RGES between the target group and
reference group across all the drugs in the reference database
that were profiled in the same cell line in that target condition
and the reference condition.

Then, to combine RGES values across cell lines, a weight w(t)
is calculated for each treatment that reflects how much that
treatment’s corresponding cell line, cell(t) is similar to the disease
under study:

w(t) = cor
(
cell(t), disease

)
maxk

(
cor

(
cell(k), disease

))

Here, the correlation between cell line, cell(t), and the disease,
cor(cell(t), disease)), is the average of the Spearman correlations
between the expression profiles of the cell line and disease
of interest, normalized by the maximum correlation between
all cell lines and the disease. Finally, sRGES is defined as the
following:

sRGES =
Nd∑
t

(
RGES(t) + f

(
dose(t), time(t)

)) × w(t)
Nd

(3.2)



Reconciling connectivity scores 9

This study shows that these new formulations of the connec-
tivity scores, RGES and sRGES, show a correlation with drug IC50

values, with drugs with low negative RGES or sRGES tending to
have low IC50 values.

Summary

• The sRGES connectivity score is designed to combine the
RGES values based on the difference between the absolute
values of the scores of the upregulated and downregulated
disease genes regardless of whether they are enriched at the
top or the bottom of the drug gene list,

−→
R .

• Similar to ES and CS, sRGES ranges from −1 to +1.
• sRGES is inversely correlated with drug efficacy.
• Revised notations used in this sRGES subsection are sum-

marized in Table 4.

CMap 2.0 connectivity score
CMap 2.0 is a massive expansion of the L1000 dataset to ∼1.4 mil-
lion profiles, which represent 42 K genetic and small molecules
perturbed across multiple cell lines [19]. As part of the release
of these data, the study also proposed new connectivity score
calculations (WCS, Normalized Connectivity Score (NCS) and
Tau Score). Similar to other scenarios outlined above, the CMap
2.0 methodology works by comparing the disease gene set (S)
(containing the upregulated (S+) and downregulated (S−) genes)
to reference drug profiles in the L1000 database to get a rank-
ordered list of all drugs based on a slightly new formulation of
the connectivity score, along with new proposals for normalizing
the scores across cell lines and drug types and for correcting the
resulting normalized score against the background of the entire
reference library. In this section, we present the formulation of
CMap 2.0 using our new, consistent notation (Table 5).

Weighted connectivity score

The disease-drug ES in CMap 2.0 is based directly on GSEA’s
weighted signed two-sample KS statistic that compares the
positions of SX genes to those of R − SX genes with the weight
wES set to 1. ES is then used to calculate a WCS that represents a
nonparametric disease-drug similarity measure. WCS is defined
as follow:

WCS =
{(

ESup − ESdown
)
/2, if sign

(
ESup

) �= sign (ESdown)

0, otherwise
(4.1)

Summary

• The disease-drug similarities (ESup & ESdown) are computed
using the two-sided weighted KS statistic.

• WCS ranges from −1 to +1.
• A positive (or negative) WCS indicates that SX and

−→
R are

positively (or negatively) related (similar/dissimilar).
• A zero WCS indicates that SX and

−→
R are unrelated.

• Revised notations used in this WCS subsection are summa-
rized in Table 5.

Normalized connectivity score

The NCS was developed to enable the comparison of WCS across
cell lines and drug type. Given the WCS for a disease in relation to
a specific drug of a type dt, tested in cell line c, the corresponding

NCS is computed by mean-scaling WCS:

NCS =
{

WCS/μ+
c,dt, if sign(WCS) > 0

WCS/μ−
c,dt, otherwise

(4.2)

Here, μ+
c,dt and μ−

c,dt are absolute values of the means of the
positive and negative WCS values, respectively. This procedure
is identical to that used in the original GSEA for normalizing ES
scores to make them comparable across gene sets of different
sizes.

Tau score

Finally, the NCS for a disease to a specific drug (i.e. the NCS
for a given disease–drug pair) is converted to a tau (τ ) score by
comparing it to NCS values of that disease to all the drugs in
the reference database (referred to as ‘touchstone’ in CMap 2.0)
of the same type dt tested in the same cell line c, expressed as
signed percentage value between −100 and + 100:

τ = sign(NCS)
100
ND

ND∑
k=1

[|NCSk| < |NCS|] (4.3)

Thus, a τ of 95 indicates that only 5% of drugs in the reference
database of the same type and tested in the same cell line (con-
taining ND drugs) showed stronger connectivity to the disease
than the drug of interest. Since any disease is queried against
the same fixed drug reference database, τ values are comparable
across diseases.

Another way to calculate a τ score corresponding to the
NCS value for a disease–drug pair is to compare to the NCS
values of that specific drug to all the perturbation signatures
in a reference database. This comparison will yield a τ that
represents the signed percentage of reference signatures that
are less connected to the drug than the disease of interest. In
other words, based on this comparison, a τ of 95 indicates that
only 5% of signatures in a reference database showed stronger
connectivity to the drug than the disease of interest. Similarly,
τ values in this new setting are comparable across drugs in the
reference database.

Summary

• The NCS was developed to enable the comparison of WCS
across cell lines and drug type.

• The tau score (τ ) measures further corrects for nonspecific
associations by expressing the NCS of a given disease–drug
pair in terms of the fraction of signatures/profiles in a
reference database that exceed this NCS value.

• Tau (τ ) ranges from −100 to +100 and a lower negative score
reveals a better disease–drug reversal relationship.

• Good tau scores (τ ) should range between −95 and −100. A τ

of 95 indicates that only 5% of reference signatures/profiles
in the reference database showed stronger connectivity.

• Revised notations used in the NCS and τ subsections are
summarized in Table 5.

Pairwise similarity measures

All the connectivity scores described above use the ES as the
similarity metric, which is a weighted signed two-sample or
one-sample KS statistic. However, only the ES used in CMap 2.0
(WCS, NCS and τ ) incorporates drug gene perturbation values
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(by setting the weight wES to ≥ 1). The ES used in the other
scores (CS, RGES and sRGES) is just based on gene ranks, thereby
likely missing several potential drug candidates. Additionally,
all these scores (including CMap 2.0) only use disease gene
membership information and are not designed to take advan-
tage of disease gene perturbation values. The next few sections
describe in detail a set of pairwise similarity metrics—and their
corresponding connectivity scores—that have been proposed to
address these various limitations and improve the calculation of
drug-disease associations [20–23] (Table 6).

Connection strength score
Zhang and Gant proposed a connectivity score called the CSS
[23]. Similar to other scores, CSS is formulated to keep each
gene’s contribution proportional to its level of differential
expression. In addition, the goals of this new score are (i) to
include the perturbation of all the genes in characterizing the
effect of a drug (or disease) and (ii) to treat gene perturbation
in either direction (up or down) equally and together. In this
subsection, we present the formulation of CSS using our new,
consistent notation (Table 6).

These motivations led the authors to propose a new scheme
for ranking drug genes. In this scheme, all genes, irrespective
of the direction of perturbation, are first ranked in descending
order based on the absolute value of their drug gene scores. We
represent this operation using the function rabs

drg () that takes one
or more genes as input and returns their absolute-value-based
ranks in the drug profile. Positive or negative signs are then
added back to the rank of each upregulated or downregulated
gene, respectively, to get signed ranks, denoted as rabs

drg () × sgndrg().
Similarly, the signed ranks for the disease data are obtained as
rabs

dis () × sgndis(). Thus, the ith gene in R (or S) gets a signed rank
of N − i + 1 or −(N − i + 1) depending on whether the gene is
upregulated or downregulated. These signed ranks are used to
calculate a similarity metric between an ordered drug profile R
and an ordered disease signature S. We refer to this metric as the
raw connection strength score (css).

css
(−→

R ,
−→
S

)
=

NS∑
i = 1

[(
rabs

drg

(
gsi

) × sgndrg
(
gsi

))

×
(
rabs

dis

(
gsi

) × sgndis
(
gsi

))]
(5.1)

The raw score (css) is then scaled by the maximum possible
score given the number of drug and disease genes (csso

max(NR, NS))
to calculate a connectivity score that is referred to here as the
final CSS.

CSS =
css

(−→
R ,

−→
S

)
csso

max (NR, NS)
(5.2)

where csso
max(NR, NS) = ∑NS

i=1(NR − i + 1)(NS − i + 1).
Here, genes perturbed in the same direction (up or down)

by both the drug and the disease make a positive contribution
to CSS, while the contribution of genes perturbed in different
directions will be negative. Consequently, gene signatures with
mixed perturbations will result in an overall low CSS with the
positive and negative contributions canceling each other.

As proposed by the authors, this scoring scheme can be easily
adapted to the case when only an unordered gene set (S) is

available for the disease.

css
(−→

R , S
)

=
NS∑

i = 1

[
rabs

drg

(
gsi

) × sgndrg
(
gsi

)]
(5.3)

CSS =
css

(−→
R , S

)
cssu

max (NR, NS)
(5.4)

where cssu
max(NR, NS) = ∑NS

i=1(NR − i + 1).

Summary

• CSS ranges from −1 to +1.
• CSS of +1 and −1 indicates the maximum positive and

negative connection strengths, respectively, corresponding
to the strongest and weakest possible correlation of the dis-
ease profile with the treatment instance used in generating−→
R (Figure 3).

• Revised notations used to define CSS are summarized in
Table 6.

Similarity metrics based on differential
expression values
Though CSS uses all genes from the drug and the disease data,
it is still rank-based. Hence, another class of metrics has been
proposed to explicitly use the differential expression values of
genes in calculating drug-disease similarity [20–22]. As these
metrics are simple, their definitions in the original studies are
only descriptive. Nevertheless, here, we describe them using our
notations to easily relate them to all other metrics and scores.

Whole and extreme metrics

The metric Sum is calculated as the difference between the
sum of the drug perturbation values of all upregulated disease
genes (vdrg(S+)) and the sum of the drug perturbation values of
all downregulated disease genes. Thus, Sum = sum(vdrg(S+)) −
sum(vdrg(S−))) (6.1). The metric Cosine captures the cosine cor-
relation between the drug and the disease perturbation val-
ues across the common set of all genes with both data, i.e.
Cos(vdis(S), vdrg(R)) (6.2). Analogous similarity metrics can be cal-
culated by replacing cosine correlation with Pearson (Cor) and
Spearman (Spe) correlation coefficients. These metrics can also
be adapted to just use a fixed number of ‘extreme’ genes that are
most upregulated or downregulated by the disease (as depicted
in Figure 1): XCor is the extreme Pearson correlation, defined
as Cor(vdis(SX), vdrg(RX)) (6.3); XSpe is the extreme Spearman rank

correlation, defined as Spe(
−→
SX,

−→
RX) (6.4); XSum is the extreme

Sum, defined as sum(vdrg(S+
X )) − sum(vdrg(S−

X )) (6.5); and XCos is the
extreme cosine correlation, defined as Cos(vdis(SX), vdrg(RX)) (6.6).

Summary

• Sum and Cosine are pairwise similarity metrics that use gene
differential expression values of all genes.

• The extreme similarity metric XSum uses the drug differ-
ential expression values of genes most perturbed by the
disease. XCor, XSpe and XCos compare the disease and drug
differential expression values of genes most perturbed by
the disease.

• Sum and XSum can take any real value with negative values
indicating an overall reversal of the disease perturbation by
the drug. XCor, XSpe and XCos range from −1 to +1 indicating
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the maximum positive and negative similarity, respectively,
between the drug and the disease (Figure 3).

Expression-weighted cosine similarity (EWCos)

The correlation metrics described above take as input the dif-
ferential expression values of genes from the drug and the dis-
ease, which are calculated by comparing drug/disease samples
to appropriate controls. These differential expression values,
however, do not preserve information about the basal expression
levels of the genes. Further, when sample sizes are small, biolog-
ical and technical noise could result in genes with overall low
expression levels ending up with high differential expression
levels just by chance. The Expression-Weighted Cosine simi-
larity metric (EWCos) was introduced to mitigate the effect of
lowly expressed genes [22]. This metric is described next using
notations similar to the ones used in the original study (Table 7).

First, using data in CMap 2.0, a weight wij is computed for
each gene gri for each drug instance j using a logistic sigmoidal
function. This function, defined as follows, assigns genes that
are lowly or highly expressed with weights close to zero or one,
respectively.

wij = 1

1 + e−α(xij−kx)

where xij is the raw expression value of gri in drug instance j. x is
the average of all the raw expression values of the genes in the
CMap 2.0 database. α ∈ [0, 6] and k ∈ [0, 1.5] are parameters to be
optimized.

The weights (wij) for all the genes across all the drugs are
gathered into a matrix W. From the drug perturbation data,
there is also a matrix logFC. Each cell in this matrix logFCij

contains the log-fold-change of gene gri in drug instance j. Hence,
to calibrate log-fold-changes using expression-based weights,
these two matrices, W and logFC, are combined by element-
wise multiplication (Hadamard product) to obtain a matrix of
expression-weighted log-fold-changes, EWlogFC.

EWlogFC = W ◦ logFC

Finally, given a query disease profile (S), quantifying its simi-
larity to each column in the EWlogFC matrix will reveal the asso-
ciation between that disease and each drug in the database. The
disease-drug similarity used here is EWCos, defined as the cosine
similarity between the vector of logFC values of the disease (e.g.
vdis(S)) and the column in the EWlogFC matrix corresponding to
that specific drug j.

EWCosj = Cos
(
vdis(S), EWlogFCj

)
(6.7)

As large-scale drug-disease gold-standards are lacking, the α

and k parameters in the weight function above are optimized to
maximize the ability of EWCos to match replicate instances of
the same drug (see [22] for more details).

Summary

• Expression-Weighted Cosine metric, EWCos, ranges from −1
to +1 with negative values corresponding to drug reversal of
disease signature (Figure 3).

• The weighting based on basal expression reduces the con-
tribution of lowly expressed genes to the drug-disease sim-
ilarity measure.

• Revised notations used to define EWCos are presented in
Table 7.

Ensemble of multiple drug repositioning
approaches
Given the range of similarity metrics and connectivity scores
that have been developed over the years, going forward, a par-
ticularly appealing approach is to integrate multiple metrics
to build on each other’s strengths and buffer for the weak-
nesses. With such a goal in mind, Zhou and colleagues proposed
EMUDRA. EMUDRA combines the similarity metric they devel-
oped—EWCos (described above)—with three other pairwise met-
rics previously shown to perform well [20, 21]—Cosine, XCor and
XSpe—into an integrated prediction model [22]. In this section,
we present the formulation of EMUDRA using notations that are
identical to the ones used in the original paper.

EMUDRA calculation

EMUDRA combines EWCos, Cosine, XSpe and XCor by first stan-
dardizing each score (i.e. subtracting mean and dividing by stan-
dard deviation) and summing the resulting z-scores of the four
metrics to get a final prediction score.

To check if the standardization can be applied directly for
each similarity metric, the authors examined if the similarities
of all the drugs to a given disease signature follow a normal
distribution. For random queries, their similarities to all the
drugs were observed to closely follow a normal distribution. On
the other hand, for a real disease query, the similarities were
observed to be nearly normal except for a long tail corresponding
to the few drug instances in the database that effectively reverse
the disease signature. Consequently, the similarity scores for
a real query signature are standardized using trimmed (win-
sorized) mean and standard deviation as follows. Let li be a list
of similarity scores of all the drugs in the database for a given
query disease signature, where the index i refers to one of the
four different similarity metrics (i = 1, 2, 3, 4). Let Q1 and Q3 be
the first and third quartiles of li, respectively, and IQR be the
interquartile range, (Q3−Q1). The thresholds [Q1−(1.5×IQR), Q3+
(1.5 × IQR)] are then used to identify the outliers in li. Let l′i be a
new list created by excluding the outliers in li. This trimmed list
is used to calculate the mean μ(l′i) and standard deviation σ (l′i),
which are then used to convert the values in li to z-scores zi.

zi = li − μ
(
l′i
)

σ
(
l′i
)

After applying this winsorized standardization procedure on
the scores from all four methods, the final EMUDRA score is
calculated as follows:

EMUDRA =
∑

i
zi (7.1)

Summary

• EMUDRA score can be any real number (–∞, +∞).
• Large negative scores indicate drugs that invariably have

low scores across all four metrics, signifying drug reversal
of the disease signature.

• The notations used to define EMUDRA are identical to those
in the original paper.



12 Samart et al.

Discussion
Connectivity-based drug repurposing is a stellar example of
the power of thoughtfully combining computational techniques,
experimental design and high-throughput –omics data. Over the
past 15 years, this approach has delivered biomedical insights
and therapeutic leads for a variety of diseases including coron-
avirus disease 2019 [31, 32]. During this time, the available data
have seen tremendous growth, for e.g. from the thousands of
drug profiles in CMAP 1.0 [7] to > 1 million profiles in LINCS [19].
This growth in data is paralleled by the development of several
newer connectivity mapping methods for comparing drug and
disease gene signatures as effectively as possible.

As is expected, these methods have been built upon each
other over time toward addressing previous limitations, leverag-
ing larger amounts of data, and achieving better performance in
prioritizing repurposed drug candidates for diseases. Hence, all
these methods share a number of core conceptual and analyt-
ical ideas and use similar statistical techniques and quantities.
Unfortunately, the original studies that published these methods
and the other studies that reused, reviewed or compared the
quantitative details of different methods have used inconsistent
notations and naming systems to refer to previous methods
and their mathematical details. Such variation is a considerable
impediment to: (a) cogent, detailed understanding of current
methods, (b) their transparent benchmarking and evaluation
and (c) the development of new methods that continue to build
on existing ideas.

In this article, we present the most comprehensive and
detailed description of all connectivity scores and their
relationships. This description is grounded on a consistent
and all-inclusive system of notations and definitions for all the
ideas and quantities involved. To avoid any confusion, we have
also clearly tabulated how any new notation that we develop
here corresponds to the notations used in the original studies.
As can be seen in the descriptions above and the discussion
below, this unified system has enabled us to unambiguously
refer to methodological details, make clear connections between
methods and studies, and discuss their properties.

In the rest of the discussion, we examine all the connec-
tivity scores in terms of their underlying drug-disease simi-
larity metrics that reveal facets of their biological and practi-
cal relevance. Next, we outline the status of current efforts to
benchmark similarity metrics and connectivity scores. Finally,
we present a forward-looking discussion of recent developments
and immediate needs in the broader area of computational
drug repurposing, along with how our work fits into this big
picture.

Connectivity scores through the lens of disease-drug
similarity metrics

The first step in connectivity mapping is the quantification of
the association between a single disease and a single drug based
on their gene perturbation profile. Connectivity scores differ
from each other in their choice of specific similarity metrics and
how they are combined, normalized and background-corrected.
Among these aspects, the choice of similarity metric signifi-
cantly influences the nature of the connectivity score. Table 8
shows the list of all similarity metrics used in connectivity
mapping to quantify disease-drug associations.

The differences between similarity metrics (Table 8; Figure 3)
have a number of biological and practical implications:

Nature of drug reversal: The ES is typically calculated sep-
arately for the genes upregulated and downregulated in the
disease. Negative values of ESup and positive values of ESdown

indicate the desired reversal of the disease signature by the drug
under consideration (Figure 3). The connectivity scores CS (CMap
1.0) and WCS/NCS/τ (CMap 2.0) use difference between these
two values (i.e. ESup − ESdown) in further calculation if their signs
differ, and zero otherwise. This way, CS and WCS/NCS/τ take
negative values when both the upregulated and downregulated
disease gene sets are reversed by the drug, positive values when
both sets are not reversed, and zero when the reversal is mixed.
Though these properties seem biologically meaningful, the RGES
study [18] noticed that, when several drugs for a particular
disease are considered together, their CS scores do not correlate
with their efficacies (IC50 values). To satisfy this expected corre-
lation, RGES compares the absolute values of ESup and ESdown and
takes negative values when | ESup |<| ESdown |, positive values
when | ESup |>| ESdown |, and zero when they are equal to each
other. Calculated this way, RGES values of drugs turn out to be
inversely correlated with their efficacies, while the sign of RGES
alone is not informative about drug-disease reversal anymore.
Finally, the pairwise similarity metrics—css, Sum, XSum, Cosine,
XCos, XCor and EWCos—and the connectivity scores that incor-
porate them—CSS and EMUDRA—have a simple correspondence
to the reversal phenotype: the range from negative to positive
scores corresponds to the range from strong reversal to strong
similarity.

Amount of input information: ES, Sum, XSum and the
unordered css only require the list of most upregulated and
downregulated genes from the disease. They are designed for
the scenario in which the full gene expression data are available
for the drug perturbation and only limited data, typically just
gene membership information, are available for the disease
perturbation. Hence, these metrics are the easiest to apply for
drug repurposing because: (a) the CMap and LINCS resources
that are typically used as the source of drug perturbation data
are available in full, and (b) gene membership information can
be unearthed even from supplementary tables of disease gene
expression studies. None of the other metrics can be used in such
cases. Metrics such as Cosine, XCos, XCor and EWCos use the most
amount of information from the disease and the drug, which
necessitates access to the full differential expression profiles.

Choices of threshold parameters: ES and the extreme simi-
larity metrics require a choice of threshold used to determine
the genes most perturbed by the drug or the disease. This choice
could be based on the level of significance (e.g. P−value < 0.01),
fold-change (e.g. | log2(FoldChange) |> 1) and/or just rank (e.g.
top and bottom 100 genes). In any scenario, this choice is likely
to significantly influence the performance of each metric in
prioritizing real disease-drug associations [21, 27].

Symmetry: By virtue of being symmetric, the metrics css,
Cosine, XCos, XCor, XSpe and EWCos can be directly applied to
not just disease-drug associations but also to quantify disease–
disease (e.g. [33]) and drug–drug relationships (e.g. [12, 13]). The
other metrics too can be used for these purposes by, for instance,
averaging the two asymmetric quantities similarity(drug1, drug2)
and similarity(drug2, drug1) (e.g. [21]).

Benchmarking similarity metrics and connectivity
scores

All the similarity metrics and connectivity scores described here
have not been systematically benchmarked and compared on a
large scale. One of the biggest challenges in doing so is the lack
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of a gold standard drug-indication set that spans the drugs in
the LINCS collection over a variety of diseases. Therefore, studies
often use pairs of drugs that share ATC codes or the same drug
profiled independently in CMap and LINCS for benchmarking
the methods and follow the evaluations with the analysis of a
few individual disease datasets with known associated drugs.

Nevertheless, these comparative studies have shown that
simple metrics like XSum and XCos outperform ES-based meth-
ods [20–22]. As expected, ensemble approaches such as EMUDRA
that combine multiple metrics have been shown to perform bet-
ter than any single metric [22]. In this study, connectivity scores
based on ES and css performed poorly. Another study found that
the performance of ES and css relative to each other depends
on the number of genes in the disease signature [27]. Being
rank-based, these metrics could suffer from the contribution
genes that are highly ranked but not substantially differentially
expressed.

Looking forward

With continued growth in computational and experimental
technologies, connectivity mapping remains integral to a
number of newer avenues for therapeutic design and appli-
cations. Connectivity-based methods have been valuable for
comparing drugs to each other based on the similarity of
their expression signatures [12, 13]. Integrating these drug–
drug similarities with drug–disease reversal relationships, both
calculated using connectivity scores, has been shown to be
powerful in prioritizing synergistic drug combinations [34].
Connectivity score methods are powerful in characterizing the
relationship between diseases and the overlap with drugs at the
level of perturbed pathways instead of genes [33]. Connectivity
has also been adapted for use on drug profiles that are not
based on gene expression; for example, drug profiles derived by
integrating known chemical–protein associations from several
databases [35]. Other new applications are taking connectivity
mapping methods into personalized medicine [36, 37]. For
instance, network-based methods have been used to personalize
drug repurposing using patient-specific gene expression data
and known gene interactions [36]. Personalized drug repurposing
has also been performed using pathway-level (instead of gene-
level) comparisons between diseases and drugs [37]. Given
the wide range of data types that can be exploited for drug
repurposing, the strength now lies in consolidating connectivity
mapping methods with other methods and resources to exploit
the variety of signals [38]. Adopting supervised machine learning
techniques is going to be key in building the massive frameworks
needed for integrative drug repurposing [39].

While the development of new methods is exciting, making
them practically useful to the biomedical research community at
large requires a concomitant development of data and comput-
ing infrastructure. New approaches are needed to increase the
scope of resources such as LINCS by computationally increasing
data coverage to more cell types [40] and more genes across
the human genome [41]. We also need newer flexible software
tools that can adapt to multiple types of disease gene expression
and drug response database schemas [42], as well as software
packages that can house multiple computational methods for
drug repurposing [43]. These new methods and packages need to
be interfaced with continually curated gold-standards of repur-
posed drugs for systematic benchmarking methods [1].

Also essential to this growing infrastructure are living sur-
veys of methods and databases [6] as well as unified definition
and notation systems like the one presented in this article.

The scheme developed here will improve the consistency of
future methods with existing ones and help clearly establish the
provenance of analytical ideas.

Conclusion
In this article, we have reconciled several key formulations of
drug-disease connectivity scores by defining them and their
constituent similarity metrics using consistent notation and
terminology. Our coherent definition of connectivity scores and
their relationships will allow researchers to better understand
the current state of the art and to transparently develop and
compare new methods in the context of existing ones. To foster
long-term adoption and potential collaborations, this article will
be hosted in a GitHub repository (https://github.com/JRaviLab/co
nnectivity_scores) that can be edited by the research community
to include new methods for connectivity score calculation. The
document has been written using RMarkdown [44, 45] and distill
[46], and rendered as a living document at https://jravilab.githu
b.io/connectivity_scores.

Key Points
• Connectivity mapping is a powerful approach for drug

repurposing based on finding drugs that reverse the
transcriptional signature of a disease, quantified by a
connectivity score.

• Though a number of similarity metrics and connec-
tivity scores have been proposed until now, they have
been described using inconsistent notations and ter-
minologies to refer to a common set of concepts and
ideas.

• Here, we present a coherent definition of multiple con-
nectivity scores using a unified notation and termi-
nology, along with delineating the clear relationship
between these scores.

• Our unified scheme can be adopted easily by newer
methods and used for systematic comparisons.

• The live document and GitHub repository will allow
continuous incorporation of newer methods.
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