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Eye tracking is becoming a very popular, useful, and important technology. Many eye

tracking technologies are currently expensive and only available to large corporations.

Some of them necessitate explicit personal calibration, which makes them unsuitable

for use in real-world or uncontrolled environments. Explicit personal calibration can

also be cumbersome and degrades the user experience. To address these issues, this

study proposes a Convolutional Neural Network (CNN) based calibration-free technique

for improved gaze estimation in unconstrained environments. The proposed technique

consists of two components, namely a face component and a 39-point facial landmark

component. The face component is used to extract the gaze estimation features from

the eyes, while the 39-point facial landmark component is used to encode the shape and

location of the eyes (within the face) into the network. Adding this information can make

the network learn free-head and eye movements. Another CNN model was designed

in this study primarily for the sake of comparison. The CNN model accepts only the

face images as input. Different experiments were performed, and the experimental result

reveals that the proposed technique outperforms the second model. Fine-tuning was

also performed using the VGG16 pre-trained model. Experimental results show that the

fine-tuned results of the proposed technique perform better than the fine-tuned results of

the second model. Overall, the results show that 39-point facial landmarks can be used

to improve the performance of CNN-based gaze estimation models.

Keywords: Convolutional Neural Network, computer vision, gaze estimation, eye tracking, mobile device

INTRODUCTION

Eye tracking is a useful technology, and it can be applied to different domains, including medical
diagnosis (Holzman et al., 1974), marketing (Wedel and Pieters, 2008), computer vision (Krafka
et al., 2016), and human-computer interaction (Jacob and Karn, 2003). Many eye tracking systems
exists, and some of them are expensive to purchase (Cazzato et al., 2020) or inaccurate (Wedel
and Pieters, 2008). Some of them are also restrictive because they limit the functionalities available
to users. These limitations have made eye tracking systems unavailable to many users. It has also
made eye tracking research challenging to interested academics. In view of this, many researchers
are designing and developing eye tracking systems that are affordable and available to users.

Eye tracking or gaze estimation studies have been primarily constrained to controlled
environments (Kothari et al., 2020). Much work has not been done in the development of gaze
estimation techniques for uncontrolled environments (Kothari et al., 2020). This study introduces a
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simple calibration-free Convolutional Neural Network (CNN)
based technique for gaze estimation in mobile devices. The study
aims to present a proof of concept for developing a CNN-based
gaze estimation technique using full-face images and 39-point
facial landmark images. CNN is used to extract gaze estimation
features from full-face images and their corresponding 39-point
facial landmarks as determined by the dlib library (McKenna and
Gong, 1998). The 39-point facial landmark is used to encode the
shape and location of the eyes into the network. We used the pre-
trained facial landmark detector inside the dlib library (McKenna
and Gong, 1998) to extract the facial landmarks. Specifically, we
used the detector to estimate the location of 39 (x, y) coordinates
that correspond to the shape of the face, left eye and right eye. The
dlib facial landmark detector was originally designed to estimate
68 (x, y) coordinates that maps to different regions on the face,
including left eye, right eye, nose, jaw, mouth, and the face region.
It is an implementation of the method designed by Kazemi and
Sullivan (2014). We did not use the entire 68 (x, y) coordinates
because we are only interested in encoding the shape and location
of the left and right eyes into the network, not the nose, jaw, or
mouth. The proposed technique was evaluated, and it produced
satisfactory results.

RELATED WORK

Different gaze estimation techniques have been proposed in the
literature. Vora et al. (2017) developed a CNN-based technique
for gaze detection. The technique consists of two units: the
pre-processing unit and fine-tuning unit. The pre-processing
unit was used to extract Region of Interest (ROI) images for
training, including full-face images and upper-half face images.
The extracted images were passed to the second unit for
fine-tuning. The fine-tuning unit consists of two pre-trained
models, namely: AlexNet (Krizhevsky et al., 2012), and VGG 16
(Simonyan and Zisserman, 2014). During experiments, the two
pre-trained models were fine-tuned separately, and results show
that the VGG-16 model produced an accuracy of 93.36%, when
comparing predicted data with a test data set. The AlexNet model
produced an accuracy of 88.91%. Naqvi et al. (2018) introduced
a CNN-based technique for eye tracking in automobiles. The
technique consists of one near-infrared camera, six near-infrared
(NIR) light-emitting diodes (LEDs) for illumination, and one
zoom lens. The NIR camera is used to capture the frontal
view image of a driver. ROI images were extracted from the
captured images, including face images, left eye images, and
right eye images. The three ROI images were used to fine-tune
three separate VGG-16 pre-trained models. The output from
the three models were combined and used to estimate the gaze
zone of a driver. The proposed technique was evaluated using
two measures, namely: strictly correct estimation rate (SCER)
and loosely correct estimation rate (LCER). Experimental results
show that it produced an average SCER and LCER of 92.8 and
99.6%, respectively.

Krafka et al. (2016) proposed a CNN-based gaze estimation
technique for eye tracking on mobile devices (called iTracker).
They also introduced a large-scale dataset (called GazeCapture).

The dataset contains over 2.5 million images from ∼1,500
subjects. The dataset was used to build the CNN-based model
with crops of the face, left eye, right eye and face grid (a binary
mask that indicates the size and location of the head within the
frame). Experimental results obtained from the study showed
that the proposed model achieved a prediction error of 1.71 cm
on mobile phones (∼2.4◦ on a 6.4′′ phone at 40 cm distance) and
2.53 cm on tablets (∼2.9◦ on a 10.4′′ tablet at 50 cm distance).
The same technique was re-evaluated after simulating the process
of calibration. Experimental results showed that it achieved a
reduced prediction error of 1.34 cm on mobile phones and
2.12 cm on tablets. Kim et al. (2016) proposed a similar technique
for mobile devices using CNN. They introduced a new feature
called histogram-of-gradients (HOG) which was computed from
cropped images of the face. The computed feature was combined
with four other inputs: face image, left eye image, right eye image
and face grid. The combined inputs were used to build a CNN
model. The model was evaluated and it produced a prediction
error of 4.85 cm (∼7◦) on iPhones.

Wang et al. (2016) proposed a calibration-free regression-
based deep CNN that learns image features to predict eye
fixations. In the study, a stochastic calibration approach was
introduced. The approach aims to minimize the differences
between the probability distribution of the predicted eye and
the probability distribution of the actual eye gaze. It uses a deep
fixation map obtained from Regression based CNN (RCNN) and
a gaze distribution procedure to implicitly estimate personal eye
parameter. The technique was evaluated and it was declared
to produce satisfactory results. In a different study, Chen and
Ji (2011) proposed a calibration-free technique using saliency
maps. Saliency maps represent unique features of images. The
technique was designed with the underlying assumption that
users have a higher probability of looking at the salient regions
of an image. The authors (Chen and Ji, 2011) designed a
Bayesian network to represent the probabilistic relationship
between the visual axis, optical axis and eye parameters. In
the probabilistic model, a saliency map was used as the initial
gaze input. A dynamic Bayesian network was also introduced
to incrementally update the eye parameters online. Chen and
Ji (2014) extended their study to handle Gaussian distribution.
However, Gaussian distribution requires large-scale data before
gaze point distribution can be approximated (Wang et al., 2016).

Bao et al. (2021) proposed a novel method for gaze estimation
in mobile tablets called Adaptive Feature Fusion Network (AFF-
Net). They layered channel-wise feature maps from the two eyes.
Then, using Squeeze-and-Excitation layers, they adaptively fused
the features of the two eyes depending on their appearance
resemblance. The authors also proposed an adaptive group
normalization method for recalibrating ocular features using
facial cues as guidance. The approach was evaluated using
the GazeCapture and MPIIFaceGaze datasets, with an error
of 1.62 cm for GazeCapture and 3.9 cm for the MPIIFaceGaze
dataset. Jigang et al. (2019) introduced the GazeEstimator, a two-
step training network for enhanced gaze estimation on mobile
devices. The first stage is to train a network for eye landmark
localization on the 300W-LP dataset with the goal of properly
localizing the eye on the image. The second phase involves
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training a gaze estimation network using the GazeCapture dataset
to create a robust gaze estimationmodel. The approachwas tested
on the GazeCapture dataset and yielded a 1.25 cm in accuracy.
Guo et al. (2019) introduced a new training scheme for CNN
called tolerant and talented (TAT) training scheme. The training
plan was created to address the issue of overfitting in CNN. It
is an iterative approach for distilling random knowledge that
incorporates cosine similarity pruning and aligned orthogonal
initialization. An improved metric for evaluating the robustness
of gaze estimators was also proposed by the authors. The
proposed approach was tested on the GazeCapture dataset and
yielded a 1.77 cm inaccuracy. Julien (Adler, 2019) developed a
neural network based technique for estimating gaze on mobile
devices. They trained a Siamese neural network to predict
the linear distance between two gaze points on a screen. The
technique was evaluated on the GazeCapture dataset, and it
achieved a high Euclidean distance error of 1.33 cm. Table 1
shows the summary of the related works considered in this study.

PROPOSED TECHNIQUE

Currently, many eye tracking technologies are available,
however the most of them are expensive and commercial
(Krafka et al., 2016; Cazzato et al., 2020). Others have been
designed in controlled environments, rendering them less
reliable in real-world settings. Furthermore, most eye tracking
technologies necessitate an explicit personal calibration
approach to determine subject-dependent eye characteristics.
Such calibration procedure is unnatural, inconvenient, and
impairs user experience (Wang et al., 2016). To address these
issues, this study presents a regression-based, calibration-free
gaze estimation CNN model for improved eye tracking in an
unconstrained environment.

The proposed technique uses the face images and their
corresponding 39-point facial landmarks [as acquired from
the dlib library (McKenna and Gong, 1998)] to perform gaze
prediction. The 39-point facial landmark is added to the CNN
model with the goal of encoding the shape of the eyes and the
location of the eyes (within the face) into the model. The shape
and location of the eyes can provide information on where a
person is looking at. As an example, if a user is looking at different
points on a screen, the user’s eyes will move around the screen.

The movement is particularly obvious when the user is looking
at different points randomly displayed at extreme corners of a
screen (e.g., top-left, top-right, bottom-left, and bottom-right
corners). The user may have to move his eyes (and sometimes
his head) to look at the different points. The movements may
change the shape of his/her eyes and the position of his/her
head. Figure 1 shows the image of a user looking at different
directions. As shown, the shape of the eyes changes when the user
spontaneously moves his eyes in the directions specified by the
arrow. The goal of the proposed technique is to capture these
changes and encode them into a CNN model. Encoding these
changes can improve the accuracy of gaze estimation systems.

The proposed technique consists of two components, namely,
(i) a face component and (ii) a 39-point facial landmark
component. A component refers to a set of inputs. The first
component is used to extract gaze estimation features from
the eyes, while the second component is used to extract
features from the 39-point facial landmark. The 39-point facial
landmark features can help the network learn free-head and
eye movements. More details on the model’s architecture are
provided in section Model Architecture. Another CNN model
(called Network-2) is designed in this study primarily for the
sake of comparison. This model accepts only the face images as
input. The main difference between the proposed technique and
Network-2 is their network configuration. Network-2 does not
have the 39-point facial landmark component. Meanwhile, the
face component of the proposed technique and Network-2 has
similar configuration. Their configuration is similar because we
want to evaluate the impact of the 39-point facial landmark. We
also want to ensure a fair comparison between the two models. A
third CNN model was designed in this study (called Network-
3). This model accepts only the 39-point facial landmarks as
inputs. The model was designed with the goal of evaluating the
performance of the 39-point facial landmark and its contribution
to gaze estimation models.

CNN is good at transfer learning (Vora et al., 2017). Image
representations learned from a large-scale labeled dataset can be
efficiently transferred to other similar visual recognition tasks
with limited amount of training datasets (Oquab et al., 2014).
In this study, we fine-tuned the proposed technique using the
VGG16 pre-trained network (Simonyan and Zisserman, 2014).
The VGG16 model was originally trained on the ImageNet

TABLE 1 | Summary of related works.

References Model Dataset Performance

Vora et al. (2017) VGG16 and AlexNet Own dataset 93.36% accuracy (VGG16) and 88.91% (AlexNet)

Naqvi et al. (2018) VGG16 Own dataset 92.8% (SCER) and 99.6% (LCER).

Krafka et al. (2016) Own architecture; AlexNet GazeCapture 1.71 cm

Kim et al. (2016) Gazelle architecture GazeCapture 4.85 cm

Wang et al. (2016) Own architecture (RCNN) MIT1003 dataset 1.0 degree

Bao et al. (2021) AFF-Net GazeCapture and MPIIFaceGaze 1.62 cm (GazeCapture) and 3.9 cm (MPIIFaceGaze)

Jigang et al. (2019) ResNet model GazeCapture 1.25 cm

Guo et al. (2019) Own model GazeCapture 1.77 cm

Adler (2019) Siamese neural network GazeCapture 1.3 cm
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FIGURE 1 | Different appearance of the eyes (Bejjani et al., 2002).

dataset containing over 14 million images belonging to 1,000
classes. During fine-tuning, we removed the last fully connected
layer of the VGG16 network (which has 1,000 classes) and added
some convolutional and fully connected layers to the VGG16
network. We also freeze the pre-trained weights of the VGG16
model. Finally, we trained the added layers using the training
dataset. During training, the x and y ground truth labels were
provided to the network.

METHODS

A deep learning task for gaze estimation can be considered as
a regression or classification task. Although, both regression
and classification tasks are useful, regression offers the highest
predictive flexibility (Lemley et al., 2018). This study deals with
gaze estimation as a regression task. The goal of the regression
task is to find a gaze point (x, y) on a screen, which corresponds
to where a user is looking at.

The CNN models designed in this study were implemented
using Keras—an open-source neural network library written
in Python programming language. The entire training process
is divided into two stages, namely: (i) hyper-parameter search
stage and (ii) evaluation stage. During the hyper-parameter
search stage, different models are evaluated, and the model
with the best hyper-parameter configuration is selected. This
model is passed to the evaluation stage for training, validation,
and testing.

At the hyper-parameter search stage, a Keras Tuner function
was used to search for the best hyper-parameter configuration.
The Keras Tuner function has two types of tuners, namely,
Hyperband and RandomSearch tuners. In this study, the
RandomSearch tuner was used. The tuner requires a model-
building function where the network architectures and different
ranges of hyper-parameter values are specified by a user. The
tuner is instantiated and the search for the best hyper-parameter
configuration is initiated. During the search, different models
are built iteratively by calling the model-building function. The
function populates the search space using the range of hyper-
parameter values specified by the user. The tuner progressively
explores the search space and records the performance for each
network configuration. After the search, the model that produces

the best result can be retrieved and fine-tuned for n epochs,
where n is user-defined. In this study, hyper-parameter tuning
was performed for all the networks. During the hyper-parameter
search, all the evaluated models were trained for n epochs, where
n= 3 for this study. After the search, we retrieved the best model
(which is already trained for three epochs) and trained it for
another seven epochs. Therefore, the total number of epochs used
to train the entire model is 10 epochs.

Dataset
The proposed technique was evaluated on two datasets, namely
GazeCapture (Krafka et al., 2016) and TabletGaze (Huang
et al., 2017). The GazeCapture dataset contains over 2 million
images from 1,474 subjects. The subjects were required to do
a dot-tracing task and their images along with the coordinates
of the dot were captured using the front-facing camera of
their devices. The following information were included in the
GazeCapture dataset:

(a) The front-facing full-face images of the subjects as they
perform the dot tracing task.

(b) The bounding box coordinates for the face and eye images in
the full-face image.

(c) The ground truth gaze coordinates (that is, the actual gaze
coordinates in the x and y direction). The x coordinate
indicates the distance (in cm) to the left or right direction
of a camera on a virtual plane that contains the true location,
while the y coordinate specifies the distance in the up and
down direction of a camera. This coordinate system permits
a model to estimate gaze coordinates that can be generalized
to multiple devices (such as laptops and smartphones) and
orientations (portrait or landscape), depending on where the
camera is positioned on the screen. It takes advantage of the
fact that the front-facing camera is typically on the same
plane to the screen, and it is angled perpendicular to the
screen (Krafka et al., 2016; Akinyelu and Blignaut, 2020).

Based on the three information points outlined above, we
extracted the face images from the frames in the datasets. The
TabletGaze dataset contains 816 videos from 51 subjects. During
the data collecting session performed by the dataset providers
(Huang et al., 2017), each subject held a tablet in one of four body
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postures: standing, sitting, slouching, or lying. Each participant
was asked to undertake four recording sessions for each of the
four body postures, resulting in a total of sixteen video sequences
for each subject. In addition, each subject was required to look
at 35 different gaze points during the recordings. As indicated by
Huang et al. (2017), not all the videos in the dataset are usable,
therefore, in this study, we focused on videos where the whole
face is visible. To eliminate the time required for participants to
refocus on each dot location, similar to Huang et al. (2017), we
extract only the video chunk that corresponds to 1.5 to 2.5 s after
the dot appears in a new location.

We also extracted the 39-point facial landmarks from the
frames in the two datasets using the pre-trained facial landmark

detector inside the dlib library (McKenna and Gong, 1998). Some
samples of the face images and their corresponding 39-point
facial landmark images are shown in Figure 2.

This paper aims to present a proof of concept for
developing a CNN-based gaze estimation technique using full-
face images and 39-point facial landmark images. In view
of this, we used only a subset of the GazeCapture dataset
for our experiments. The subset consists of 31,920 images
from 11 subjects (15,960 full face images and 15,960 39-
point facial landmark images). We also used a subset of the
TabletGaze dataset. The subset consists of 27,848 images from
20 subjects (13,924 full face images and 13,924 39-point facial
landmark images).

FIGURE 2 | Sample images of face and 39-point facial landmark.

FIGURE 3 | Overview of the proposed technique. Inputs include face and facial landmark, all of size 224 × 224. Conv refers to convolutional layers, P represents

pooling layer, FCL represents Fully Connected layers. FCL2 is the output layer.
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Input to the Convolutional Neural Network
The images in the GazeCapture dataset were of dimension 480
× 640. Similar to Kim et al. (2016), we wrote some scripts to
crop the full-face images from the original frames and resized
them to 224 × 224. We also wrote some scripts to extract the
39-point facial landmarks from the cropped face images and
resized them to 224 × 224. All the images were normalized
to the range [0, 1]. The labels in the datasets (i.e. x and y
gaze coordinates) were also normalized to the range [0, 1].
Finally, the images and their corresponding labels were used
to build the models. Eighty percent of the dataset was used
for training, while the remaining 20% was used for validation
and testing.

Model Architecture
The network architecture for the proposed technique is divided
into two components. The first component is used to process
the full-face images, while the second component is used to
process the 39-point facial landmarks. As shown in Figure 3,
the first component consists of two convolutional layers and
one fully connected layer, while the second component consists
of two convolutional layers and one fully connected layer. In
both components, each convolutional layer is followed by an
average pooling layer. The fully connected layer of the first
and second components are concatenated and passed through

TABLE 2 | Hyper-parameter values for training.

Hyper-parameters Value

Epochs 10

Learning rate 0.001

Batch size 16

Optimizer Adam

beta_1 0.9

beta_2 0.999

Loss function MSE

TABLE 3 | Results produced by the proposed technique for GazeCapture dataset.

Model Average Euclidean

distance (cm)

MSE Accuracy (%)

Face + FL (Proposed

technique)

0.2221 (∼0.32◦ at 40 cm

distance)

0.0378 94.2042

Face only (Network-2) 0.2468 (∼0.35◦ at 40 cm

distance)

0.0436 93.4210

Face + FL + VGG16

(Proposed technique)

0.1278 (∼0.19◦ at 40 cm

distance)

0.0116 96.8358

Face + VGG16

(Network-2)

0.1358 (∼0.20◦ at 40 cm

distance)

0.0127 95.3947

FL only (Network-3) 0.3228 (∼0.46◦ at 40 cm

distance)

0.0761 89.0664

FL + VGG16

(Network-3)

0.3119 (∼0.45◦ at 40 cm

distance)

0.0733 89.6303

Key FL, 39-point Facial Landmark; MSE, Mean Square Error.

another fully connected layer and one output layer. The output
layer contains two neurons, which represents the estimated x
and y gaze coordinates. We used the rectified linear activation
function (ReLU) for all the layers, except the output layer.
We used the linear activation function for the output layer
because we are working on a regression problem (i.e., gaze
estimation). The overview of the proposed technique is shown
in Figure 3.

As noted in section Proposed Technique, we designed another
CNN model (i.e., Network-2) for the sake of comparison.
Network-2 accepts face images as input. It consists of two
convolutional layers, one fully connected layer and one output
layer. Each convolutional layer is followed by an average
pooling layer. The output layer contains two neurons. The ReLu
activation function is used for all the layers except the output
layer, where we used the linear activation function.

FIGURE 4 | Results for Face + FL on GazeCapture dataset.

FIGURE 5 | Results for Face + FL + VGG16 on GazeCapture dataset.
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FIGURE 6 | Results for FL only (39-points facial landmarks) on GazeCapture

dataset.

FIGURE 7 | Results for FL + VGG16 on GazeCapture dataset.

We performed fine-tuning for the proposed technique using
the VGG16 pre-trained model. The fine-tuning model consist
of two components. The first component is used to process the
face images using the VGG16 pre-trained model. The VGG16
network accepts the face images as input. The output layer
of the VGG16 network is removed and passed through one
average pooling layer. The average pooling layer is followed by
one convolutional layer, one average pooling layer, one fully
connected layer, and one dropout layer. The dropout layer is used
to prevent overfitting. The dropout rate is set to 0.5. The second
component is used to process the 39-point facial landmark
images. It consists of one convolutional layer, followed by one
average pooling layer, and one fully connected layer. The output
from the dropout layer of the first component is concatenated
with the output from the fully connected layer of the second
component. The concatenated output is passed through one fully
connected layer and one output layer, containing two neurons.
Similar to other experiments, we used the ReLU activation
function for all the layers, except the output layer where we used
the linear activation function. During fine-tuning, we freeze all
the pre-trained layers (excluding the output layer), and trained
only the added layers.

We also performed fine-tuning for Network-2 using the
VGG16 pre-trained model. During fine-tuning, we removed the
output layer of the VGG16 network and passed it through one
average pooling layer. The average pooling layer is followed by
one convolutional layer, one average pooling layer, one fully
connected layer, one dropout layer, and one output layer. The
dropout rate is set to 0.5.

Evaluation Metrics
The proposed technique was built and trained from the scratch.
The hyper-parameters used for training are reported in Table 2.
In the Table, beta_1 and beta_2 refers to the exponential decay
rate for the 1st and 2ndmoment estimates respectively. Similar to
No Matches Found, we report the error in terms of the Average
Euclidean Distance (AED) from the point of true fixation [see

FIGURE 8 | Visualization showing the distance between the ground truth and the predicted gaze for (A) Face + FL and (B) Face + FL + VGG16.
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equation (1)]. The AED is reported in centimeters and degrees.
We also report the accuracy and Mean Square Error (MSE)
produced by the models.

Average Euclidean distance

=
1

n

∑

n
i=1

√

(

gt_xi − e_xi
)2

+
(

gt_yi − e_yi
)2

(1)

where gt_xi and gt_yi refers to the ground truth label for each
input, and e_xi and e_yi refers to the estimated (x, y) gaze
coordinates for each input.

RESULT AND DISCUSSION

Different experiments were performed to evaluate the
performance of the proposed technique. Table 3 shows the
AED, MSE, and accuracy produced by the proposed technique.
The table also shows the performance of the second model (i.e.,
Network-2) designed in this study for the sake of comparison.
The proposed technique was trained on face images and their

TABLE 4 | Results produced by the proposed technique for TabletGaze dataset.

Model Average Euclidean

distance (cm)

MSE Accuracy (%)

Face + FL (Proposed

technique)

0.3510 0.07145 70.95153

Face only (Network-2) 0.35365 0.07255 70.95153

Face + FL + VGG16

(Proposed technique)

0.35275 0.07199 70.95153

Face + VGG16

(Network-2)

0.36102 0.07454 72.70454

FL only (Network-3) 0.34971 0.07091 70.95153

FL + VGG16 (Network-3) 0.3500 0.0710 70.9515

Key FL, 39-point Facial Landmark; MSE, Mean Square Error.

FIGURE 9 | Results for Face + FL on TabletGaze dataset.

corresponding 39-point facial landmark images, while Network-
2 was trained on face images only. As shown in the result, the
proposed technique outperformed Network-2, achieving an
AED of 0.22 cm and a MSE of 0.0378 (∼0.32◦ on a 4.7′′ phone at
40 cm distance). This shows that the 39-point facial landmarks
improved the performance of the model.

More experiments were performed to evaluate the
performance of the 39-point facial landmarks. In the
experiments, the face component of the proposed technique was
removed, and the facial landmark component was trained on
the 39-point facial landmark images. The results obtained are
reported in Table 3. The model produced an AED of 0.32 cm
(∼0.47◦) and a MSE of 0.0761. As observed, the full model
performed better than the facial landmark model, but the
performance of the facial landmark model is still acceptable.
This shows that the 39-point facial landmarks has the potential
to be used as a standalone input for developing improved

FIGURE 10 | Results for Face + FL + VGG16 on TabletGaze dataset.

FIGURE 11 | Results for FL only (39-points facial landmarks) on TabletGaze

dataset.
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gaze estimation models. It also shows that the 39-point facial
landmarks can be combined with other inputs for improved
gaze estimation.

FIGURE 12 | Results for FL+ on TabletGaze dataset.

TABLE 5 | Proposed technique vs other techniques.

Model Euclidean distance (cm)

Proposed technique (Face

+ FL + VGG16)

0.1278

Gazelle (Kim et al., 2016) 4.85

GazeEstimator (Jigang

et al., 2019)

1.25

AFF-Net (Bao et al., 2021) 1.62

TAT (Guo et al., 2019) 1.77

Key FL, 39-point Facial Landmark.

More experiments were performed to improve the
performance of the proposed technique using transfer learning.
Specifically, the VGG16 pre-trained model was used to fine-tune
the performance of the proposed technique. We performed
fine-tuning for both the proposed technique and the compared
technique (i.e., Network-2). The fine-tuned results are reported
in Table 2. As shown in the Table, the fine-tuned result of
the proposed technique outperformed the fine-tuned result of
Network-2. It achieved an AED of 0.13 cm and MSE of 0.0116
(∼0.19◦ on a 4.7′′ phone at 40 cm distance). This further shows
the significance of the 39-point facial landmarks. The result
also shows that the fine-tuned results of the proposed technique
outperform the results of the main model. This shows the
importance of fine-tuning in reducing error.

Figures 4–7 show the training and validation loss (i.e., MSE)
produced by the proposed technique for the GazeCapture
dataset. The figures also show the training and validation
accuracies produced by the proposed technique. As explained
in section Methods, the entire training process is divided into
two stages. At the hyper-parameter search stage, the models were
trained for three epochs. At the end of this stage, the best model
was selected and trained (at the second stage) for another seven
epochs. Figures 4–7 show the performance of the models at the
second stage, which is the main training stage. As shown in
the figures, there is no large discrepancy between the training
and validation loss produced in each epoch. There is also no
large discrepancy between the training and validation accuracy
produced in each epoch. This shows that there is no overfitting in
the trained models. It also shows the generalization performance
of the proposed technique.

Figure 8 shows the distance between the ground truth and
the predicted gaze values. Figure 8A shows the results for the
proposed technique (Face + FL), while the Figure 8B shows
the results for the finetuned proposed technique (Face + FL +

VGG16). We reported findings for only 20 pairs of gaze locations
to avoid overcrowding the plot and to guarantee that it is easily
comprehendible. As can be seen from the two plots, the gaze

FIGURE 13 | Comparison between proposed technique and four techniques.
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estimations for each gaze position in the figures are very near to
the ground truth gaze locations. Figure 8B also demonstrates that
fine-tuning the proposed technique contributed to a reduction in
gaze estimation error. The results illustrate that, on average, the
proposed technique yields a satisfactory Euclidean distance.

As indicated previously, the proposed approach was evaluated
on the TabletGaze dataset. Table 4 summarizes the AED,
MSE, and accuracy of the proposed technique (face + FL)
and compared techniques (face only). As can be observed,
the proposed technique slightly outperformed the compared
technique in terms of AED and MSE. The fine-tuned version
of the proposed technique (Face + FL + VGG16) also
outperformed the compared technique by a little margin.
This illustrates the role of the 39-point face landmark in
improving the model’s performance. Another experiment was
performed to evaluate the performance of the 39-point facial
landmark. The 39-point facial landmark was utilized to
train another CNN model, and the results were better than
when the model was trained on the face only, as shown
in Table 4.

Krafka et al. (2016) also examined their technique on the
TabletGaze dataset, and the study’s findings indicate that the
dataset did not perform as well as the GazeCapture dataset.
Similarly, in this study, the proposed technique did not yield
satisfactory results for the TabletGaze dataset when compared
to the GazeCapture dataset. It attained an accuracy of 94.2042%
when evaluated on the GazeCapture dataset, but only 70.9515%
when evaluated on the TabletGaze dataset. The reason for
this warrants more investigation. Nevertheless, the GazeCapture
dataset appears to be a better dataset for gaze estimation, based
on the results.

Figures 9–12 show the training and validation loss (i.e., MSE)
produced by the proposed technique for the TabletGaze dataset.
The figures also show the training and validation accuracies
produced by the proposed technique. As can be observed, while
the accuracy and AED of the models is not very high, their
generalization performance is adequate. There is no significant
difference in the training and validation losses generated in
each period. Additionally, there is no significant difference
between the accuracy achieved by training and validation
in any period. This shows that there is no overfitting in
the model.

The proposed technique (Face + FL + VGG16) is compared
against four previously published algorithms on the GazeCapture
dataset: GazeEstimator (Jigang et al., 2019), Gazelle (Kim et al.,
2016), AFF-Net (Bao et al., 2021), and TAT (Guo et al.,
2019). Table 5 and Figure 13 shows the outcomes of the four
techniques. As shown, the proposed technique outperforms
the four compared techniques. It achieved the best Euclidean
distance of 0.1278 cm, followed by GazeEstimator and AFF-Net.

SUMMARY

This paper introduces a CNN-based calibration-free technique
for improved gaze estimation. The technique accepts two inputs,
namely: full-face images and 39-point facial landmark images.
The 39-point facial landmark is used to encode the shape
and location of the eyes and head into the network. Different
experiments were performed, and the results show that the
proposed technique produced good results. It also shows that
the 39-point facial landmarks improved the performance of the
proposed gaze estimationmodel. The performance can be further
improved by training the proposed technique on a larger dataset.
This is our plan for future research.
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