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ABSTRACT Increasing infections caused by blaNDM-carrying Klebsiella pneumoniae (NDM-
KP) are an urgent threat to children with weakened immunity and limited antibiotic use.
Preventing and intervening in NDM-KP infections requires a clear understanding of the
pathogen’s molecular and epidemiological characteristics. We investigated the prevalence
and characteristics of NDM-KP in six children’s hospitals from five Chinese provinces/
municipalities. We collected 111 NDM-KP strains (40 NDM-1, one NDM-4 and 70 NDM-5)
from neonatal intensive care units (NICUs) and pediatric intensive care units (PICUs) from
June 2017 to June 2018; these strains accounted for 31.62% of all carbapenem-resistant
K. pneumoniae (CR-KP). Although NDM-KP isolates exhibited high resistance to all carba-
penems, including ertapenem (MIC: $32 mg/L, 96.4%), imipenem (MIC: $16 mg/L,
90.1%) and meropenem (MIC: $16 mg/L, 99.1%), they were fully sensitive to amikacin,
tigecycline and polymyxin B, and presented low resistance to levofloxacin (9.9%) and gen-
tamicin (15.3%). Whole-genome sequencing was conducted to gain insight into the mo-
lecular characterizations of NDM-KP isolates. The NDM-KP isolates belonged to 20
sequence types (STs), and ST2407 (n = 45) dominated in one hospital from Chengdu.
ST2407 isolates with fewer single-nucleotide polymorphisms (SNP , 38) were found ei-
ther in the same hospital or different hospitals. Most blaNDM (81.1%, 90/111), including all
blaNDM-5 and blaNDM-4 and 47.5% (19/40) of blaNDM-1, in NDM-KP isolates with 13 STs were
associated with the IncX3 plasmid. Our results indicated that both explosive clonal trans-
mission and horizontal transmission of blaNDM occur among NDM-KP strains in children's
hospitals. These data provide a basis for preventing and controlling NDM-KP-associated
infectious diseases in hospitalized children, especially in neonates.

IMPORTANCE The blaNDM gene is playing an increasingly important role in infections caused
by CR-KP, especially in children. However, systematic detection and bioinformatics analysis
of NDM-KP in children's hospitals are lacking in China. In this study, a total of 111 NDM-
positive K. pneumoniae isolates were selected from the China Antimicrobial Surveillance
Network for further investigation. The isolates were further characterized using state-of-the-
art molecular techniques. Our findings suggested the clonal and horizontal transmission of
blaNDM in K. pneumoniae in NICUs/PICUs. Key plasmids (IncX3) and ST diversity contribute to
the spread of blaNDM. In addition, our findings provided recommendations for pediatric clini-
cians to use antibiotics to treat NDM-KP infections. Our current large-scale epidemiological
survey would support further infection intervention strategies of NDM-KP in NICU/PICU of
children's hospitals.
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K lebsiella pneumoniae is one of the most common and important pathogens caus-
ing community-acquired and hospital-acquired infectious bacterial diseases.

Particularly in hospital-acquired infections, K. pneumoniae causes various infectious dis-
eases, including sepsis, urinary tract infections, pneumonia and soft tissue infections,
especially in immunocompromised hosts such as newborns (1). The emergence and
rapid spread of carbapenem-resistant K. pneumoniae (CR-KP) in recent decades led to
failed infection treatments, making it an urgent threat to global public health (2). The
World Health Organization listed carbapenem-resistant Enterobacterales, including
CR-KP, as priority drug-resistant bacteria requiring novel treatment (3). Although it
emerged later than other carbapenem resistance genes, such as blaKPC, blaIMP, blaVIM
and blaOXA-48 (4), the blaNDM gene has been rapidly identified in clinical K. pneumoniae
isolates worldwide (5–8).

The situation in China is grim as well. Data from the China Antimicrobial Surveillance
Network (CHINET) revealed that CR-KP increased from 2.9% in 2005 to 27.1% in 2021
(http://www.chinets.com/). In addition to blaKPC-carrying K. pneumoniae (KPC-KP) (9), NDM-
KP has begun to enter neonatal intensive care units (NICUs) and pediatric intensive care
units (PICUs), with a handful of outbreaks among child patients in many areas of China
(10–15). Notably, the isolation rate of NDM-KP in children's hospitals is increasing annually
(14, 16). Considering the limited antibiotic selection for children, the characteristics of
NDM-KP isolated from children need to be investigated.

Previous reports described NDM-KP outbreaks based mostly on fragmented surveillance
of individual children’s hospitals and lacked systematic comparisons of the molecular epi-
demiology and strain characteristics between hospitals. To elucidate the epidemiology and
molecular characteristics of NDM-KP in the NICUs/PICUs of different children’s hospitals, we
collected NDM-KP clinical isolates from six children’s hospitals from five Chinese provinces
or municipalities for 1 year (June 2017 to June 2018). Whole-genome sequencing and anal-
ysis were undertaken to gain insight into characterizing the isolates.

RESULTS
Phenotypes and genotypes of NDM-KP in six children’s hospitals. The blaNDM

gene was detected in 111 CR-KP isolates originating from six children’s hospitals and
accounted for 31.62% (111/351, 95% confidence interval [CI]: 26.8%–36.8%) of all CR-KP iso-
lates in Chengdu (48/49, 97.96%), Chongqing (2/34, 5.88%), Nanchang (1/5, 20%),
Zhengzhou (16/130, 12.31%), Shanghai_1 (37/111, 33.33%), and Shanghai_2 (7/22, 31.82%).
All CR-KP isolates showed high resistance to carbapenems, including ertapenem (MIC:
96.4%, $32 mg/L), imipenem (MIC: 90.1%, $16 mg/L) and meropenem (MIC: 99.1%,
$16 mg/L; Fig. 1). These isolates also exhibited high resistance rates to ceftazidime-avibac-
tam (100%), piperacillin-tazobactam (100%), cefoperazone-sulbactam (100%), ceftolozane-
tazobactam (100%), and other b-lactams (piperacillin, cefepime, ceftazidime, ceftriaxone,
cefmetazole, cefuroxime, and cefazolin; 98.2%–100%); moderate resistance to doxycycline
(n = 42; 37.8%), ciprofloxacin (n = 62; 55.9%) and aztreonam (n = 87; 78.4%); low resistance
to gentamicin (n = 17; 15.3%), trimethoprim-sulfamethoxazole (n = 39; 35.1%), nitrofurantoin
(n = 32; 28.8%) and levofloxacin (n = 11; 9.9%); and sensitivity to amikacin, tigecycline and
polymyxin B (Fig. 1). No strains showed the hypermucoviscous phenotype.

Antibiotic-resistance and virulence-associated genes in the 111 NDM-KP isolates
were identified from WGS data (Fig. 2A, Table S1). Seventy NDM-KP (63%) harbored
blaNDM-5, 40 (36%) harbored blaNDM-1, and one (1%) harbored blaNDM-4. One ST37 strain
(A96) carried two CR genes, blaNDM-1 and blaIMP-4. Some NDM-KP isolates also harbored
the ESBL genes, blaCTX-M-14 (47; 42.3%), blaCTX-M-15 (19; 17.2%), blaCTX-M-3 (21; 18.9%) and
blaSFO-1 (14; 12.6%); the tetracycline-resistance genes, tet(A) (19; 17.1%), tet(B) (2; 1.8%)
and tet(D) (20; 18%); and the fluroquinolone-resistance genes, oqxAB (94; 84.7%), qnrB
(46; 41.4%) and qnrS1 (24; 21.6%). For the genes associated with hypervirulent K. pneu-
moniae, the categorical virulence scores ranged from 0–5; 24.3% (27/111) of the K.
pneumoniae isolates scored 0, and the remaining K. pneumoniae (75.7%, 84/111) iso-
lates scored 1, suggesting that the NDM-KP isolates carried few genes mediating high
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virulence. Strains scoring 1 carried the siderophore yersiniabactin virulence loci. Only
one strain, A156, carried the hypermucoid locus, rmpA, and the salmochelin loci, iroB,
iroC, iroD and iroN. Additionally, 34.2% (38/111) of the K. pneumoniae isolates had dif-
ferent degrees of deletions in the outer membrane protein, OmpK35.

Nosocomial blaNDM outbreak and transmission caused by K. pneumoniae diver-
sity. The 111 NDM-KP isolates were assigned to 20 MLST types (Table S1). The mini-
mum-spanning tree indicated the clonal transmission characteristics of some NDM-KP
isolates in the NICUs/PICUs (Fig. 2B). For example, clone transmission of ST2407
(n = 45) occurred in a children's hospital from Chengdu. The same ST, like ST2407,
ST37, ST45, and ST17, could exist in two children's hospitals that were geographically
far apart. Additionally, 10 and nine STs occurred in Shanghai (two hospitals) and
Zhengzhou (one hospital in Henan), respectively. Like the STs, the NDM-KP serotypes
also exhibited diverse profiles. Identification of capsule synthesis loci revealed 20 dif-
ferent types. Each ST, except for ST37, corresponded to only one capsule synthesis
locus. ST37 had three capsular synthesis loci: K8, K15 and K38. All K. pneumoniae ST14
serotypes were K2, which has been associated with high pathogenicity. Five O antigen
(LPS) serotypes (O1–O5) were predicted (Table S1). The data showed that blaNDM can
exist in various K. pneumoniae strains, showing its widespread spread at cloning levels
in children's hospitals.

Phylogenetics of NDM-KP in six children's hospitals. Phylogenetic analysis of the
core-genome single-nucleotide polymorphisms (SNPs) revealed seven distinct popula-
tion structure lineages among the 111 NDM-KP isolates (Fig. 2A). Shallow branching
and scattered population structure also occurred: the same K. pneumoniae STs (except
ST37) in the same hospital exhibited little branching and few SNPs (5–38), suggesting
an outbreak of NDM-KP in one hospital. Notably, all NDM-KP ST2407 isolates were clus-
tered as the significant phylogroup with limited SNP (5–29) divergences. The core
genomes of two isolates from Chongqing and 43 isolates from Chengdu were nearly
identical, with ,25 SNPs (Table S2). These two hospitals are geographically distant

FIG 1 Antimicrobial-resistance profiles of 24 antimicrobial agents against NDM-KP. The number represents the antimicrobial
resistance rate of the NDM-KP isolates. ETP: ertapenem; IPM: imipenem; MEM: meropenem; FEP: cefepime; CAZ: ceftazidime; CRO:
ceftriaxone; CMZ: cefmetazole; CSL: cefoperazone-sulbactam; TZP: piperacillin-tazobactam, CAT: ceftolozane-tazobactam; CXM:
cefuroxime; CZO: cefazolin; AMK: amikacin; GEN: gentamicin; SXT: trimethoprim-sulfamethoxazole; ATM: aztreonam; PIP:
piperacillin; CIP: ciprofloxacin; LVX: levofloxacin; TGC: tigecyclin; CZA: ceftazidime-avibactam; DOX: doxycycline; NIT: nitrofurantoin;
POL: polymyxin B.
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(straight-line distance .280 km), indicating the spread of blaNDM through clonal trans-
fer. In contrast, on the three branches for ST17, ST37, and ST45, the core genomes of
the same STs from two children's hospitals differed significantly.

Epidemiology of the blaNDM-IncX3 plasmid in children's hospitals. Plasmids are
likely the most common carriers for blaNDM gene (17). WGS data detected major Inc-
type plasmids, including IncX3, IncFIB(K), Inc(A/C), IncR and IncN2. A complete high
prevalence 46.1 kb IncX3 plasmid (GenBank accession number: CP049352) carrying
blaNDM-5 isolated from E. coli in China was used as a reference, then the BLAST Ring
Image Generator (BRIG) was used to compare it with the WGS of different strains,
revealing that the blaNDM-IncX3 plasmid presented in 13 different NDM-KP STs (Fig. 3A)
and in 81.1% of the total NDM-KP (90/111), which is highly homologous to the refer-
ence plasmid. By BLAST analysis of larger contigs (.34 kb), we identified 18 isolates
carrying the blaNDM-IncX3 plasmid. The Bandage association analysis revealed a high
probability connection between IncX3 plasmids and blaNDM in the remaining 72 iso-
lates. However, circularization of plasmids (i.e., use of Illumina plus Nanopore) in these
isolates would prove this suggestion. IncX3 plasmid presented in all blaNDM-4 and
blaNDM-5 isolates and 45.7% (19/40) of blaNDM-1 isolates, and this plasmid could be iden-
tified from isolates of the same lineage or different lineages in the same hospital,
suggesting the spread of blaNDM through horizontal transfer (Fig. 2A). Notably, BRIG
analysis showed that 49 IncX3 plasmids carried by ST2407 (n = 45) and ST789 (n = 4)
isolates from the Sichuan and Chongqing hospitals was smaller than the original IncX3
plasmid (46.1 kb), and the conjugation-associated type IV secretion system (T4SS) play
as the missing part. Therefore, we randomly selected one ST2407 isolate S6 carrying

FIG 2 Population structure of NDM-KP isolates. (a) Phylogeny of core-genome SNPs in 111 NDM-KP isolates. K. pneumoniae ST2407 S6, sequenced on
MinION, was used as a reference strain. Sources of the isolates are differentiated by six colors. Inc-type plasmid (bule square), antimicrobial-resistance
genes (red square), and virulence-associated genes (green square) among the isolates are denoted by filled squares for presence and empty squares for
absence. (b) Minimum-spanning tree of NDM-KP isolates based on a core-genome MLST (cgMLST).
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FIG 3 Schematic diagram of mobile genetic elements integrated in NDM-KP isolates. (a) IncX3 plasmid carrying blaNDM was
present in 13 K. pneumoniae STs. (b) Evolved IncX3 plasmid carrying blaNDM in ST789 and ST2407 K. pneumoniae.
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the smaller IncX3 plasmid for MinIon sequencing and confirmed the 27.7 kb size of the
plasmid with T4SS deletion (Table S3). Further, the IncX3 plasmids in these NDM-KP
ST2407 (n = 17) and ST789 (n = 2) strains had higher homology with this 27.7 kb IncX3
plasmid (Fig. 3B).

Mobile genetic element arrangements in spreading blaNDM in children's hospi-
tals. To further analyze the transfer of blaNDM via mobile genetic elements (MGEs), compari-
son of the blaNDM genetic environment in all 20 NDM-KP STs illustrated a conservative and
complex combination of multiple genetic vehicles in spreading blaNDM (Fig. S2 and Fig. 4).
The genetic environments of blaNDM were clustered into four types according to homolo-
gous regions, ST and blaNDM genotypes, showing a relatively conserved architecture in the
variable context surrounding blaNDM. All four types retained the conserved sequence
blaNDM-bleMBL-trpF-dsbD. All blaNDM-5 belonged to type 4 (n = 70), blaNDM-4 to type 1 (n = 1),
and blaNDM-1 to types 1 (n = 19), 2 (n = 20) and 3 (n = 1). Compared with the conservative
flanking region of blaNDM-5, the surrounding environments of blaNDM-1 exhibited more
diverse, likely owing to the different Inc types of plasmids carrying blaNDM-1. Both types 1
and 4 were associated with the IncX3 backbone, with differences in the heat shock pro-
tein-related GroES and GroEL, which only appear downstream of blaNDM in type 1. The
upstream IS3000, IS5, and the downstream IS91 of the segment blaNDM-bleMBL-trpF-dsbD are
conserved. Type 2 belonged to the plasmid backbone of IncFIB(K) (contigs . 137 kb), in
which the strain A96 of ST37 coexisted with blaIMP-4 at the 8921-bp downstream position of
blaNDM-1. Additionally, the sulfanilamide-resistance gene, sul1, also coexisted with the down-
stream blaNDM-1. The blaNDM-1-carrying type 3 belonged to the plasmid backbone of IncN2
(contigs. 41 kb), in which the upstream virB4 and virB8were associated with plasmid con-
jugation transfer, suggesting that blaNDM-1 can be transferred horizontally by plasmids other
than IncX3.

DISCUSSION

Clinical CR-KP in China is an increasing concern, and its prevalence is higher in chil-
dren than in adults (China Antimicrobial Resistance Surveillance System, http://www
.carss.cn/). Compared with KPC-KP, the notorious pathogen dominant in both child-
ren's and adult hospitals, NDM-KP has caused a higher proportion of CR-KP in child-
ren’s hospitals than in adult hospitals in recent years (18). As the possible transmission
link for NDM-E. coli between humans and animals has been established (19–21), we
proposed that the increasing trend for NDM-KP in child patients in this study might be
associated with animals for the following four reasons. First, different from the ST11-
dominant KPC-KP in China (9, 22, 23), the NDM-KP isolates collected from children’s

FIG 4 Genetic environment of blaNDM in K. pneumoniae. The four different types are represented by four colors. Open reading frames are designated by
arrows indicating the direction of transcription and colored based on their predicted gene functions. Dark gray shading indicates homologous regions.
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hospitals exhibited diverse profiles (20 STs) and were not limited to one superior clone.
Most clones, including ST45, ST48, and ST37, have been detected and are being trans-
ferred in livestock and poultry production chain (24–26). Second, the blaNDM-IncX3
dominant in children NDM-KP was proved to be a successful plasmid among various
commercial farm animals (pigs and chicken), backyard animals (pigs, chickens, cattle,
pets), and other animals (flies and birds). The high conjugation transfer frequency (27),
low fitness cost (28) and favorable stability of the IncX3 plasmid in many Enterobacter-
iaceae may facilitate the circulation of blaNDM-IncX3 plasmids in bacteria of both animal
and human origin. Third, unlike blaKPC, which disseminates via stable association with a
lineage of K. pneumoniae, the spread of blaNDM is mediated by transient associations of
diverse plasmids (including IncX3) with multiple lineages of K. pneumoniae (17).
Notably, blaNDM, but not blaKPC, was frequently detected in high abundances in farm-
animal feces and in high prevalence in bacteria of farm-animal origin (29). Finally, chil-
dren are generally considered more susceptible to infection because of the immaturity
of their immune and intestinal systems (30). CR-KP can emerge from the intestinal
lumen and invade the bloodstream of vulnerable patients, causing disseminated infec-
tion (31). Thus, NDM-KP may be transmitted directly (via the food chain) or indirectly
(in the environment) from animals to children, leading to colonization and infection.
Therefore, the increasing NDM-KP in children’s hospitals suggests that the patterns
and extent of the impact of non-human factors on NDM-KP infections in children must
be investigated.

Our results for both antimicrobial-resistance genes and phenotypes indicated the pres-
ence of multidrug-resistant (MDR) K. pneumoniae in children's hospitals. The use of ß-lac-
tams can co-select resistance determinants for different antibiotics harbored in the same
plasmids as blaNDM, such as sulfonamides and even quinolones, which are not used in com-
mon children's treatment. These MGEs likely contribute to the prevalence of blaNDM and
increase the threat to children’s health with further limited spectrum antibiotics.
Fortunately, all NDM-KP are completely sensitive to amikacin, tigecycline and polymyxin B
and highly sensitive to levofloxacin and gentamicin, which helps fight against NDM-KP.
Gentamicin and polymyxin B are more suitable for clinical children, while amikacin (32), lev-
ofloxacin (33, 34) and tigecycline (35) are used with caution due to unclear safety concerns.
Clinicians may consider these antibiotics as alternative options for treating NDM-KP infec-
tions. Additionally, these MDR K. pneumoniae are not highly virulent, which thus reduces
the risk of severe infections in children. Nevertheless, these virulence-related genes and
plasmids should not be ignored. Previous studies have predicted that the rate at which
MDR K. pneumoniae acquires virulence plasmids far exceeds the rate at which hyperviru-
lent K. pneumoniae (36) acquires MDR plasmids.

This work had several limitations. First, the amount of data collected from the six
hospitals was inconsistent, which may have led to bias in the analysis. Second, we only
collected the strain characteristic information during the study, and the individual
medical history information (e.g., demographics [sex and age], antibiotics exposure,
disease types) of the patients that the strains were isolated from was mismatched or
absent due to the improper storage, thus we could not conduct a correlational study
between epidemiological data and strain genetic information. Finally, we have not
determined the mechanism causing the increased NDM-KP in children and its rele-
vance to NDM-KP in animals; this will be a focus in our subsequent studies.

Our study revealed the clonal and horizontal transmission of blaNDM in K. pneumoniae in
NICUs/PICUs. Key plasmids (IncX3) and ST diversity accelerate the spread of blaNDM.
Considering these results, clinicians should include screening for NDM-KP when diagnosing
infectious diseases in children, especially newborns, to avoid treatment time delays and an-
tibiotic failure. Monitoring and data collection on blaNDM in children should be strength-
ened to better understand its epidemic patterns. Our results also suggest that there may
be more confounding factors for prevalence of blaNDM in children, therefore, the “One
Health” perspective is needed to address this increasing threat.

Transmission of blaNDM among KP in Children’s ICU Microbiology Spectrum

July/August 2022 Volume 10 Issue 4 10.1128/spectrum.01574-21 7

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01574-21


MATERIALS ANDMETHODS
Bacterial isolation and identification. We collected 351 nonduplicate CR-KP clinical isolates from

six children's hospitals in five provinces or municipalities across China (member units of the CHINET
Study Group; Fig. S1) from June 2017 to June 2018. All CR-KP strains were identified using Vitek matrix-
assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS, bioMérieux,
Marcyl’�Etoile, France) and selected by the Kirby-Bauer antimicrobial susceptibility method during the
routine daily work of the microbiology laboratory in each children hospital. PCR (37) was used to screen
the target blaNDM-positive strains for follow-up study. The NDM-KP isolates were obtained from sputum
(n = 91), bronchoalveolar lavage fluid (n = 7), urine (n = 2) and blood (n = 11), collected from the NICU
(n = 83) or PICU (n = 28) at six children's hospitals (Table S1).

Antimicrobial susceptibility testing. The MICs for 24 antimicrobial agents were determined for all
blaNDM-positive isolates using the microdilution broth method following the Clinical and Laboratory
Standards Institute (CLSI) guidelines (38). The MIC results were interpreted according to CLSI documents
M100-ED3015 (38) and European Committee on Antimicrobial Susceptibility Testing breakpoints (39).
Escherichia coli ATCC 25922 and K. pneumoniae ATCC 13883 were used as quality-control standards.

Whole-genome sequencing and bioinformatics analysis. All blaNDM-positive isolates were selected
for whole-genome sequencing (WGS). Total DNA was extracted using a Magen Genomic DNA purifica-
tion kit (Magen, Guangzhou, China) as per the manufacturer’s instructions. Indexed DNA libraries were
prepared using a KAPA Hyper Prep Kit and sequenced on the Illumina HiSeq X 10 platform (Annoroad,
Beijing, China). All draft genomes were assembled using SPAdes, version 3.9.0 (40). A K. pneumoniae
strain S6 carrying blaNDM-IncX3 plasmid was selected and sequenced on the MinION platform (Oxford
Nanopore Technologies, Oxford, UK). We used Unicycler v.0.4.8-beta (41) to generate genome assem-
blies combining the Illumina and MinION sequences. Minimum-spanning trees of all blaNDM-positive iso-
lates were generated in BioNumerics. A phylogenetic tree was produced using snippy (https://github
.com/tseemann/snippy) and gubbins (42) using core-genome alignments and was visualized using the
online tool, iTOL (43). Phylogenetic trees for K. pneumoniae based on the core-genome sequences of the
isolates were structured using Harvest, version 1.1.2 (44). Multilocus sequence typing (MLST), antimicro-
bial-resistance genes, virulence-associated genes and K (capsule) and O antigen (LPS) serotype predic-
tion were identified using Kleborate (45). Plasmid types of the blaNDM-carrying contigs were identified
using abricate (https://github.com/tseemann/abricate). All contigs from the WGS and MinION sequenc-
ing analyses were annotated using prokka (46). Genetic contexts in the different blaNDM-carrying plas-
mids were compared using BLAST Ring Image Generator (BRIG) (47). Gcluster (48) was used to visualize
and compare the blaNDM genome contexts for all genomes. Bandage (49) was used to predicate and visu-
alize the connection of contigs in which IncX3 plasmids located and contigs in which blaNDM located.

Data availability. All raw data in this study were deposited in GenBank under Bioproject accession
number PRJNA750893.
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