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Abstract: Eliminating heavy metal contamination of foods is a goal yet to be achieved in the U.S. In
recent months, efforts have been underway to have the Food and Drug Administration (FDA) re-
evaluate the permissible limits of lead (Pb) and arsenic (As) allowable in cereals and juices aimed for
consumption by children. This report discusses the recent scientific literature that support proposed
revisions in these limits. It presents proactive suggestions for the FDA to consider in its response
to concerns of ongoing Pb and As exposures in food and drinks. While more scientific studies are
needed to better define ‘safe’ levels of Pb and As exposures and ingestion of these elements in general
are neurotoxic, the higher sensitivity of children to these toxic elements makes it imperative that the
FDA adjust standards to be most protective of infants, toddlers, and children.

Keywords: lead poisoning (Pb); arsenic poisoning (As); rice cereal; juice; Federal Drug Administration
(FDA); infants; toddlers; children; manufacturing safety guidelines; risk factors

1. Introduction

Since 2013, the magazine Consumer Reports [1,2] has indicated an emerging concern
over the lead (Pb) and arsenic (As) content in foods and drinks that exceed the levels per-
missible in drinking water. The pediatric population consumes these neurotoxic foods and
this poses risks to their developing central nervous systems (CNS), even at low exposure
levels. A recent investigation of 105 infant cereal samples found As in infant rice cereals to
be eightfold higher, up to 85 parts per billion (ppb), than the US Environmental Protection
Agency’s (EPA) [3] legal limit of 10 ppb of As in drinking water [4]. Notably, As was found
in baby rice cereals and teething biscuits [5]. Another study, by the “Clean Label Project”
(CLP), tested 500 baby food products consisting of 86 infant formulas, 30 baby cereals,
105 baby food jars, 138 baby food pouches, 36 toddler juices and drinks, and 138 toddler
snacks from 60 brands that are currently being distributed and sold [6]. The investigators
found that 65% of the baby foods had detectable levels of As, 36% had detectable levels
of Pb, and 58% had detectable levels of cadmium [6]. An analysis of data collected by
the US Federal Drug Administrations (FDA) in its study, “Total Diet Study data—On Toxic
and Nutritional Elements Summaries of Multi-Year Results from 2006–2013”, on 2164 baby
food samples, identified Pb in 20% of the samples (i.e., a one in five risk factor) [7]. More
specifically, fruit juices were more likely to have Pb in the samples: 89% of grape juices, 67%
of mixed fruit juices, 55% of apple juices, and 45% of pear juices, attesting to the differential
risks based upon the type of food ingested [7].

The issue of contaminated foods is not limited to the US. Recent reports have shown
that As has been found in cereal and other foods in Belgium [8], Argentina [9,10], Korea [11],
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and Spain [12]. Prior concerns regarding As exposure were raised at the global level as they
pertained to infant rice cereal [13]. Further, in Taiwan, consumption of As has been reported
to alter both metabolism and DNA methylation and was associated with neurodevelop-
mental delays in children [14]. Thus, As-containing rice crops, from which most cereals
are manufactured, may require more scrutiny than what was and currently is considered
acceptable. Further, the As-exposure limits (i.e., both nationally and internationally), given
the context of the increasing amounts identified in infant, toddler, and children cereals,
should themselves raise the level of concern for more rigorous or modified oversight of the
production of these food and drink products globally.

It is important to note that both organic and non-organic foods may be unsafe. Recently,
there has been an increase in organic chicken egg farming within urban areas (e.g., Denver,
Los Angeles, Miami, and New York) of the US. These urban farmers raise chickens to lay
eggs with the belief that they are nutritious food sources that occur naturally [15]. However,
Leibler et al. [16] found that, of 201 eggs collected from urban farmers in the greater Boston
Massachusetts area, 98% were Pb-contaminated (M = 0.10 µg/dL, SD = 0.18). Moreover,
they estimated that children consuming these eggs would increase their blood lead levels
(BLL) by 0.9–1.5 µg/dL [16].

These studies suggest that toxic element exposures persist through a range of foods
likely to be ingested by infants and children, posing risks for neurotoxicant exposures.
Currently, systematic screening of young children for toxic element exposure by testing
biological specimens is only performed for Pb; and even then, it is only mandated at ages
1 and 2 years and in a handful of states within the US [17]. Yet early exposure in life to
toxic elements can directly influence the growth of children and can negatively influence
their neurodevelopment, which are risk factors for being diagnosed with developmental
disabilities later in life. It is imperative that the FDA reliably monitors and tests for toxic
element exposures in US foods and drinks, with limits set based upon scientific studies
relating ingestion to health outcomes (i.e., an I:HO ratio or index for infants, toddlers, and
children, perhaps) for both Pb and As. In addition to the FDA, primary care providers
are essential parties in helping parents understand how to limit the risks of dietary toxic
element exposure in their children through educational outreach efforts and consistently
implmented biomarker screening.

1.1. Gastrointestinal Absorption in Children

Calcium (Ca) and Pb compete with one another in physiological systems. In cells, Pb
may enter via the Ca channels present in the cell membrane [18]. In the gastrointestinal
(GI) tract, Ca absorption occurs by two mechanisms: (1) transcellularly, i.e., through cells,
which likely allows Pb cell entry, and (2) paracellularly, i.e., between cells, which may also
accommodate Pb entry (For Review See Bronner [19]). Children and young animals have
developmentally mature GI systems, but their absorption kinetics are markedly different
from that of mature humans and animals [20]. Alexander [21] and Ziegler et al. [22] reported
40–50% Pb absorption in children vs. 10–15% in adults. However, these estimates may
not be applicable to all situations of Pb ingestion. Most Pb compounds are poorly soluble
in water at pH 7, whereas more are released in acid [23]. This implies that Pb ingested in
a solid-like baby food has a different bioavailability than Pb ingested already dissolved
in a liquid such as juice [23]. During times when children are between meals and/or
fasting, they are at increased risk for Pb absorption from the GI tract since competition for
absorption pathways is lacking; during these specific time-periods, they also require higher
demands in gut metabolism [24,25].

Both iron and Ca status affect Pb absorption and retention [26]. In animal studies,
increasing Ca intake is a nutritional intervention to counteract against Pb exposure. In Pb-
exposed children, dietary Ca intakes are inversely associated with their BLLs [26–28]. This
can be attributed to competition between Pb and Ca for Ca-channel-mediated entry [29].
However, additional Ca intake above the recommended daily intake has little effect on
changing BLLs over time [27,28]. Furthermore, children with prior Pb ingestion resulting
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in bone Pb accumulation (i.e., the site with the most Pb in the body with chronic exposure),
are at increased risk for accelerated bone Pb release into the blood when deficient in
Ca-intake [24], with subsequent renewed (neuro)toxicity [25,29,30].

Age is a critical risk factor in Pb poisoning; the prevalence is higher in children,
with greatest concern for children between 18 and 30 months of age [28]. This important
distinction between children and adults is attributable to normative nonnutritive oral
behavior in young children/infants as well as to the efficiency of Pb-absorption. Thus, Pb
toxicity, especially its effects on brain development/function, appears to be age-dependent,
with greater potential effects on cognitive and behavioral outcomes noted after prenatal
and early childhood poisonings [31–33].

1.2. Limiting Lead Exposure from Foods

Given this difference in bioavailability of ingested Pb, it follows that allowable ex-
posure limits should be lower for children than adults. Currently, the FDA and the US
Center for Disease Control and Prevention (CDC) recommend an Interim Reference Level
of 3 µg/day (i.e., ingestion) for children and 12.5 µg/day for adults [34]. However, how
does the public know how much Pb exists in any food and drink source they purchase
commercially and subsequently consume? Commercial food and drink products have
labels indicating the caloric and nutrient content per serving. These are intended to inform
the public of what they are consuming so that people can make conscious, health-based
choices. About one-third of consumers read all or part of the label, implying their concern
about the health impact of the foods and drinks they consume [35]. However, comparable
information about neurotoxicants such as Pb are not indicated on food and drink packaging.
Arguably, this situation should be re-evaluated given children′s higher absorption rates
and sensitivity to toxic elements such as Pb.

1.3. Childhood Lead and Arsenic Poisoning and Future Intellectual and Behavioral Problems

Dakeishi et al. [36] reported on the neurotoxic and lethal impacts of As poisoning that
occurred in Japanese infants in 1955. The source was contaminated milk powder, leading to
the ingestion of more than 500 µg/kg/day. More than 100 infants died. Clinically evident
poisoning was calculated to occur after ingesting approximately 60 mg of As. Follow-up
examination of the infants at 50-years of age revealed intellectual disabilities, neurological
diseases, and other disabilities [36]. Vhater [37] further reviewed the literature on As and
reported that inorganic and methylated As crosses the placenta in human clinical and
animal experimental studies, thus providing noteworthy evidence of increased risk for
fetal exposure, teratogenic effects, and developmental neuropathies. Delayed effects of
intrauterine As-exposure have included increased mortality due to lung disease in young
adults, possibly as the result of early epigenetic modifications [37]. Moreover, reports
have begun to shed light on indirect As/Ca relationships that may increase and stabilize
the bioavailability of As in aqueous solutions [38–40], which may, in turn, have effects
on Ca-signaling pathways [41]. The results are a unique chronic exposure profile that
may remain in a dormant form (i.e., asymptomatic) for many years while still posing a
neurotoxic risk. It is important to note that As chemistry is complex, with toxicity being
dependent upon the specific form to which one is exposed, thus making the identification
of As absorption pathways more elusive than that reported for Pb. As a result of these
challenges, As toxicity remains problematic.

Interventions to decrease As toxicity have employed the use of essential elements. For
example, studies of rodent brains have shown that As poisoning alters apoptotic caspases
and antioxidant-related enzymes, resulting in oxidative stress [42]. Administration of Ca,
selenium, and magnesium protect against these As-induced oxidative stress effects [43].
Similarly, Ca and zinc supplementation have been shown to protect against Pb-induced
oxidative stress due to altered antioxidant enzymes and lipid peroxidation in the developing
mouse brain [44]. Taken together, there may be both divergent and convergent downstream
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mechanisms of action that As and Pb may share through the oxidative stress pathways,
which are susceptible to treatment interventions.

1.4. Food and Juice Concerns in Modern Times

Independent nonprofit organizations have clearly demonstrated levels of toxic element
contamination in foods and drinks intended for consumption by infants, toddlers, and
children that exceed standards set by: (1) the World Health Organization (WHO), (2) the
FDA, and (3) the State of California Proposition 65 for daily Pb consumption [45]. The
alarming results of these studies raise the following issues and concerns about possible
federal agencies’ responses: (1) the government may claim that its current monitoring
systems are sufficient and definitive, (2) the government may suggest that the toxic element
exposure levels described by these nonprofit, nongovernmental organizations are not of
public health concern, (3) the government may simply dismiss these efforts of nonprofit
organizations to raise awareness of the potential ongoing exposure to these neurotoxic
elements as irrelevant, (4) which may, in turn, mislead to the government to reallocate funds
for ongoing monitoring to other programs, and (5) if the government does not adequately
monitor Pb- and As-exposures and neurotoxicity occurs in infants, toddlers, and children,
then it may create a sense of public distrust of government and business corporations that
manufacture foods and drinks that target the next and future generations of children.

2. Conclusions

While the Joint Food and Agriculture Organization of the United Nations/WHO Ex-
pert Committee on Food Additives [46] indicated that, for Pb, there is no safe exposure level,
the FDA [34] still has not adjusted its guidelines with respect to food sources of exposure.
The persistent negative impacts that Pb-poisoning from any exposure throughout the life
cycle has on the economy are well-established [47–49]. It is the government’s responsibility
to protect the public’s health by having effective safety regulations and also ensuring
that they are in place and being adhered to. To a resurgent awareness of Pb-exposure
from old (e.g., water supplies) and new (e.g., fracking) sources [31], as an ever-growing
health conscientious people, we as an informed and conscientious people must now re-
new concerns about food contamination reminiscent of the American journalist/novelist
Upton Sinclair’s 1906 novel “The Jungle”. Foods and drinks with product sales directed
towards infants, toddlers, and children require more stringent regulations based on solid
scientific study and full public disclosure, with such stringent measures also applicable to
advertising tactics.

This raises the civic need to have a stronger set of checks and balances beyond that of
the FDA’s “Arsenic in rice and rice products” [50] and “Total Diet Study” [51]. That begins with
government regulations based on up-to-date knowledge of toxic element effects, especially
those in children due to an increased risk of neurotoxicity. It includes acknowledging that
food producers and sellers share responsibility for the safety of their products, especially
when their products target children as their consumer market. A schematic diagram for a
potential model to best address this issue when developing infant, toddler, and children’s
food and drink products is illustrated in Figure 1. Currently, similar public concerns are
being addressed in Nigeria [52], Spain [12], and France [53]. Yet, in the US, recent reports
in the Advances in Pediatrics regarding Lead Poisoning in Children [54] failed to mention infant,
toddler, and children’s food and drink Pb and As contamination as potential sources of
toxic element exposure. Furthermore, recent international reference manuals and guides on
food safety (“Food Safety Aspects of Grain and Cereal Product Quality” [55] and “Safety of Food
and Beverages: Cereals and Derived Products” [56]) restrict their focus to microbial growth;
they fail to mention any concerns regarding neurotoxicants such as Pb or As. This can and
must be rectified. The modern technology for determining the contents of toxic elements in
foods such as rice exists [57].
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Figure 1. A schematic suggesting how to achieve As- and Pb-free food by sequential testing through-
out the manufacturing process. This process aims to limit human As- and Pb-exposures, especially for
infants, toddlers, and children. The grey directional arrows indicate the source-to-consumer process;
the white double arrows indicate the testing phase for assuring As- and Pb-free foods; and the black
boxes indicate the steps in the manufacturing process for achieving the production of As- and Pb-free
foods from farm-to-table. The end goal is to establish clear limits for As and Pb in foods and drinks,
and to inform the consumer through warning labels for all consumable goods sold in stores or online.

One way to diminish neurotoxic element exposures would be to add updated intake
limits to each food’s product label, just as is currently required for nutrients. This would
be no different from the legal requirement for other risks, such as the label stating: “U.S.
Surgeon General Warning: Smoking Causes Lung, Cancer, Heart Disease, Emphysema, And May
Complicate Pregnancy” that appears on tobacco products. In the present case, it could be
presented in the same manner for labels on foods and drinks, e.g., “U.S. Surgeon General
Warning: Product May Contain Lead or Arsenic” (followed by the amount and compared
to the federal/government standard). Such a transparent and informed approach, by
re-evaluating the allowable Pb or As limits for commercially sold food and drink products
and separating these allowable limits between infants, toddlers, children and adults (i.e.,
establishing clear daily limits for the range of developmental time-periods), may lessen
the social and economic costs associated with childhood Pb- and As-poisoning across the
lifespan [17]. The goal should allow consumers to be made aware of the toxic elements in
their foods with the use of warning labels so that informed health choices can be made
and the growth and neurodevelopment of infants, toddlers, and children left unaffected
by Pb- and As-exposures. These warning labels should be formalized across all food and
drink products for quality assurance, safety, transparency, and establishing quality-sourced
consumable goods for people of all ages to consume safely.
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