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Abstract

Computational modeling of neuronal morphology is a powerful tool for understanding developmental processes and
structure-function relationships. We present a multifaceted approach based on stochastic sampling of morphological
measures from digital reconstructions of real cells. We examined how dendritic elongation, branching, and taper are
controlled by three morphometric determinants: Branch Order, Radius, and Path Distance from the soma. Virtual dendrites
were simulated starting from 3,715 neuronal trees reconstructed in 16 different laboratories, including morphological
classes as diverse as spinal motoneurons and dentate granule cells. Several emergent morphometrics were used to compare
real and virtual trees. Relating model parameters to Branch Order best constrained the number of terminations for most
morphological classes, except pyramidal cell apical trees, which were better described by a dependence on Path Distance.
In contrast, bifurcation asymmetry was best constrained by Radius for apical, but Path Distance for basal trees. All
determinants showed similar performance in capturing total surface area, while surface area asymmetry was best
determined by Path Distance. Grouping by other characteristics, such as size, asymmetry, arborizations, or animal species,
showed smaller differences than observed between apical and basal, pointing to the biological importance of this
separation. Hybrid models using combinations of the determinants confirmed these trends and allowed a detailed
characterization of morphological relations. The differential findings between morphological groups suggest different
underlying developmental mechanisms. By comparing the effects of several morphometric determinants on the simulation
of different neuronal classes, this approach sheds light on possible growth mechanism variations responsible for the
observed neuronal diversity.
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Introduction

Dendritic morphology underlies many aspects of nervous system

structure and function. Dendrites, along with axons, define the

connectivity of the brain [1,2], and play a large role in information

processing at the single cell level [3,4]. Many studies have

highlighted the importance of dendritic branching pattern in

neuronal behavior. Mainen and Sejnowski [5] have shown that the

full range of firing patterns for a wide variety of cortical cell types

can be accounted for by branching morphology alone. Others

have shown that the backpropagation of action potentials into the

dendrites is strongly affected by branching pattern [6]. These

results, among others, have contributed to a now widespread

acceptance that dendritic morphology is an essential substrate of

brain activity and function.

Despite its importance, dendritic branching remains poorly

understood [7]. Dendritic branching is driven by a complex

interaction of intracellular and extracellular signaling cascades

which are proving difficult to completely unravel by molecular

biology alone. The same chemical can have different effects in

different cells [8] and even different parts of the same cells [9].

Much of the molecular work is carried out on cultured cells where

separating apical and basal trees, and even dendrite from axons, is

difficult (for example see [10]).

Computational modeling offers a complementary approach to

traditional molecular means of uncovering fundamental properties

of dendritic branching (e.g., [11,12]). Here we focus on data driven

simulations, where the parameters controlling branching behavior

are measured from real cells, reduced to statistical distributions,

and resampled to form virtual trees (e.g.. [13–16]). One advantage

of this approach is the insights it gives into dendritic development.

Many attempts have been made to model mechanistic aspects of

dendritic development directly, such as MAP2 phosphorylation

states [17], or growth cone navigation [18–20]. Other models,

while not aiming to represent developmental processes explicitly,

can yield insights into general principles or specific mechanisms at

play. For example, the 3D modeling approach used by

Samsonovich and Ascoli [21] demonstrates the importance of

somatic repulsive forces for the shaping of principal cells in the rat

hippocampus.

While data driven simulations have increased our understand-

ing of dendritic development, they are difficult to compare

directly. Different studies often focus on separate structural levels

or details, and are rarely based on the same cell classes. Here we

expand on previous approaches by testing a suite of three closely

related models, both individually and in hybrid combinations.

Also, because data driven modeling generally requires quality

neuronal reconstructions, they tend to be limited to one or two
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dendritic tree types. From these studies, it is often difficult to

determine how general the results are, and to discern biological

insights from data or model peculiarities. With a large digital

database of neuromorphological reconstructions now, online

(NeuroMorpho.Org), we were able to apply our models to a wide

variety of dendritic trees (Figure 1) from 16 different labs. This

allows the separation of general trends from more specific model-

morphology interactions.

The core of our modeling approach is a recursive branching

process as described in Figure 2A (detailed in Materials and

Methods and [22]). All of the basic parameters of the model (defined

in the five text boxes in Figure 2B) are measured from each real

cell and resampled to create virtual trees. Every branch in the real

trees has an associated taper rate and pathlength, every bifurcation

has a daughter diameter ratio, etc. With every basic parameter

extracted from real cells, the accompanying fundamental determinant

(Figure 2C) is also measured. For example, when measuring the

taper rate of a real branch, the thickness (radius), the number of

bifurcations from the soma (branch order), and the somatic path

distance of that same branch are also recorded. Within each tree

group (e.g., Martone’s Purkinje), and for each of the three

fundamental determinants, series of distributions are then

generated which best describe each basic parameter for different

bins of the fundamental determinant. For example, one distribu-

tion will describe all of the taper rate values which occur at Branch

Order four. It is this distribution that will be sampled to select the

taper rate every time a branch of order four is added to a virtual

tree of this group based on this fundamental determinant (as

described in Figure 2A). This process is repeated for each of the

five basic parameters, 68 groups of real cells, and three

fundamental determinants.

The term ‘‘fundamental determinants’’ is meant to describe the

parameters which are primary in the model and drive the selection

of other values, but should not be taken to imply that they are the

only or most crucial developmental factors underlying branching

behavior. The comparative approach constrains the choice of

fundamental determinants to those compatible with the common

mechanics of the model. Nevertheless, the chosen determinants

are biologically important and have all been implicated by earlier

studies (reviewed in [7]) in the control of bifurcation probability

Figure 1. Dendritic diversity. Sample cells showing the variety of tree morphologies used as data for this study.
doi:10.1371/journal.pcbi.1000089.g001

Author Summary

Neurons in the brain have a variety of complex arbor
shapes that help determine both their interconnectivity
and functional roles. Molecular biology is beginning to
uncover important details on the development of these
tree-like structures, but how and why vastly different
shapes arise is still largely unknown. We developed a novel
set of computer models of branching in which measure-
ments of real nerve cell structures digitally traced from
microscopic imaging are resampled to create virtual trees.
The different rules that the models use to create the most
similar virtual trees to the real data support specific
hypotheses regarding development. Surprisingly, the
arborizations that differed most in the optimal rules were
found on opposite sides of the same type of neuron,
namely apical and basal trees of pyramidal cells. The
details of the rules suggest that pyramidal cell trees may
respond in unique and complex ways to their external
environment. By better understanding how these trees are
formed in the brain, we can learn more about their normal
function and why they are often malformed in neurolog-
ical diseases.

Modeling Dendritic Morphology
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(one of our basic parameters). Radius correlates with microtubule

density [23] and has previously been shown to capture some, but

not all, aspects of dendritic branching in several neuronal classes

[13,22]. Branch order takes into account the division of resources

from the soma and has been used to control the distribution of

bifurcations in several computational models [11,14]. Path

distance affects the time of subcellular transport and signaling to

and from the soma, and has been useful in constraining

motoneuron and pyramidal cell virtual growth [13,24].

In earlier efforts (e.g. [16,25]), basic parameters were assumed

to be uniformly distributed throughout the dendritic tree (Figure 3

inset). While some cell types were well captured in this way, others

resulted in virtual trees which continued to bifurcate indefinitely.

Later studies [22] determined that this was due to basic parameter

values being applied in the virtual trees where they did not occur

in the real trees. For example, in the apical trees of one group of

pyramidal cells (Figure 3), the daughter diameter ratio tends to be

larger near the soma than farther distally. Most importantly, the

proportion of bifurcations with two equally sized daughters

(unitary values of the diameter ratio) is smaller close to the soma,

where most of the bifurcations occurred in this case. Without

grouping by fundamental determinant, these dependencies are not

captured in the virtual trees. Using radius as a fundamental

determinant for all basic parameters in CA1 pyramidal cells

prevented the explosive virtual growth, but the resulting trees were

still excessively varied in size [22]. The model also proved to be

very sensitive to radius, a notoriously noise prone measurement in

neuronal reconstructions. Here we expand on this work by

applying three different fundamental determinants to a wider

variety of tree types.

Figure 2. Model parameters and flow. (A) Flowchart showing how virtual trees are created from sampled basic parameters. (B) Depiction of the
basic parameters. (C) Depiction of the three fundamental determinants which constrain the sampling of the basic parameters. (D) Morphometrics
which are neither fundamental nor basic are emergent to the model and can be employed to compare the real and virtual trees.
doi:10.1371/journal.pcbi.1000089.g002
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The creation of three individual models with the same underlying

mechanics also allows the implementation of hybrid variations. This

step overcomes some limitations of the simpler models by

introducing more freedom, but complicates biological interpretabil-

ity. Most importantly, the details of how the mix models improve

upon (or do not) the individual models provides information on the

individual models themselves. We explored two alternatives (detailed

in Materials and Methods). In the first, each basic parameter was

under the control of a separate fundamental determinant (leading to

243 possible combinations). The second ‘‘Mix’’ strategy varied the

proportional influence (in %10 steps) of each fundamental

determinant in controlling all of the basic parameters.

The comparative application of different but related models to

extremely diverse morphological classes enables us to look both

within and across cellular/subcellular features for parameter

interactions. These interactions may then point to important

developmental principles. Four biologically important morpho-

metrics which are emergent to the model are used to compare the

real and virtual trees (Figure 2D, Materials and Methods). These

morphometrics capture features related to both tree size and

branch patterns, giving a relative measure of model behavior. A

distance metric is used which takes into account both the

differences between the means of the real and virtual trees, and

the variability in model behavior (see Materials and Methods for

details). We find that the apical and basal arborizations of

pyramidal cells differ more than groups of dendrites divided by

other criteria (such as tree size). We propose, based on the

parameter interactions, that extracellular environment and

intracellular competition for resources may be particularly

important in the development of apical and basal tree types.

Results

The three individual models were evaluated in terms of their

ability to produce virtual trees with values of the emergent

morphometrics that best matched the corresponding real trees.

Strong trends were shown when considering all of the tree classes

together (Figure 4). In terms of the ability of the three fundamental

determinants to reproduce the number of bifurcations across the

whole set of morphologies, Branch Order was the clear winner

(Figure 4A). The Branch Order model variant created trees which

were significantly closer in number of bifurcations to the real trees

than either Radius or Path Distance (Figure 4A upper). In

particular, the mean number of bifurcations of virtual trees

differed by an average of only 10% from the measured (real) value.

This relative difference was over twice and nearly three times as

large for the models based on Path Distance and Radius,

respectively. Still looking at number of bifurcations, Branch Order

was also the best model (assessed by the distance metric), for well

over half of the 68 tree groups (Figure 4A lower). While a model

based on branch order may be expected to best control the

number of branches, apical trees of pyramidal cells offer a striking

exception to this general trend, which is discussed in depth below.

In this sense, the comparative approach is particularly powerful by

naturally providing biologically relevant ‘‘mutual’’ controls among

the different morphological groups and model variants.

Overall, bifurcation asymmetry was best determined by both

Path Distance and Radius (Figure 4B). Both Path Distance and

Radius were significantly better than Branch Order (Figure 4B

upper), and were each determined to be the best for roughly twice

as many tree groups as Branch Order (Figure 4B lower). No

fundamental determinant was significantly better than the others

at determining surface area (Figure 4C upper). Likewise, Path

Distance, Radius, and Branch Order each best determined surface

area for roughly one third of the tree groups (Figure 4C lower). On

the other hand, surface area asymmetry was overwhelmingly best

determined by Path Distance (Figure 4D). The relative difference

for this emergent morphometric was on average half for the Path

Distance model than for either of the other fundamental

determinants. Moreover, 84% of the tree groups had their surface

Figure 3. Basic parameter distributions. Example basic parameter (daughter diameter ratio) distributed irrespective of fundamental parameters
(inset), as used in previous studies, and the same parameter binned by Path Distance (main plot: columns and error bars are means and standard
deviations, respectively). Both the main graphs and the inset only include daughter ratio values greater than one. The solid line (secondary axis in the
main plot) shows the percentage of unitary values in each bin. The dotted line represents the overall percentage of unitary daughter ratios.
doi:10.1371/journal.pcbi.1000089.g003
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area asymmetry best reproduced by the Path Distance model

(Figure 4D lower).

These trends were generally robust throughout individual tree

groups. However, a finer analysis organized by morphological

classes revealed additional insights. The tree groups were first

divided into apical (n = 18), basal (n = 18), and non-pyramidal

(n = 32). The Branch Order model was significantly better than

either Radius or Path Distance at determining the number of

bifurcations in both basal and non-pyramidal tree types (Figure 5B

and 5C). In particular, Branch Order ‘‘won’’ more than three

quarters of the basal groups. This was definitely not the case for

apical trees, where over half of the 18 groups had their number of

bifurcations best determined by Path Distance (Figure 5A).

Figure 5D shows a more detailed analysis for a representative

apical tree group. In this example, Path Distance better captures

not only the mean, but also the pattern of bifurcations as a

function of branch order (‘‘Sholl-like’’ plots). In contrast, when

looking at basal trees from the same cells (Figure 5E) the Branch

Order model provides a much better match to the real data.

The situation is almost reversed if models are evaluated based

on another emergent morphometric, namely bifurcation asym-

metry instead of the number of bifurcations (Figure 6). Path

Distance is the worst model at capturing apical asymmetry

(Figure 6A) but the best at capturing basal asymmetry (Figure 6B),

both in terms of average distance (top panels) and numbers of

groups (bottom). Non-pyramidal cells fall in between apical and

basal with both Radius and Path Distance producing the best

results more often than Branch Order (Figure 6C). Another

example Sholl-like analysis carried out on an single group of

pyramidal cells is consistent with the trends observed across the

corresponding sets of tree types, and opposite to the patterns

observed for number of bifurcations (Figure 6D). In particular, the

distribution of apical bifurcation asymmetry values as a function of

branch order is better reflected by the Radius model than by the

Path Distance model. Figure 6E shows that the converse is true for

the basal trees from the same cells.

While Figures 5 and 6 show that the interaction between

fundamental determinants and emergent morphometrics is

different for apical and basal trees, it is important to notice that

the overall quality of the simulations is different as well, as

becomes apparent when the units are on the same scale (Figure 7).

Both Branch Order and Radius are better able to capture the

number of bifurcations in basal than in apical arbors (Figure 7A),

but the inverse relation holds for bifurcation asymmetry

(Figure 7B). In both cases, non-pyramidal cells fall in between.

This differential performance can be quantified for a given

fundamental determinant and emergent morphometric as the ratio

of the larger over the smaller of the mean differences between real

and virtual trees for the two arbor types. In particular, we

formalize the performance ratio as the absolute value of the logarithm

of this value (this definition yields a positive value that is

independent of the numerator vs. denominator). This value is

larger for Branch Order and number of bifurcations and smaller

for Radius and asymmetry, i.e. the contrast between apical and

basal trees is greatest when testing the Branch Order model for

number of bifurcations.

Such a measure also allows the comparison of different criteria

to divide neuronal groups besides basal and apical, such as other

cellular classifications (e.g. pyramidal and non-pyramidal), devel-

opmental stage (young and adult), animal species (rat and others),

Figure 4. Differential ability of the three individual models to capture four emergent morphometrics. The upper portion of each panel
shows the average relative difference between the means of virtual trees and those of real trees for each fundamental determinant (RAD = Radius,
PD = Path Distance, BO = Branch Order). The lower portions show the proportion of times each model is the best (as measured by the distance metric)
at determining the emergent morphometrics for the 68 tree groups. The fundamental determinants differ in their relative ability to capture each of
the emergent morphometrics. The asterisk (*) signifies p,.05 for all figures as determined by the Mann-Whitney U non-parametric test. All error bars
show standard error. (A) Number of bifurcations is best captured by Branch Order. (B) Branch Order is significantly worse than Radius or Path Distance
at capturing bifurcation asymmetry. (C) Surface area is captured equally well by all three fundamental determinants. (D) Path Distance best captures
surface area asymmetry.
doi:10.1371/journal.pcbi.1000089.g004
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or median-based metrics (with respect to e.g. size and symmetry).

The ability of the different models to differentiate between apical

and basal trees is much greater than for other divisions tested

(Figure 7C). In fact, at least part of the effect observed in other

division may simply reflect the apical/basal divide. For example,

basal trees tend to be among the smallest and most symmetric,

while apical trees tend to be relatively large and asymmetric

(Table 1). The contrast between the basal-apical distinction and all

others is particularly prominent considering the logarithmic

relation in the performance definition. Attempts to investigate further

distinctions by cluster analysis (not shown) confirmed these

observations. When clustering the 68 groups on the ability of the

models to capture the emergent morphometrics, the more distant

clusters break along the apical-basal-non pyramidal lines as

opposed to other morphometrics (e.g. tree size, asymmetry) or

metadata (e.g. animal age or strain).

After comparing the ability of the ‘‘pure’’ fundamental

determinants to control virtual growth and the emergence of

various morphometrics in different cell classes, we examined the

effect of mixing the influences of Branch Order, Radius, and Path

Distance in the hybrid models. The ‘‘% Mix’’ model combines the

three fundamental determinants in each of 66 fixed proportions,

and samples the basic parameters according to the respective

weights. In the ‘‘243 Mix’’ model, every basic parameter can be

controlled by a different fundamental determinant. For any tree

group and emergent morphometric, the best individual variants of

Figure 5. Ability of the models to capture apical and basal number of bifurcations. (A) Apical trees have their number of bifurcations best
captured by Path Distance (RAD = Radius, PD = Path Distance, BO = Branch Order). (B) Basal and (C) non-pyramidal trees have their bifurcation
numbers best determined by Branch Order. This may point to different underlying developmental mechanisms between apical and other tree types.
(D, E) Sholl-like plots showing bifurcation number as a function of branch order for sample apical (D) and basal (E) groups of cortical pyramidal cells
(Markram layer 4, N = 24). Path Distance better captures apical bifurcations while Branch Order better captures basal arbors.
doi:10.1371/journal.pcbi.1000089.g005
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each of these two hybrid models are singled out. Even if all

variants were statistically equivalent in their ability to reproduce

the morphology of real trees, better quality can be expected

because of the sheer number of repetitions (and the selection of the

winner). Thus, in order to compare the two hybrids and the best

individual models fairly, each of the three approaches was

‘‘normalized’’ to the same number of 243 iterations (with varying

random seeds), and the best result was chosen in each case.

The general trend across all 68 cell groups is that the 243 Mix

clearly outperforms the best individual model, with the % Mix

yielding somewhat intermediate results depending on the emer-

gent morphometric (Figure 8). In particular, the 243 Mix is

significantly better at capturing bifurcation asymmetry, surface

area, and surface area asymmetry than the individual models

(Figure 8A). The percent Mix paradigm constitutes an improve-

ment relative to the best individuals with respect to bifurcation and

surface asymmetry, but only for the latter significantly. In all cases,

the difference between real and virtual trees was considerably

larger for the surface area morphometric than for the number of

bifurcations. Visual and qualitative inspection of corresponding

virtual and real dendrogram confirmed these findings. In

particular, the 243 Mix model demonstrated a striking ability to

capture the peculiarities of dendritic branching for each of the

examined tree types (Figure 8B).

The relative weights of the fundamental determinants in the

winning combination of the two hybrid models for each emergent

Figure 6. Ability of the models to capture apical and basal bifurcation asymmetry. (A) Apical trees have their bifurcation asymmetry best
determined by Radius (RAD = Radius, PD = Path Distance, BO = Branch Order). (B) Basal trees have their bifurcation asymmetry best determined by
Path Distance, which wins over the other two models two-thirds of the time. (C) Non-pyramidal trees lie somewhere in the middle, with neither Path
Distance nor Radius giving better bifurcation asymmetry results. (D, E) The values of bifurcation asymmetry vary as a function of branch order in
representative apical (D) and basal (E) groups (Amaral CA1, N = 23). Path Distance better captures the basal pattern, while the Radius model better
captures apical asymmetry.
doi:10.1371/journal.pcbi.1000089.g006
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morphometric reflects the trends observed when examining the

performance of the pure models. Specifically, we compared the

fraction of tree groups ‘‘won’’ by each individual determinant with

the proportions of the winning % Mix model and the composition

of the 243 Mix. Averaging the results over all tree types reveals

similar values of the three determinants from the three protocols

within any one morphometric property (Figure 9). Similarly, the

separate examination of basal and apical arbors consistently

reproduces the findings of Figures 4 and 5 (not shown).

Sampling each basic parameter using a separate fundamental

determinant, the 243 Mix model provides an opportunity to gain

additional insights into how specific aspects of dendritic structure

and development can interact to produce mature morphologies.

In particular, it is instructive to analyze how the makeup of the

243 hybrid breaks down for the five basic parameters across the

emergent morphometrics throughout all cell types (Figure 9,

bottom panels). For example, Branch Order controls over two

thirds of the bifurcation probability in the winning variant

selected by the number of bifurcations, but less than one sixth in

the model that wins according to bifurcation asymmetry

(Figure 9A and 9B).

When capturing bifurcation asymmetry, Branch Order con-

tributes above average to taper rate and branch path length,

Radius to daughter ratio and parent-daughter ratio, and Path

Distance to bifurcation probability (Figure 9B bottom). Interest-

ingly, Surface Area requires a finely balanced contribution of the

three determinants in all five basic parameters (Figure 9C), and

this emergent morphometric is particularly challenging for the

other models (Figure 8A). Even though the Radius model is very

rarely the best at capturing surface asymmetry, Radius is the best

driver of bifurcation probability in the 243 Mix nearly half of the

time (Figure 9D). These findings help to explain the success of the

243 Mix model while giving insights into which fundamental

parameter/basic parameter interactions are driving the best

individual model choices. For example, the best individual model

with regards to the number of bifurcations seems to be highly

influenced by bifurcation probability (Figure 9A). In contrast, the

large percentage of tree groups which have their surface area

Figure 7. Relative magnitude of apical-basal divide. (A) Number of bifurcations is better captured by both Radius and Branch Order in basal
than in apical trees. (B) Conversely, bifurcation asymmetry is better captured by both models for apical trees. In either case, non-pyramidal trees tend
to lie in between apical and basal trees. (C) The relative ability of the individual models to differentiate apical from basal trees is greater than for other
tree divisions. The Performance Ratio is the absolute value of the log of the ratio between the two tree types of the mean differences between real
and virtual trees. Number of bifurcations is shown as positive bars (black), bifurcation asymmetry as negative bars (gray). With models based on
Branch Order and Radius, the apical-basal divide shows the largest performance ratios for both bifurcation number and asymmetry. The numbers
above the Radius columns represent the count of tree groups for the corresponding divisions.
doi:10.1371/journal.pcbi.1000089.g007
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Table 1. The 68 tree groups with the number of cells and trees in each.

Tree Type Lab Cells Trees Bif # Bif Asym Surf Area (mm2) Surf Asym

CA1 Apical Amaral 23 30 46.20 0.60 8053 0.53

Claiborne 7 8 44.00 0.57 36787 0.49

Guylas 18 18 49.61 0.61 12553 0.56

Larkman 6 7 38.43 0.59 18074 0.52

Turner in vivo young 24 25 46.16 0.59 18362 0.57

Turner in vitro aged 15 18 62.50 0.57 24268 0.55

Turner in vitro young 10 12 50.58 0.52 22053 0.54

CA1 Basal Amaral 23 77 7.77 0.35 1340 0.27

Claiborne 7 24 7.75 0.36 6927 0.23

Guylas 18 62 6.85 0.35 1257 0.23

Larkman 6 35 6.31 0.40 2297 0.40

Turner in vivo young 24 75 10.08 0.42 3641 0.33

Turner in vitro aged 15 48 9.52 0.41 3516 0.34

Turner in vitro young 10 33 8.06 0.39 3269 0.35

CA3 Apical Amaral 24 42 22.86 0.51 6504 0.46

Barrionuevo 8 11 24.91 0.50 9188 0.48

Jaffe 6 6 26.33 0.48 26699 0.40

Turner 18 23 21.13 0.50 15844 0.41

CA3 Basal Amaral 24 99 9.03 0.39 1714 0.26

Barrionuevo 8 33 7.21 0.36 2281 0.24

Jaffe 6 19 7.84 0.40 5966 0.25

Turner 18 61 10.46 0.38 6771 0.34

Cortical Pyramidal Apical Markram layer 2/3 37 43 14.35 0.50 4094 0.48

Markram layer 4 24 21 11.43 0.50 3593 0.54

Markram layer 5 22 23 57.43 0.60 17701 0.61

Wearne local young 20 20 17.85 0.51 3381 0.47

Wearne local old 17 17 18.59 0.47 5053 0.48

Wearne long young 24 24 22.88 0.49 3282 0.47

Wearne long old 19 19 17.74 0.48 3495 0.48

Cortical Pyramidal Basal Markram layer 2/3 37 167 3.44 0.33 887 0.29

Markram layer 4 24 114 2.77 0.30 854 0.47

Markram layer 5 22 143 3.13 0.38 942 0.39

Wearne local young 20 108 3.51 0.35 716 0.29

Wearne local old 17 96 3.90 0.28 722 0.28

Wearne long young 24 152 3.96 0.34 839 0.32

Wearne long old 19 122 3.70 0.31 751 0.31

Dentate Claiborne 43 73 8.89 0.38 11518 0.20

Gyrus Turner in vivo 19 37 8.32 0.43 4304 0.33

Granule Turner in vitro 19 38 6.92 0.43 4072 0.37

Cortical Interneuron Guylas calbindin 18 69 2.78 0.30 2119 0.26

Guylas cck 14 61 4.15 0.30 8368 0.25

Guylas calretenin 29 83 2.64 0.26 1600 0.23

Guylas parvalbumin 20 88 2.64 0.31 4683 0.15

Jaffe lacunosum-mol. 13 53 3.91 0.32 3879 0.32

Jaffe radiatum 13 50 4.40 0.43 3928 0.33

Jaffe other 17 68 4.50 0.40 2485 0.33

Markram 23 139 2.58 0.34 784 0.30

Turner 13 43 4.63 0.41 2222 0.43

Purkinje Martone 4 5 282.20 0.50 10352 0.50

Rapp 3 3 435.33 0.50 45679 0.54
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asymmetry best captured by Path Distance may be due to the

inability of Radius to determine parent-daughter ratio and of

Branch Order to determine bifurcation probability with regards to

this emergent parameter (Figure 9D).

Discussion

Dendritic development is a complicated process (reviewed in

[7]). Intracellular transport [26,27], extracellularly initiated

signaling cascades (e.g. [10,28]), synaptic activity [29], membrane

tension [30], and electrical activity [31] all interact to influence

dendritic branching. Morphological modeling constitutes a

powerful tool to try and tease out the relative influence of different

mechanisms in determining the shapes of different types of

dendritic trees. Theories and hypotheses about developmental

principles, such as directly relating branch behavior to microtu-

bule density [23], can be tested quantitatively and rigorously with

data driven models (e.g., [22]). This is an iterative process whereby

model failures can point to specific gaps in our understanding,

driving new theories, experiments, hypotheses, and computational

simulations.

Most previous modeling attempts varied widely in both their core

methodology (i.e. the specifics of the algorithm and the choice of

variables) and in the cell classes they attempted to recreate (see [7] for

review). This has made direct comparison of results, and the

definition of universal modeling ‘‘rules,’’ particularly difficult.

Additionally, when only one model and a single dataset are used,

it is impossible to differentiate which results are a function of biology

and which are a function of the model details. We have addressed

these challenges by applying several closely related models to a large

database of different cell classes. Such an approach enabled the

abstraction of broad tendencies as to which fundamental determi-

nants best capture different aspects of morphology. In turn,

examining the deviations from these general findings in specific

cases may point to important developmental differences between

tree types. This investigation led to the discovery of striking

differences between apical and basal arbors of pyramidal cells.

The general results link individual fundamental determinants to

the specific emergent morphometric they each best capture, and

provide a baseline for comparing particular tree types. The

number of bifurcations is best described by Branch Order and

worse by Radius. Biologically, the cell may have the ability to

‘‘count’’ branch order locally when determining whether to

bifurcate again, possibly detecting the partition of available

downstream resources at each bifurcation. The poor performance

of Radius suggests that a constant taper rate relating to steady

microtubule loss is not a primary mechanism to limit or arrest

branching. However, Radius is a better performer than Branch

Order with regards to bifurcation asymmetry. Radius may

modulate asymmetry by allowing larger branches to bifurcate

while their smaller sisters terminate. Interstitial branching, the

formation of side branches off of existing branches, constitutes a

potential biological underpinning, as it typically produces a larger

diameter disparity than terminal branching (the splitting of an

extending growth cone). Path Distance can also regulate

asymmetry if all branches terminate equidistant from the soma

(symmetric trees), or form a distal tuft of bifurcation (asymmetric

trees). This may relate to the transport of intracellular messengers

or reaction to localized extracellular signals. Since only Path

Distance fully succeeds in capturing surface area asymmetry,

Radius may be missing vital length or position dependence.

Finally, the equal contribution of all fundamental determinants to

surface area suggests that this emergent morphometric is not

specifically constrained by any individual corresponding biological

correlate.

A limitation in regards to the interpretation of results is inherent

in the restricted amount of data available in each individual group

of cells. This scarcity prevents the practical or statistically

meaningful investigation of the branching behavior of all neuronal

Tree Type Lab Cells Trees Bif # Bif Asym Surf Area (mm2) Surf Asym

Spinal Motoneuron Ascoli p3 9 59 11.69 0.46 4024 0.47

Ascoli p11 8 65 9.06 0.44 1608 0.44

Burke 6 69 13.77 0.47 54717 0.51

Cameron 1–2 day 10 56 3.09 0.41 2471 0.32

Cameron 5–6 day 12 83 2.08 0.31 2652 0.28

Cameron 14–15 day 14 47 2.81 0.39 3747 0.31

Cameron 19–25 day 8 82 2.33 0.28 1922 0.31

Cameron phr 2 week 5 63 3.76 0.36 5791 0.32

Cameron phr 1 month 6 66 3.36 0.33 6943 0.30

Cameron phr 2 month 5 56 6.11 0.40 11382 0.39

Cameron phr 1 year 6 62 6.66 0.40 27434 0.40

Fyffe alpha 8 89 7.45 0.41 25796 0.41

Fyffe gamma 4 29 3.48 0.37 14513 0.24

Retinal Ganglion Miller small simple 16 60 3.07 0.34 494 0.32

Miller small complex 5 38 7.21 0.49 2152 0.39

Miller medium simple 15 10 14.00 0.47 704 0.48

Miller med. complex 25 122 9.47 0.46 1291 0.39

Miller large complex 4 14 12.64 0.44 3157 0.43

The left four columns show the mean emergent morphometric values for each group: number of bifurcations, bifurcation asymmetry, surface area, and surface
asymmetry.
doi:10.1371/journal.pcbi.1000089.t001

Table 1. Cont.
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classes separately. Therefore our analysis concentrated on sub-

groupings of the 68 unique datasets. The groups were divided

based on a wide variety of criteria, including emergent parameter

values, laboratory of origin, animal species and age, brain region,

and arbor type (apical, basal, or non-pyramidal). In addition to

investigating the relative model performance of many of these

divisions by hand, the ability of all of the model variants to capture

emergent morphometrics was subjected to cluster analysis. The

resulting groups were systematically compared to the above

divisions as well as visually inspected for other meaningful

classification criteria. Of all the various tree groupings consistent

with the available collection of real morphologies, the model

performance was only statistically differentiated between apical

and basal dendrites (Figure 7C). Apical and basal arborizations

differed in the pattern (Figures 4 and 5), and the direction of their

responses (Figure 7A and 7B). Several potential biological

explanations merit further investigation.

One important aspect to note is that pyramidal cells, as

opposed to many of the other modeled tree types, grow in a very

layer specific manner (as seen graphically in Figure 8B). Both the

real and virtual CA1 apical trees show a distal increase in

bifurcations, corresponding to the tuft in stratum lacunosum-

moleculare. In contrast, basal trees have the majority of their

terminations in a relatively small window relative to the soma

(see also Figure 5D and 5E). The fact that these trees are exposed

to different inputs and extracellular chemicals gradients as they

cross (or do not, in the case of basal dendrites) histological layers

could largely explain their contrasting branching behavior.

There is some indirect experimental evidence which supports

this hypothesis. Baker et al. [32] have shown differential

responses of pyramidal and non-pyramidal cortical cells to

neurotrophin-3. Other studies have shown that basal and apical

dendrites respond differently to neurotrophins (NTs), with basal

response being layer specific, while apical responses are more

Figure 8. Mix model results. (A) The ability of the different model variants to capture the emergent morphometrics. The best individual (BI) and
percent mixing (% Mix) were repeated with different random number seeds until they produced 243 virtual tree groups for every real one to match
the number produced in the determinant mixing paradigm (243 Mix). The determinant mixing paradigm, where the sampling of each basic
parameter could be controlled by a separate fundamental determinant, was significantly better at capturing bifurcation asymmetry and total surface
area. Both mixing paradigms were better than the best individual models at capturing surface area asymmetry. (B) Sample real and virtual
dendrograms using the determinant mixing paradigm. Scale bars are the same for each real-virtual pair.
doi:10.1371/journal.pcbi.1000089.g008
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general, perhaps due to their crossing several cellular layers

[33,34]. These previous studies, however, have applied NTs in a

bath fashion and have not looked directly at the morphology of

apical trees in different layers. In order to test apical layer

specific responses directly, it would be necessary to vary the NTs

in a layer specific manner, perhaps through genetic manipula-

tion of different incoming pathways, and perform layer specific

analysis of apical tree morphology.

The morphological response of dendrites to NTs and other

chemicals is very complex (reviewed in [7]), making the generation of

specific hypotheses difficult. NTs and their receptor patterns can

vary with developmental time [35,36] and activity [37]. Other

studies [9] have shown uniform sub-cellular distributions for some

receptors, but rapid mobility of these receptors [38]. This with

problems maintaining morphological details in certain culture

preparations [39] leaves open the possibility of layer specificity, at

least for some cell types or developmental periods. It is also possible

that while NTs are obviously important to neuronal morphology,

layer specific responses to them may be mediated through other

pathways. However, some intriguing results from bath application of

NTs provide possible testable hypotheses. For example, supposes it is

the layer specific responses to NTs that is limiting basal dendrites to

particular cortical layers. Then our results would suggest that by

increasing expression of BDNF in layer 5, basal dendrites from cells

in layers 4, which respond very strongly to BDNF [33,34], may grow

into that deeper layer. Also, layer 6 basal dendrites are inhibited by

NGF and BDNF while layer 4 and 5 dendrites have the opposite

response. Likewise apical trees in layer 6 have the weakest response

to these two NTs. If pyramidal dendritic NT response is layer as well

as cell type-specific, as our data suggests, the expression pattern of

these NTs may be similar, and different in layer 6 than in 4 and 5.

The strongest responses to NT-4 are seen in basal dendrites from

neurons in layers 5 and 6, and apical dendrites from layer 4 [34]. As

these three structures have no overlap in the layers they innervate, it

is possible that NT-4 may provide a general growth control in these

structures without disrupting layer specific responses.

An alternative or additional mechanism that could underlie the

differential performance of various models in the simulation of

apical and basal trees involves shifting competition for an

intracellular signal or cytoskeletal metabolite. Previous statistical

analyses have provided convincing indication that dendritic

branching may be homeostatically regulated by global and local

competition for limited intracellular resources [40]. Such an

explanation could account for the sudden termination often

observed in basal arbors, and the burst of bifurcations in apical

tufts. More time-lapse studies of growing pyramidal cells could

help clarify this possibility.

As flexibility is added to the models by allowing the different

fundamental parameters to contribute to a single virtual tree through

model mixing one would expect an improvement in the virtual

emergent morphometrics. Both bifurcation asymmetry and surface

area were significantly better reproduced by the 243 Mix paradigm

than by either the % Mix or individual models (Figure 8A).

However, neither mix paradigm was better than the best individual

model in capturing number of bifurcations (Figure 8A), suggesting

that the total branch count may be under relatively simple biological

control relative to the other emergent morphometrics.

There are several dimensions in which this work could be

expanded. While we are trying to gain developmental insights, digital

reconstructions of real cells in publicly available databases are

currently limited to adult (or at least relatively mature) neurons [41].

Based on early proposals based on electron microscopy [23], several

studies, including the present one, have attempted to correlate

branching behavior with local diameter (e.g. [13,22]). However, the

thickness of dendrites changes during development, and the ‘‘final’’

diameter measures (as reported in the digital reconstructions of real

neurons) only indirectly reflect the values at the actual time of

growth. With developmental time series of reconstruction data, we

could model the development of dendrites more directly.

Figure 9. Relative contributions of the three fundamental
determinants to the best models. The top row compares the
percentage of winning best individual models (BI) to the relative
contribution of the three fundamental determinants (RAD = Radius,
PD = Path Distance, BO = Branch Order) to the winning models in the
percent mixing (% Mix) and determinant mixing (243 Mix) paradigms
for (A) number of bifurcations, (B) bifurcation asymmetry, (C) surface
area, and (D) surface area asymmetry. The bottom row shows how the
fundamental determinant contribution to the winning 243 Mix model
breaks down by basic parameter (DR = daughter-ratio, PDR = parent-
daughter-ratio, TR = taper rate, BPL = branch path length, BIF = bifurca-
tion probability). The overall trend in the determinant mixing paradigm
is for a more even distribution of fundamental determinant influence
than seen in the best individual and percent mixing paradigms. The
basic parameters with fundamental determinant weights close to those
seen in the best individual model are likely the strongest drivers in the
best individual model selection.
doi:10.1371/journal.pcbi.1000089.g009
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This study raised the possibility that apical and basal dendrites

differ from each other due to the histological environment through

which they extend, while the morphologies of non-pyramidal cells

might be more intrinsically driven. By expanding the suite of

fundamental determinants to include planar and radial distance

from the soma, this hypothesis could be tested more directly. Such

an extension would require 3D embedding of the virtual cells (see

e.g., [21]). Additionally, while we have concentrated here on

‘‘normal’’ cells, this comparative method could also be used to

detect differences between experimental preparations or disease

states, possibly hinting at the underlying developmental processes.

As they occur in different parts of the same cells, the striking

contrast between apical and basal trees may be costly to control

and achieve, and is likely to be relevant from the information

processing standpoint. This puts renewed emphasis on the

question of what this divide could facilitate in the brain. Due

largely to methodological considerations, the relatively thin basal

branches are seldom investigated in electrophysiological experi-

ments. Even modeling studies tend to concentrate on different

divisions of the apical tree (e.g. [6,12]). This study emphasizes the

unique aspects of pyramidal cell morphology and provides

motivation for a closer look at the functional consequences of its

distinct arborizations.

Materials and Methods

In this study, morphometric parameters that control dendritic

branching are measured from groups of real cells and resampled

stochastically to create virtual trees of the corresponding class. The

real neurons consist of 736 digital reconstructions from 16

different labs. The apical and basal trees of pyramidal cells are

treated separately, summing up to a total of 68 individual groups

(Table 1). These 3D reconstructions were downloaded from the

NeuroMorpho.Org inventory [42] in their ‘‘standardized form.’’

In particular, all cells are checked for format uniformity and data

integrity through a combination of automated, semi-automated,

and manual methods, addressing common reconstruction issues.

Every morphological file (in ‘‘SWC’’ format) contains one

numbered line for each tracing point in the neuronal structure,

described by the three coordinates of its spatial position, local

dendritic radius, and the number of the line representing the

parent point towards the soma [43].

Virtual trees in the form of dendrograms are generated with a

simple recursive algorithm (Figure 2). Starting from an initial

diameter, a branch grows for a certain path length and tapers its

thickness. Then it either stops or bifurcates into two daughters

whose initial diameters are determined based on the parent’s.

Each daughter iterates independently through the same process,

until all branches are terminated (Figure 2A). Thus there are five

‘‘basic’’ parameters controlling growth in addition to the initial

diameter: branch path length, taper rate, bifurcation probability,

parent-daughter ratio (between the parent diameter and the larger

daughter diameter), and daughter ratio (between the larger and

smaller daughter diameters). Each of these basic parameters is

sampled stochastically from statistical distributions derived from

the values measured in the real trees (Figure 2B).

Except for the ‘‘unique’’ case of the initial diameter, the basic

parameters extracted from different portions of real trees vary

considerably [22]. To obtain distributions faithful to the observed

data, basic parameters are thus sampled according to the local

value of a ‘‘fundamental’’ determinant. Three variants of this

model are based on distinct fundamental determinants (Figure 2A),

namely branch radius, path distance from the soma, and branch

order (i.e., the number of bifurcations towards the soma). Thus,

basic parameters measured from a homogeneous group of real

dendritic trees are binned by the corresponding local value of the

fundamental determinant. Branch pathlength, daughter ratio, and

taper rate are based on the fundamental determinants value at the

beginning of a branch, while bifurcation probability and parent-

daughter ratio are based on the values at the end of branches.

Aside from the bifurcation probability (a scalar fraction), each

bin is then fitted by least square error to the best of three 2-

parameter functions: gamma, Gaussian, and uniform. In a

previous study [22], a variety of functional distribution and fitting

methodologies were tested, including reproducing all discrete

values in a large lookup table for each basic parameter. As long as

the basic parameter varied with the fundamental determinant, the

model proved to be very robust to binning and distribution fitting

particulars. Thus, the selection of parametric functions in the

present work optimally combined accuracy and simplicity. For the

parameters controlling diameter change, the proportion of

measures assuming a unitary value (i.e. reflecting a lack of

diameter change), referred to as ‘‘Unity Fraction’’ in previous

work [22] are sampled separately according to their occurrence in

each bin.

Two types of hybrid models were also tested by ‘‘mixing’’ the

fundamental determinants. In the ‘‘% Mix’’ model, each

fundamental determinant contributes a percentage of influence

over the sampling of the basic parameters. These percentages are

varied for each fundamental determinant from 0% to 100% at

10% increments. For example, Branch Order may contribute

10%, Path Length 70%, and Radius the remaining 20%. This

sums up to 66 distinct variants of the % Mix model including the

‘‘pure’’ (unmixed) models. For the basic parameters controlling

diameter, the probability of sampling a value of one is first

computed as the weighted average of the three individual

probabilities. For all basic parameters not determined to be one,

values are sampled from all three fundamental determinant

distributions and averaged together based on their relative weights.

In the second mixing method, each basic parameter depends on a

different fundamental determinant. For example, taper rate could

be based on Radius, parent-daughter ratio on Path Distance, and

bifurcation probability, branch path length, and daughter ratio all

on Branch Order. With five basic parameters and three

fundamental determinants, this creates an additional 35 (minus

the three ‘‘pure’’ cases) variants of this model (hence the name

‘‘243 Mix’’). When comparing the individual and % Mix results to

the more numerous 243 mix results, both the individual models

and the % Mix models were run a total of 243 times with different

random seeds.

Any morphometrics not directly used in the algorithm are

‘‘emergent’’ to the model. We chose four emergent morphometrics

to compare virtual and real cells, selected for their biological and

electrophysiological significance (Figure 2D). The total number of

bifurcations provides a measure of branching complexity. Since all

considered trees are binary, this count equals the number of

terminations plus one. Bifurcation asymmetry characterizes how

evenly those terminations are distributed throughout the tree. It is

the average over all bifurcation of (n12n2)/(n1+n222), where n1

and n2 are the number of terminal tips of the larger and smaller

daughter subtrees, respectively. The total surface area is a size

metric, while surface area asymmetry is defined by the same

expression as above, but with n1 and n2 representing the surface

areas of the daughter subtrees. Mean emergent morphometric

values for each group of real trees are reported in the last four

columns of Table 1.

A custom java program (LNded2.0), running on a Pentium M

under Windows XP, extracts the basic parameters from the real
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cells, fits them according to the appropriate fundamental

determinants, and samples the resulting statistical distributions to

create virtual dendrograms. The program then outputs the

emergent morphometrics from real and virtual trees to Microsoft

Excel for comparison and analysis. The code and necessary

documentation for all model variants is available for public

download under the ModelDB section [44,45] of the Senselab

database (http://senselab.yale.med.edu). For every model and

each cell group, ten virtual trees were created for each real tree.

The virtual trees were then divided into ten groups, each having

the number of trees matching the real groups. The mean and

standard deviation for the emergent morphometrics was computed

for each group and the mean of those means and standard

deviations were compared to the corresponding (single) values for

the group of real cells. Both for the three individual models, and

for the two mixing paradigms, a ‘‘best’’ model was chosen for each

tree group as that with the smallest ‘‘distance’’ between real and

virtual trees. The distance metric was defined for each emergent

morphometric as to account for both the gap between the real and

virtual mean measures, and the stochastic variability of the

simulation repeats. In particular, this metric was computed as the

absolute difference between the mean of means of the ten groups

of virtual cells and the mean of the single group of real cells, or as

the standard error of the mean of the ten groups of virtual cells,

whichever was greater.

Error bars in all figures represent standard error unless

otherwise noted. An asterisk directly above a column signifies a

significant difference (P,.05) from the other two columns while an

asterisk between two columns signifies a significant difference only

between those two columns as determined by the Mann-Whitney

U non-parametric comparison using http://udel.edu/,mcdo-

nald/statkruskalwallis.xls by Dr. John H. McDonald. All statistics

were computed using Microsoft Excel.
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