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Abstract

Motivation: Human ancient DNA (aDNA) studies have surged in recent years, revolutionizing the study of the human
past. Typically, aDNA is preserved poorly, making such data prone to contamination from other human DNA.
Therefore, it is important to rule out substantial contamination before proceeding to downstream analysis. As most
aDNA samples can only be sequenced to low coverages (<1� average depth), computational methods that can ro-
bustly estimate contamination in the low coverage regime are needed. However, the ultra low-coverage regime
(0.1� and below) remains a challenging task for existing approaches.

Results: We present a new method to estimate contamination in aDNA for male modern humans. It utilizes a
Li&Stephens haplotype copying model for haploid X chromosomes, with mismatches modeled as errors or contam-
ination. We assessed this new approach, hapCon, on simulated and down-sampled empirical aDNA data. Our
experiments demonstrate that hapCon outperforms a commonly used tool for estimating male X contamination
(ANGSD), with substantially lower variance and narrower confidence intervals, especially in the low coverage re-
gime. We found that hapCon provides useful contamination estimates for coverages as low as 0.1� for SNP capture
data (1240k) and 0.02� for whole genome sequencing data, substantially extending the coverage limit of previous
male X chromosome-based contamination estimation methods. Our experiments demonstrate that hapCon has little
bias for contamination up to 25–30% as long as the contaminating source is specified within continental genetic vari-
ation, and that its application range extends to human aDNA as old as �45 000 and various global ancestries.

Availability and implementation: We make hapCon available as part of a python package (hapROH), which is avail-
able at the Python Package Index (https://pypi.org/project/hapROH) and can be installed via pip. The documentation
provides example use cases as blueprints for custom applications (https://haproh.readthedocs.io/en/latest/hapCon.
html). The program can analyze either BAM files or pileup files produced with samtools. An implementation of our
software (hapCon) using Python and C is deposited at https://github.com/hyl317/hapROH.

Contact: yilei_huang@eva.mpg.de or harald_ringbauer@eva.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, ancient DNA (aDNA) has become a new powerful
scientific instrument for studying the human past. However, aDNA
is often highly fragmented and degraded, and the amount of en-
dogenous DNA is typically low. Therefore aDNA is particularly
prone to contamination from other human DNA, in particular dur-
ing excavating and handling samples and extracting aDNA. Ruling
out substantial contamination before proceeding to downstream
analysis is a critical quality control step. This task requires reliable
tools to estimate contamination rates for low coverage aDNA.

One widely used approach to estimate contamination for aDNA
utilizes heterozygosity in mitochondrial genomes (mtDNA) as an

individual’s mtDNA is haploid; therefore, apparent heterozygous sites
on mtDNA contain evidence about contamination (Renaud et al.,
2015, e.g. Schmutzi). For most ancient samples, mtDNA can be
sequenced to relatively high coverage, facilitating such analysis.
However, the ratio of preserved endogenous mtDNA to nuclear DNA
varies substantially across samples, creating a complex relationship
between mtDNA and nuclear DNA contamination. A sample can be
highly contaminated for its nuclear DNA but minimally contaminated
for its mtDNA, and vice versa (Furtwängler et al., 2018).

Various general approaches for estimating nuclear contamin-
ation exist. ContamLD, for example, utilizes breakdown of linkage
disequilibrium introduced by contaminant sequences to estimate
contamination rate since the contaminant haplotype is uncorrelated
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with the endogenous haplotype (Nakatsuka et al., 2020). It requires
comparably high coverage [�0.5� for 1240k data and �0.1� for
whole genome sequencing (WGS) data], which is not readily avail-
able for many of the aDNA samples sequenced so far. Another re-
cently introduced method, AuthentiCT, uses post-mortem damage
pattern to estimate contamination (Peyrégne and Peter, 2020). It can
work with very low coverage samples, but is designed for a specific
laboratory protocol (single-stranded DNA libraries without UDG
treatment), limiting its usage to only a small fraction of aDNA data.
Moreover, AuthentiCT cannot detect contamination originating
from ancient sources. The software DICE performs joint estimate of
demography, sequencing error and contamination rate but it
requires very high coverage (�3�), which is not obtained for the
vast majority of aDNA samples (Racimo et al., 2016).

For male samples, an approach to estimate nuclear contamin-
ation well suited for low-coverage data exists. It exploits the natur-
ally haploid male X chromosome, similar to estimating
contamination in mtDNA. Several methods have been developed to
utilize this signal (Moreno-Mayar et al., 2020, e.g. Rasmussen et al.,
2011). All of them require sites covered by at least two aligned
sequences to measure heterozygosity. However, for low-coverage
data most covered sites are covered by one aligned sequence only.
Assuming that sequencing depth at each site follows Poisson distri-
bution per site, for 0.1� average genome-wide coverage about
0.47% sites is expected to be covered by at least two sequences, for
0.05� dropping to 0.12% and for 0.01� to only 0.005%. As a re-
sult, only a small fraction of sequence data can be used for estimat-
ing contamination, causing the estimates for ultra-low coverage
samples to be highly variable with wide confidence intervals.

Here, we present a new approach to estimate contamination
rates based on haplotype copying on male X chromosome that also
utilizes sites covered by only one sequence. We model the X chromo-
some of the endogenous individual as a mosaic copy from a modern
reference panel, and model sporadic mismatches of observed
sequences from the copied haplotypes as either errors or contamin-
ation. An implementation of the new method is available as Python
package (hapCon, https://pypi.org/project/hapROH). Using a
Hidden Markov Model (HMM), the software estimates contamin-
ation by maximum likelihood. Extensive simulation and down-
sampling experiments demonstrate that hapCon produces estimates
with smaller variance and narrower confidence intervals than previ-
ous methods using the male X chromosome. It substantially extends
the application range of contamination estimates on male samples,
yielding reliable results for as low as 0.1� coverage on a widely used
aDNA data type (1240k capture) and for as low as 0.02� WGS
data (all coverages refer to average sequencing depth on the X
chromosome).

2 Materials and methods

The core of our new method is a HMM haplotype copying approach
widely used in genomics (Li and Stephens, 2003, Li&Stephens) that
models a haplotype as a mosaic of haplotypes from a reference panel.
Since X chromosomes of males are haploid, they can be naturally
modeled as such a haplotype mosaic without phasing, which would
be particularly challenging for low-coverage data. Any aligned
sequences discordant from the copied haplotype can be due to various
causes (including mutation, gene conversion, sequencing error, aDNA
post-mortem damage or contamination), but only contamination
mismatches correlate with population allele frequencies. We utilize
this signal within the Li&Stephens HMM by incorporating the single
locus contamination model of ANGSD (Rasmussen et al., 2011).

2.1 The Hidden Markov Model
Throughout, we model biallelic markers on haploid X chromo-
somes. For each marker, the Li&Stephens HMM has n hidden states
given n haplotypes from a reference haplotype panel. A marker
being in state ið1 � i � nÞ denotes its genotype being copied from
the reference haplotype indexed by i (Fig. 1). This general
Li&Stephens HMM is then fully specified by setting transition

probabilities between markers and emission probabilities for the
genotype data. Here, we use a standard transition model with jump
probabilities depending on the genetic map distance between
markers as measured in Morgan. For the emission probabilities of
aligned sequences supporting the reference and alternative alleles,
we adapt the previously published ANGSD model (Rasmussen
et al., 2011).

2.2 Transition probabilities
We define the transition probability between hidden states for each
pair of adjacent markers l; l þ 1 as in Ringbauer et al. (2021). Given
an infinitesimal rate matrix Q of dimension n�n, the full transition
probability matrix between marker l and lþ1 is obtained by expo-
nentiation of the rate matrix: Tl!lþ1 ¼ expðQ � rlÞ, where rl denotes
the genetic map distance between marker l and lþ1 (measured in
Morgan). We assume that each reference haplotype has an equal
prior probability to be copied from, therefore a single rate q fully
specifies off-diagonal elements of Q, and Qii ¼ �ðn� 1Þq. We set
q¼300, see Supplementary Note S2.3.3 for further details.

2.3 Emission probabilities
Assume we have known genotype data i1; . . . ; iL at L biallelic
markers along the ith haplotype in the reference panel, with two
possible values 0 and 1 encoding reference and alternative alleles, re-
spectively. At each marker l, we model the so-called read counts,
defined as the number of mapped sequences aligned to that genomic
position that support either the reference or the alternative allele.
Throughout, we use the term ‘read counts’ in a broad sense to refer
to the number of aligned DNA sequences that potentially have
undergone pre-processing steps such as adaptor trimming, paired-
end read merging and PCR deduplication.

To model mismatches between the observed genotype data and
the copied haplotype, we introduce three mismatch parameters:
�g; �r and c. First, �g is the error rate per base, denoting the probabil-
ity of a single base being erroneously altered. This rate can be esti-
mated from monomorphic sites adjacent to polymorphic sites. This
term models several sources of errors, including sequencing error,
aDNA characteristic sequence damage and mismapping (see
Supplementary Notes S2.3.1 and S2.3.4 for details). Second, the so-
called mis-copying error rate �r is an aggregate error term to model
mismatches between the endogenous haplotype and the copied
haplotype due to various causes (including mutation, gene conver-
sion, errors in the reference panel, etc.). This mis-copying error
model is widely used in phasing and imputation algorithms based on
the Li&Stephens model (Browning et al., 2021, e.g. Delaneau et al.,
2019; Loh et al., 2016; Rubinacci et al., 2021). We fix �r ¼ 1e�3, as
preliminary tests indicated that this value provides good perform-
ance on simulated and empirical aDNA data while also providing
some flexibility so that the copying path is not truncated by errors
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Fig. 1. Graphical illustration of the model to estimate contamination rates via copy-

ing haplotypes from a haplotype reference panel. The target male X chromosome is

modeled as a mosaic copy from a haplotype reference panel. In this specific case, the

haplotype is copied from reference haplotype 4,2,1 (from left to right). The observed

read counts at each biallelic marker are modeled as a mix of sequences from the en-

dogenous and contaminant haplotypes and sequencing errors
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(see Supplementary Note S2.3.2 for details). Third, the contamin-
ation rate c models the fraction of the sequences originating from
contamination, which is the parameter we wish to estimate.

We use a two-layer approach to model the observed read counts
of the endogenous haplotype at each marker. The first layer models
the endogenous haplotype given the copying state, and the second
layer describes how sequences are drawn given the endogenous
haplotype.

The first layer specifies the genotype probability tl 2 f0;1g of
the endogenous haplotype for each marker l, given the underlying
copying state, sl 2 f1; 2; . . . ; ng. Haplotype copying with copying
error rate �r gives:

pðtl ¼ 0jsl ¼ iÞ ¼ ð1� �rÞ1il¼0 þ �r1il¼1; (1)

where 1il¼0 is the indicator variable that takes value 1 when the ref-
erence haplotype i carries allele 0 at marker l and 0 otherwise (1il¼1

is defined analogously). The probability for the alternative allele
pðtl ¼ 1jsl ¼ iÞ is obtained similarly.

The second layer then models the probability of a single sequence
supporting the alternative allele given the latent genotype. Let c de-
note the genome-wide contamination rate, pl the alternative allele
frequency in the contaminating population at marker l. Then the
probability of a sequence supporting the alternative allele is

pðalternativejtl ¼ 0Þ ¼ ð1� cÞ�g þ cðplð1� �gÞ þ ð1� plÞ�gÞ;
pðalternativejtl ¼ 1Þ ¼ ð1� cÞð1� �gÞ þ cðplð1� �gÞ þ ð1� plÞ�gÞ:

(2)

The probability for a single sequence base being alternative given
the hidden state sl is obtained by combining the two layers and sum-
ming over the two possible latent genotypes:

pðalternativejslÞ ¼ pðalternativejtl ¼ 0Þpðtl ¼ 0jslÞ
þ pðalternativejtl ¼ 1Þpðtl ¼ 1jslÞ:

(3)

Finally, we model the read counts by a binomial distribution
fully determined by the probability of a single sequence base being
alternative. Let cl0 ; cl1 denote the number of aligned sequences sup-
porting reference and alternative alleles, respectively. Denoting the
total sequencing depth at marker l as n ¼ cl0 þ cl1 and abbreviating
paltðslÞ ¼ pðalternativejslÞ gives:

pðcl0 ; cl1 jslÞ ¼
n
cl1

� �
ð1� paltðslÞÞn�cl1 paltðslÞcl1 : (4)

This probability of the observed read counts for each HMM
state fully specifies the emission probabilities of the HMM.

2.4 Maximum likelihood estimation
For a given contamination rate c and with all other parameters set,
we then use a standard scaled forward algorithm to calculate the
overall likelihood of the HMM model (Bishop, 2006). To obtain a
maximum likelihood estimate ĉ of c, we use the iterative method L-
BFGS-B (Byrd et al., 1995; Zhu et al., 1997) provided in SciPy
(Virtanen et al., 2020) searching within the interval ½0; 0:5�. We esti-
mate the standard error of the MLE estimate ĉ by numerically calcu-
lating Fisher Information of the likelihood function around ĉ using
the Python package numdifftools, and then approximate the 95%
confidence interval by 61:96� standard errors. Since our model is
not defined for c<0, for ĉ ¼ 0 the first derivative may not be zero
at ĉ ¼ 0 and thus confidence intervals cannot be approximated with
the Fisher Information matrix alone. Instead, we use quadratic inter-
polation based on first and second derivatives with c to approximate
the likelihood function around ĉ ¼ 0 and use the set of parameters
whose likelihood is at least 14.7% of the maximum likelihood to
obtain 95% confidence intervals (the so-called ‘14.7% likelihood re-
gion’, see Supplementary Note S1 for details)

2.5 Implementation and runtime
We prepared two reference panels tailored toward two common
aDNA data types. The first panel contains all sites in the widely

used enrichment capture strategy consisting of ca. 1.2 million SNPs,
henceforth referred to as ‘1240k’ panel (Fu et al., 2015; Haak et al.,
2015; Mathieson et al., 2015). The second panel contains all bial-
lelic sites in the WGS 1000Genome dataset (Auton et al., 2015) with
minor allele frequency (MAF) greater than 5%, henceforth referred
to as ‘1000G’ panel. We chose this 5% MAF filter because initial ex-
ploratory analysis indicated that this cutoff provides a robust trade-
off between accuracy and run time (Supplementary Fig. S25). We
explored MAF ranging from 0.2% to 20% and found that the width
of confidence interval increases only slightly when increasing MAF
cutoff, suggesting that most signal comes from common variants.

We implemented hapCon as a Python package, expanding upon
code from the software hapROH which uses a similar copying HMM
(Ringbauer et al., 2021). We verified the correctness of our implemen-
tation by performing under the model simulation (Supplementary
Notes S2.1, S2.2 and Supplementary Figs S1 and S2). We measured
our method’s runtime [including preprocessing time to parse BAM file
with samtools (Li et al., 2009; Li, 2011)] on Intel(R) Xeon(R) Gold
6240 CPU @ 2.60GHz on WGS data with coverages ranging from
0.02� to 5� (Supplementary Fig. S38). As expected, the run time
grows approximately linearly with the number of sites covered by at
least one sequence. The run time of our method with 1000G panel
remains within three minutes for a typical aDNA sample with cover-
age less than 1�, making our new method viable for any large-scale
aDNA studies. Our benchmarking experiment also shows that our
method is four times slower with 1000G panel than with 1240k
panel, as expected since the 1000G panel contains about four times
more SNPs than the 1240k panel. For comparison, we used the Cþþ
version of ANGSD. The results indicate that our method is faster than
ANGSD at coverage higher than 1�.

2.6 Relations to previous methods
Several methods that utilize heterozygous sequences in haploid
regions to estimate contamination rates in aDNA data have been
developed. ANGSD, a widely used method, assumes that true en-
dogenous allele is supported by the majority of the aligned sequences
at a site (Rasmussen et al., 2011). More recently, a similar approach
has been developed which assigns equal priors to both the reference
and alternative alleles (Moreno-Mayar et al., 2020, two-consensus
method). Our new approach can be considered as a many-consensus
model where the true endogenous allele originates from a set of ref-
erence haplotypes and each of them being weighted by the
Li&Stephens haplotype copying framework that utilizes linkage in-
formation. We note that in the limit of widely spaced markers and
consequently little linkage information, our model converges to the
two-consensus approach, but with priors according to the allele fre-
quency in the reference panel.

We hypothesized that our method’s performance gain is driven
by its ability to utilize sites covered by only one sequence. Such data
can be used by neither ANGSD nor the two-consensus approach as
both need at least two sequences per site to establish evidence of
contamination. In contrast, our method can detect potential con-
tamination via comparing single sequence to the copied reference
haplotypes. As a proof of concept, we simulated read counts and
down-sampled every covered site to exactly one sequence (see
Supplementary Note S2.2 for details). Our results demonstrate that
our method can still produce accurate contamination estimates,
even when relying only on this so-called pseudohaploid data
(Supplementary Fig. S2).

3 Results

We assessed the performance of our new approach, hapCon, on
both simulated and empirical aDNA data. Throughout our tests, we
set the following default settings. We used a reference panel consist-
ing of all non-African haplotypes from the 1000Genome Project
(Auton et al., 2015) (see Section 3.2.2 for the detailed rationale) ex-
cept when analyzing endogenous sources with known African ances-
try where we use the full 1000Genome reference panel. Unless
specified otherwise, we set allele frequencies of the CEU individuals
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(CEU: Northern Europeans from Utah in 1000 Genome panel) as
the proxy for the contamination source allele frequency. For com-
parison, we used ANGSD’s Method 1 (new_llh) with default set-
tings. We filtered aligned aDNA sequences to mapping quality
greater than 30 and to base quality greater than 20. For each simu-
lated scenario, we generated 100 independent replicates. For every
replicate, we report the maximum likelihood point estimate of the
contamination rate and a 95% confidence interval.

3.1 Assessing performance on simulated contaminated

data
3.1.1 Testing on a range of ancestries and contamination levels

We first assessed our new method on simulated samples with artifi-
cial contamination created by mixing two BAM files from different
individuals. To investigate how the ancestry of the endogenous and
the contaminant haplotypes affects contamination estimates, we
used as the endogenous source Ust Ishim [43980-40954 calBCE,
Russia (Fu et al., 2014)], Sunghir3 [33685-31328 calBCE, Russia
(Sikora et al., 2017)], Loschbour [6221-5986 calBCE, Luxembourg
(Lazaridis et al., 2014)], Mota [2576-2465 calBCE, Ethiopia
(Llorente et al., 2015)], I1583 [6424-6233 calBCE, Turkey
(Mathieson et al., 2015)] and I11974 [10420-9450 calBCE, Chile
(Posth et al., 2018)], and as the contaminant source B_French-3,
S_Korean, S_Karitiana-1, S_Papuan-6 and S_Mende-1 from the
Simons Genome Diversity Project (Mallick et al., 2016), creating 30
different combinations. This experiment is designed to test a wide
variety of endogenous sources, including one of the oldest modern
humans sequenced so far (Ust Ishim), under-represented ancestries
such as African and Native American ancestries, and samples repre-
sentative of the majority of aDNA data (hunter-gatherers, Neolithic
farmers and Steppe pastoralists), while the contaminant sources in-
clude representatives from all continental populations. To determine
how much contamination our haplotype copying model can toler-
ate, we simulated contamination ranging from 0% to 70% (with
steps of 5% within range 0–30%, and with steps of 10% for range
40–70%). We simulated 100 independent replicates at 0.5� average
coverage for each scenario and summarized results in Figure 2.

When comparing our method with ANGSD, we found that both
methods underestimate contamination rate for highly contaminated
samples (i.e. > 20% contamination); however, hapCon estimates are
less biased (Fig. 2). We note that this bias for substantially contami-
nated samples is often tolerable in practice because, as long as a
sample is highly contaminated, the exact rate of contamination is
not of general interest since such samples are usually excluded from
downstream analysis or at least filtered to only sequences with
aDNA specific damage [e.g. PMDtools (Skoglund et al., 2014)]. The
results also show that even for samples as old as Ust Ishim, our
method performs similarly well as for more recent samples such as
Loschbour and I1583. This observation indicates that, despite the
reliance on a modern reference panel, our method can work reliably
on some of the oldest sequenced modern human samples. We
observed a slight over-estimation (�0.7%) of contamination on
Mota, an African sample that predates the Eurasia backflow and
therefore represents an ideal African reference (Llorente et al.,
2015). This slight bias is possibly caused by the fact that haplotype
copying works less well on more diverse populations and therefore
the model attributes observed mismatches to contamination. That
said, this minimal upward bias does not affect the binary decision of
determining whether a sample is substantially contaminated.
Finally, we observed that our method can work well with a variety
of contamination sources, provided that the allele frequency of the
contamination source can be reasonably approximated by popula-
tions in the reference panel.

3.1.2 Testing the coverage limit

In the next experiment, we investigated the performance of hapCon
in the low coverage limit and compared it with ANGSD. For this
test, we chose Loschbour as the endogenous source and B_French-3
as the contamination source. We simulated contamination rates
ranging from 0% to 25% in steps of 5% and created 100 replicates

for each scenario. We first tested our method using the 1240k refer-
ence panel. We estimated contamination rate on varying simulated
coverages (5�, 2�, 1�, 0.5�, 0.1� and 0.05�) (Fig. 3). We found
that both methods tend to under-estimate contamination at low
coverage and high contamination level; however, our method has
less bias than ANGSD. In addition, our method consistently yields
estimates with smaller variance and narrower confidence intervals,
achieving a similar level of uncertainty as ANGSD at ca. 2� lower
coverage for 1240k capture data.

Next, we compared our method using the 1000G and the 1240k
reference haplotype panel. We estimated contamination rate on
simulated coverage 0.5�, 0.1�, 0.05�, 0.02�, 0.01� using 1000G
panel and 1240k panel. Our results demonstrate a substantial per-
formance gain for estimating contamination using the 1000G panel
compared with the 1240k panel. For WGS data with the 1000G
panel, our method can robustly distinguish 10% contaminated sam-
ples from no contamination for as low as �0.02� X chromosome
coverage (Fig. 4). Overall, our method achieves a similar level of un-
certainty as ANGSD at ca. 10� lower coverage when using the
1000G reference panel and at ca. 2� lower coverage when using the
1240k reference panel.

3.2 Investigating model mis-specification
3.2.1 Mis-specified contaminant allele frequency

In practice, it is often not possible to exactly specify the ancestry of
the contamination. One may not have an accurate proxy for the con-
tamination source, or a sample may be contaminated by more than
one sources of contamination. Therefore, a contamination estima-
tion method is ideally robust to mis-specified allele frequency of the
contamination source.

To assess the effect of mis-specified contaminant allele fre-
quency, we utilized synthetic BAM files simulated as described
above (using Loshcbour as the endogenous source and a French indi-
vidual as the contaminating source). We then estimated contamin-
ation using allele frequencies from 1000 Genome subpopulation
CEU (Utah residents with Northern and Western European ances-
try), FIN (Finnish in Finland), GBR (British from England and
Scotland), IBS (Iberian Populations in Spain), TSI (Toscani in Italia),
YRI (Yoruba in Ibadan, Nigeria), CHB (Han Chinese in Beijing,
China), PEL (Peruvian in Lima, Peru). We observed that the contam-
ination estimates obtained when using CEU, FIN, GBR, IBS, TSI al-
lele frequencies behave very similar with little bias. These
observations indicate that contamination estimates of hapCon are
robust with respect to allele frequency mis-specification at the level
of intracontinental genetic variation. However, estimates using
CHB, PEL and in particular YRI allele frequency are substantially
biased downwards (Supplementary Fig. S37). Notably, mis-specified
contaminant ancestry generally does not produce upward bias and
no uncontaminated sample is erroneously identified as contaminated
because of mis-specified contaminant ancestry (Supplementary
Fig. S36). But we observe that mis-specification at the level of inter-
continental allele frequency differences introduces substantial down-
ward biases, which may cause moderately contaminated samples to
be identified as up to 50% less contaminated. A similar downward
bias for substantially mis-specified contaminant ancestry was previ-
ously described for the two-consensus method (Moreno-Mayar
et al., 2020).

3.2.2 Genetic distance between the endogenous and contaminant

ancestry

When the genetic ancestry of contamination and endogenous sour-
ces are similar, the endogenous source can be closer to the allele fre-
quencies of the specified contamination source than to the ones of
the diverse reference panel. We speculated that this differential affin-
ity creates an attraction effect, particularly at very low coverages,
for the following reasons. At low coverage, most sites are covered
by only one sequence and covered sites are often far apart. Without
haplotype structure weighting haplotypes of the copying algorithm,
the main information for estimating contamination then comes from
allele frequencies. And when the contaminant allele frequency is a
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better fit for the endogenous source than the reference panel, there is
a bias toward the contamination source. To investigate this effect,
we conducted under the model simulation as described in

Supplementary Note S2.1 except that we used CEU allele frequency
as the contamination source. We observed that, when haplotypes
simulated based on TSI (Toscani in Italia) are contaminated using

Fig. 2. Performance of hapCon on simulated contamination using various endogenous and contamination sources. We compared hapCon and ANGSD at 0.5� coverage with

various endogenous and contamination sources. For each simulated scenario, we generated 100 independent replicates and visualized the point estimates and confidence inter-

vals obtained from hapCon with 1240k panel and ANGSD. For each of the contaminant source B_French-3, S_Korean, S_Karitiana-1, S_Papuan-6 and S_Mende-1, we used

allele frequencies of CEU (Utah residents with Northern and Western European ancestry), CHB (Han Chinese in Beijing, China), MXL (Mexican Ancestry in Los Angeles CA

USA), CHB, YRI (Yoruba in Ibadan, Nigeria) from the 1000Genome Project as the proxy for the allele frequency of the contaminant population. Better proxies for

S_Karitiana-1 and S_Papuan-6 exist, for example, PEL (Peruvian in Lima, Peru) and KHV (Kinh in Ho Chi Minh City, Vietnam). However, the reference panels provided by

ANGSD are prepared from HapMap (Consortium et al., 2003), which is only a subset of 1000Genome. To ensure a fair comparison, we used CHB and MXL for S_Papaun-6

and S_Karitiana-1 for hapCon as well. A zoom-in into the simulated contamination in the range of 0–10% is available at Supplementary Figure S22
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CEU allele frequency, our model tends to over-estimate contamin-
ation rate at very low coverages indeed (0.05�, see Supplementary
Fig. S35a and d). When reference haplotypes of African ancestry are
removed, moving the reference panel allele frequencies closer to the
source, the upward bias substantially decreases (Supplementary Fig.
S35b and e). When using allele frequency calculated from the full

reference panel for the contaminant, so that there is no allele fre-
quency difference between the reference panel and the specified con-
taminant ancestry, the upward bias is completely removed
(Supplementary Fig. S35c and f). However, we observed that using
global allele frequency creates downward bias at low coverages in
empirical aDNA data (data not shown), plausibly because of

Fig. 3. Performance comparison between ANGSD and hapCon on 1240k panel with simulated contaminated BAM files. We simulated contaminated BAM files by mixing two

BAM files, using Loschbour as the endogenous source and B_French-3 as the contaminant source. We simulated contamination rate ranging from 0% to 25% with steps of

5%, and average genome-wide coverages at 5�, 2�, 1�, 0.5�, 0.1� and 0.05�. 100 replicates were created for each simulation scenario and analyzed with both hapCon and

ANGSD. Contamination estimates are visualized in groups of replicates next to each other. Each � represents the estimate for one replicate, and they are ordered from low to

high within each replicate group. The estimated contamination from Loschbour (0.5674%, 95% CI: 0.5669–0.5679%, estimated by ANGSD) was added to the simulated con-

tamination rate (red horizontal line) (A color version of this figure appears in the online version of this article.)

Fig. 4. Performance comparison between two reference panels with simulated contaminated BAM files. We simulated contaminated BAM files as described in Figure 3. We

simulated average genome wide coverage at 0.5�, 0.1�, 0.05�, 0.02� and 0.01�. We ran hapCon with 1000G panel on all these coverages and compared it with hapCon

with 1240k on coverage 0.5�, 0.1� and 0.05�. We did not plot the results of hapCon with 1240k panel on simulated coverage 0.02� and 0.01� because the huge variance of

the estimates in such low coverage regime conceals other important trends
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substantial allele frequency mis-specification of the contaminant
when basing it on the full reference panel. As a practical comprom-
ise, we recommend using allele frequencies as closely matching the
true contamination source as possible (Supplementary Figs S36 and
S37) and removing highly divergent haplotypes from the reference
panel.

The above-mentioned attraction effect is expected to be more
pronounced when the endogenous and contaminant sources are gen-
etically close. To explore how varying distance between endogenous
and contaminant sources affects contamination estimates in prac-
tice, we conducted simulations by mixing two BAM files of individ-
uals with varying degree of genetic distances. We fixed B_French-3
as the endogenous source, and varied the contamination source
S_Sardinian-1, S_French-1, S_Hungarian-2, S_Georgian-2,
S_Spanish-1, S_Korean-1 [all samples originate from the Simons
Genome Diversity Project (Mallick et al., 2016)]. To quantify genet-
ic similarity, we calculated genetic distance dB French�3;X using the
average hamming distance of the two samples’ genotype based on
all the markers with MAF � 5% in the 1000G reference panel [simi-
lar to Moreno-Mayar et al. (2020)]. More precisely,

dB French�3;X ¼
P

s2S jGB French�3ðsÞ �GXðsÞj
jSj ; (5)

where S denotes the set of markers in the 1000G reference panel and
GB French�3ðsÞ;GXðsÞ the genotype of B_French-3, X at marker s, re-
spectively. We simulated contamination rates 0%, 5% and 10%
and coverages 5�, 2�, 1�, 0.5�, 0.1� and 0.05� and for each
scenario we analyzed 100 independent replicates with hapCon using
the 1240k reference panel. Our results indicate that genetic similar-
ity has little effect on estimating contamination. Across all the cover-
ages and contamination levels we tested, hapCon performs equally
well regardless of the ancestry of contamination (Supplementary
Figs S29, S30 and S31). We did not find any noticeable biases even
in the mixed BAM simulations of a French sample contaminated
with another French sample. Such little effect of the genetic distance
between the contaminant and the endogenous individual has been
previously reported also for the two-census model (Moreno-Mayar
et al., 2020). Therefore, we believe genetic similarity between the
endogenous and contaminant source to not be problematic in prac-
tice. Similar performance is also observed for a Japanese sample con-
taminated with another Japanese sample (Supplementary Fig. S32).
However, caution is warranted if the endogenous and contaminant
source share IBD segments on the X chromosome, e.g. in the case of
close relatives or in populations with small effective population
sizes. In such cases there is a systematic downward bias of estimated
contamination rate (see e.g. Supplementary Figs S33 and S34) be-
cause parts of the contaminated sequences are identical to the en-
dogenous DNA.

3.3 Assessing performance using empirical aDNA data
Testing the new method on empirical aDNA data is an important
validation step because some complexity of empirical aDNA data is
potentially not accurately reflected in simulation models. Therefore,
we performed a series of experiments down-sampling empirical
aDNA data, and compared ANGSD and hapCon on various data
across a wide range of ancestry, age, coverage and data type.

3.3.1 Down-sampling previously published 1240k and WGS data

First, we down-sampled published BAM files from previous aDNA
studies. For 1240k data, we explored two male individuals from
Sardinia, SUA001 (1411-1228 calBCE, 1.02� chrX coverage on
1240k SNP sites) and SUA002 (2274-2032 calBCE, 0.64� chrX
coverage on those sites) (Marcus et al., 2020). We chose those two
because ANGSD estimates SUA001 to be substantially contami-
nated (10.45%, 95% CI: 9.56–11.34%) and SUA002 to be only
slightly contaminated (0.38%, 95% CI: 0.072–0.69%).

For each target coverage, we independently down-sampled 100
replicates (Fig. 5a and b). For the highly contaminated sample
(SUA001) at coverage 0.05�, our method identifies 98 replicates as

having substantial contamination (here defined as >5%), while
ANGSD identifies only 80 as having substantial contamination. For
the minimally contaminated sample (SUA002) at coverage �0.05�,
our method identifies all 100 replicates as minimally contaminated
(<5%), while ANGSD’s estimate ranges from 0% to greater than
5%, falsely identifying two replicates as having substantial contam-
ination. For 0.1� coverage, our new method can robustly distin-
guish minimally and substantially contaminated samples—all the
down-sampled SUA001 replicates have contamination estimates
greater than 5%, and all SUA002 replicates have contamination esti-
mates less than 5%. Together, these down-sampling experiments
showed that hapCon can robustly identify substantial contamin-
ation in empirical 1240k aDNA data for coverage as low as 0.1�.

For comparison, we applied the two-consensus method (Moreno-
Mayar et al., 2020) and contamLD (Nakatsuka et al., 2020) to these
two Sardinian samples. We found that the two-consensus method per-
forms overall similarly to ANGSD, but on some 0.05� coverage repli-
cates much worse (Supplementary Fig. S26). We also observed that
contamLD performs similarly well as ANGSD at high coverages;
however, it suffers from much more substantial biases than ANGSD
at lower coverages (Supplementary Fig. S27). Our simulations also
showed that contamLD is either more biased or has higher variance
than our method at low coverages (Supplementary Fig. S28).
Therefore, we focused the overall analysis on comparison between
our new method and ANGSD, which is also currently most widely
used method for male contamination estimation.

For down-sampling experiments of WGS data, we used a
XiongNu sample DA43 (Mongolia, 400BCE-100CE, 0.83� chrX
coverage) (de Barros Damgaard et al., 2018), which is estimated to
be 2.83% (95% CI: 2.35–3.31%) contaminated by ANGSD. Since
this sample is WGS data, we could use the 1000G reference panel.
We tested our method’s performance on coverage 0.01�, 0.02�,
0.05�, 0.1�, 0.5� and compared to ANGSD (Fig. 5c). Our results
show that hapCon yields reliable estimates down to about 0.02�
coverage on the X chromosome for WGS data, achieving similar
confidence intervals at 10� lower coverage than ANGSD. This per-
formance gain is similar to that observed on the tests on mixed
BAM files (Fig. 4).

3.3.2 Comparing hapCon and ANGSD on published aDNA data

To systematically compare hapCon and ANGSD estimates on em-
pirical data, we applied both methods to 1240k aDNA data includ-
ing a wide range of coverages and contamination rates. We selected
all 89 ancient males from Olalde et al. (2019) that have coverage
greater than 0.05� on the X chromosome, all of which are from the
Iberian Peninsula and date to within the past 8000 years. To test our
method on even older samples which are genetically more distant
from the modern reference panel, we additionally tested both meth-
ods on 60 male Eurasian hunter-gatherer samples (Yu et al., in prep-
aration) and six male samples with at least 0.05� coverage on chrX
from Fu et al. (2016). We found that estimates from hapCon and
ANGSD are highly concordant on the full sample set (r2 ¼ 0:8552),
and for 145 out of 155 samples hapCon provides smaller confidence
intervals (Fig. 5d). For the 124 samples with contamination rate esti-
mated to be < 5% by both methods, the estimate of hapCon is
higher than that of ANGSD on 41 samples, and lower on the
remaining 83 samples, indicating that both methods give overall
similar estimates when the contamination rate is low. In contrast,
for all samples with contamination rates > 20%, hapCon generally
estimates higher contamination than ANGSD. We note that our
simulation experiments have shown that ANGSD has substantially
more downward biases than our method in the high contamination
regime (Fig. 2), thus the higher estimates of hapCon are likely closer
to the true contamination rate. In any case, samples with contamin-
ation rate substantially greater than 10% are excluded from down-
stream analysis in practice.

Although our method works equally well on Upper Paleolithic
and Mesolithic Eurasian hunter-gatherers as on more recent samples
and for a wide range of global ancestries (Fig. 2), we note that cau-
tion is warranted when working with data containing deeply
diverged haplotype not captured well by the 1000 Genome reference
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panel. For instance, for some south and central African forager data,
our method may overestimate contamination (Supplementary Note
S4.2).

4 Discussion

We have presented a new approach to estimate aDNA contamin-
ation in male modern humans based on a Li&Stephens haplotype
copying model and implemented it in a software package (hapCon).
The Li&Stephens model, widely used in population genomics,
makes use of haplotype structure and linkage disequilibrium infor-
mation, and constitutes a central part of many modern phasing and
imputation algorithms (Browning et al., 2021, e.g. Delaneau et al.,
2019; Loh et al., 2016; Rubinacci et al., 2021). Similarly, our
method implicitly imputes the endogenous genotype using reference
haplotypes, and thus can utilize sites covered by only one sequence,
which, to our knowledge, cannot be effectively utilized by any other
male X chromosome-based method. Tests on simulated and down-
sampled empirical aDNA data showed that the new approach sub-
stantially improves power to estimate contamination, particularly in
the low coverage regime. Across coverage levels, hapCon consistent-
ly yields estimates with lower variance and narrower confidence
intervals than ANGSD and the two-consensus approach described
in (Moreno-Mayar et al., 2020). The most substantial gains are
achieved for low-coverage WGS data. We found that hapCon pro-
vides robust contamination estimates for 1240k capture data with

as low as 0.1� coverage and for WGS data with as low as 0.02�
coverage on the male X chromosome, substantially extending the
limits of ANGSD or the two-consensus approach. We explored vari-
ous sources of model mis-specifications, including sequencing error,
post-mortem damage, haplotype copying jump rate, distance to ref-
erence panel and mis-specified contaminant allele frequencies. These
experiments showed that hapCon is robust with respect to reason-
able mis-specifications. Moreover, we observed that contamination
estimates do not depend on genetic distances between the endogen-
ous and contaminant ancestry.

There are several limitations of our new approach. Haplotype
copying substantially improves the power; however, it requires that
the true endogenous haplotype can be modeled well as a mosaic of
modern haplotypes. Deeply diverged human lineages such as
Neanderthals and Denisovans are outside the range of this copying
model. In such cases, one should consider using ANGSD or other
methods not relying on a haplotype reference panel (e.g. Peter,
2020). Having that said, our experiments demonstrated that our
method works on Ust Ishim (46 880–43 210 calBP), one of the old-
est sequenced modern humans, similarly well as on other more re-
cent samples. Additionally, we have tested our method on
Paleolithic and Mesolithic hunter-gatherers and found good correla-
tions between estimates from our method and that from ANGSD,
indicating that the new haplotype copying approach in principle
works for most modern human aDNA. Another issue that we identi-
fied is a moderate upward bias at low coverage when the allele fre-
quency of the specified contaminant source is substantially closer to
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Fig. 5. Assessing performance on empirical aDNA Data. (a, b) We performed downsampling experiments on 1240k data of two Sardinian samples, SUA001 and SUA002,

both from Marcus et al. (2020). The original BAM files were down-sampled to various coverages with 100 independent replicates for each coverage. (a) Comparison between

our method and ANGSD on SUA001, estimated to be 10.45% (95% CI: 9.56–11.34%) contaminated by ANGSD (on full data, visualized by the horizontal red line).

(b) Comparison between our method and ANGSD on SUA002, estimated to be 0.38% (95% CI: 0.072–0.69%) contaminated by ANGSD (on full data, visualized by the hori-

zontal red line). (c) We down-sampled WGS data of DA43, XiongNu, Mongolia from de Barros Damgaard et al. (2018). The original BAM file for DA43 was down-sampled

to various coverages 0.01–0.5�, with 100 independent replicates for each target coverage. We only visualized ANGSD’s results on 0.05�, 0.1�, 0.5� because its estimates at

coverage lower than 0.05� were highly variable. DA43 is estimated to be 2.83 % (95% CI: 2.35–3.31%) contaminated by ANGSD (on full data, visualized by the horizontal

red line). (d) We compared our new method and ANGSD on 1240k aDNA data of 89 samples from the Iberian Peninsula and of 66 Eurasian hunter-gatherers. The true con-

tamination rate is unknown. No down-sampling was performed and all individuals (dots) are color coded by the average coverage on 1240k SNPs on chromosome X. The inlet

visualizes a zoom-in into ½0; 0:05� � ½0; 0:05�. A similar figure that only shows the Eurasian hunter-gatherers is available in Supplementary Figure S13
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the endogenous source than the overall reference panel, but using an
Out-of-Africa haplotype reference panel partially alleviates this bias
(Supplementary Fig. S35). Finally, our results showed that the speci-
fied contaminant allele frequencies should remain within continental
genetic variation of the true contamination source, otherwise con-
tamination estimates can become substantially downward biased. If
there is no prior information about the contamination source or the
sample has been contaminated by several sources from different con-
tinental ancestries, our method may yield substantially biased
results, in particular for highly contaminated samples.

Beyond application to the naturally haploid male X chromo-
some, we envision our haplotype copying approach to be useful for
estimating contamination for female samples with long runs of
homozygosity (ROH), as such regions are effectively haploid.
Previous studies have identified extensive ROH in almost all paleo-
lithic hunter-gatherers (Ringbauer et al., 2021) or in populations
with small effective size, such as the pre-contact Caribbean
(Fernandes et al., 2021). However, we note that contamination
interferes with identifying ROH, particularly in the low coverage re-
gime. Future work could establish robust approaches to identify
ROH for substantially contaminated data, and the software pre-
sented here can then be straightforwardly extended for estimating
contamination on ROH.

Utilizing reference panels that are larger and better represent di-
verse ancestries could extend the application range of our method.
In particular, the genetic diversity of the African continent is under-
represented in the current reference panel based on 1000 Genomes
dataset; we found that our haplotype copying approach using this
default reference panel suffers from biases when modeling samples
containing central and southern African ancestry (Supplementary
Note S4.2). The generation of more diverse haplotype reference pan-
els is currently on the way (Choudhury et al., 2020; Fatumo et al.,
2022), and those panels could substantially improve the perform-
ance of our method.

Another promising extension is to utilize a full diploid
Li&Stephens copying model as in Lunter (2019) to directly estimate
contamination on autosomes, thereby enabling estimating auto-
somal contamination in female samples. This approach would be
closely related to imputing diploid genotype, which often similarly
relies on the diploid Li&Stephens model. A particular challenge of
such a diploid approach is that diploid imputation is much more
challenging than the haploid imputation. In particular in the low
coverage regime (<0.5�), that constitutes the majority of aDNA
data, diploid imputation accuracy is limited and could produce sub-
stantial biases that interfere with estimating contamination
(Ausmees et al., 2022; Hui et al., 2020; Rubinacci et al., 2021).
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