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Abstract

There has been a long history of using neural networks for combinatorial optimization and constraint satisfaction problems.
Symmetric Hopfield networks and similar approaches use steepest descent dynamics, and they always converge to the
closest local minimum of the energy landscape. For finding global minima additional parameter-sensitive techniques are
used, such as classical simulated annealing or the so-called chaotic simulated annealing, which induces chaotic dynamics by
addition of extra terms to the energy landscape. Here we show that asymmetric continuous-time neural networks can solve
constraint satisfaction problems without getting trapped in non-solution attractors. We concentrate on a model solving
Boolean satisfiability (k-SAT), which is a quintessential NP-complete problem. There is a one-to-one correspondence
between the stable fixed points of the neural network and the k-SAT solutions and we present numerical evidence that limit
cycles may also be avoided by appropriately choosing the parameters of the model. This optimal parameter region is fairly
independent of the size and hardness of instances, this way parameters can be chosen independently of the properties of
problems and no tuning is required during the dynamical process. The model is similar to cellular neural networks already
used in CNN computers. On an analog device solving a SAT problem would take a single operation: the connection weights
are determined by the k-SAT instance and starting from any initial condition the system searches until finding a solution. In
this new approach transient chaotic behavior appears as a natural consequence of optimization hardness and not as an
externally induced effect.

Citation: Molnár B, Ercsey-Ravasz M (2013) Asymmetric Continuous-Time Neural Networks without Local Traps for Solving Constraint Satisfaction Problems. PLoS
ONE 8(9): e73400. doi:10.1371/journal.pone.0073400
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Introduction

The most common approach in non-conventional computation

is to treat dynamical systems as algorithms. Physical and biological

systems are capable of achieving their functions and reaching their

optimal state with incredible speed. Computer science and

information technology tries to learn from nature and especially

now, when CMOS technology reaches its limits at the small scale

[1] (e.g. [2]), there is a hastened search for novel computational

paradigms.

The use of analog dynamical systems for computation received

increasing interest in the last three decades both in the theoretical

and in engineering communities. Differential equations, continu-

ous maps, and several neural network models have been employed

to perform various computational tasks. In this approach, the

dynamical systems are designed in a way to converge to attractors

that are interpreted as the output of the computation [3–6].

Siegelmann, Orponen, Moore and others have recently provided a

computational complexity theory for analog systems [5–11]. A

fundamental discovery also by Siegelmann was to show, that in

principle, computation beyond the Turing limit is possible. She

used the strongly chaotic analog shift map as an example, and

proved that it has computational power beyond the Turing

machine (super-Turing) [7]. Technology has also developed

devices imitating nervous system-like processing, such as the

Cellular Neural/Nonlinear Network (CNN) [12,13], or analog

VLSI devices [14,15]. These can solve a large variety of problems

in robotics, sensory computing (vision, hearing, bionic eyeglasses)

etc. The CNN is an array of analog dynamical cells performing

parallel continuous-time processing, effectively solving a system of

coupled ordinary differential equations (ODEs) with programma-

ble coupling parameters. Roska and Chua proved the CNN to be

at least as universal as a Turing machine [16].

Neural network models have originally been developed and

investigated with the purpose of modeling brain function, however

their capability of solving optimization problems has also been

explored. One of the earliest works was presented by Hopfield and

Tank who used neural network models to solve the traveling

salesman problem [17–19]. Despite the evidently chaotic nature of

brain activity and the theoretical results showing the power of

chaotic analog dynamical systems [7], neural networks designed to

solve combinatorial optimization problems mainly avoided chaotic

dynamics, focusing on simple converging systems with Lyapunov

dynamics (symmetric Hopfield networks, symmetric CNN etc.). In

this approach the neural network minimizes a Lyapunov function

(energy function) by converging directly to a local minimum

[18,19], and this analog process is used as a basic step of the

algorithm. However, for finding the global minimum classical

techniques typical in digital computing are required (such as

simulated annealing etc.) [8,9,20–22], and the algorithm becomes

quite estranged from the original purpose of analog computing.
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The need for more complex dynamics has been realized and

some chaotic neural network models solving optimization prob-

lems were presented by Chen and Aihara [23,24]. These are also

called as chaotic simulated annealing methods. In this approach

usually the discrete-time symmetric Hopfield network is used and

local traps are avoided by introducing a deterministic chaotic

dynamics with a bifurcation parameter that is gradually decreased

during the annealing process [23]. This method has been further

improved in different ways [25–27], however the need for careful

tuning of parameters has not been eliminated and direct

correspondence between global optimum and the final output

has not been achieved.

In our recent papers [28,29] we have shown that optimization

hardness is strongly interrelated with chaotic/turbulent dynamics,

implying that designing analog dynamical systems with an output

that corresponds directly to the solutions of a hard problem (global

minima of the energy) will necessarily show transiently chaotic

behavior. Here we show that asymmetric continuous-time neural

networks can be designed to solve hard problems simply due to

their structure, without requiring a step-by-step algorithm similar

to those used in digital computers. In this case transient chaotic

behavior appears as a natural consequence of optimization

hardness and not as an artificially added tool.

At a recent conference [30] we presented a continuous-time

asymmetric neural network (CTANN) model designed to solve

Boolean satisfiability (k-SAT) (description of the model provided

below). k-SAT is one of the most studied constraint satisfaction

problems lying at the basis of many decision, scheduling, error-

correction and bio-computational applications. Our model can be

transformed to solve a large variety of constraint satisfaction

problems, because k-SAT is NP-complete, meaning that every

problem in NP can be transformed into this form in polynomial

time (as function of the system size) [31,32]. The NP class contains

the set of optimization problems whose solutions (once given) are

easily checked to satisfy the constraints, however, finding those

solutions in case of hardest problems takes exponentially long

search-times. For details on the computational complexity of NP-

complete problems see [32].

Here we explore in details the properties of this CTANN model.

We show how we can achieve a one-to-one correspondence

between the k-SAT solutions and the stable fixed points of our

CTANN. Simulations on 3-SAT, 4-SAT and 5-SAT problems

show that the two important parameters do not need careful

tuning during the computational process. For a given k their

optimal values are fairly independent of the size and other

properties of the system. We even find a common area when

comparing the optimal regions for different values of k. This way

non-solution traps (such as limit cycles) can be avoided and after a

transiently chaotic phase the system converges to a solution.

Results

This section is organized as follows. First we briefly introduce k-

SAT and summarize previous analog approaches including the

continuous-time dynamical system introduced in [28]. Next we

present our CTANN model discussing its key mathematical

properties and finally we present numerical evidence on the

effectiveness of the model.

Boolean satisfiability problems
In k -SAT there are given N Boolean variables, xi[f0,1g and a

propositional formula F , which is the conjunction (AND) of M

clauses (constraints) Cm. Each clause is the disjunction (OR,

denoted by _) of k variables (xi) or their negation (xi). In 3-SAT a

constraint could be for example C1~x1 _ x5 _ x7. The formula

may be encoded as a matrix cmi:

cmi~

1 if xi[Cm

{1 if �xxi[Cm

0 if xi 6[Cm & �xxi 6[Cm

8><
>: ð1Þ

where m~1, . . . ,M, i~1, . . . ,N. The goal is to find an

assignment of the variables such that all clauses are satisfied

(TRUE).

Performance of algorithms is usually tested on random k-SAT

instances, where each clause includes a randomly selected set of k

variables. Considering that each variable could be included in its

normal or negated form, these k variables can form 2k possible

clauses. We always randomly choose one of these. The simplest

measure to characterize hardness of random k-SAT formulae is

the constraint density: a~M=N. In the easy-SAT region there are

few constraints/clauses (small a) and it is easy to find solutions. For

too many constraints (large a) it is easy to decide that the formula is

unsatisfiable (UNSAT). There is an intermediate range (hard-

SAT), however, where deciding satisfiability can be very hard: the

worst-case complexity of any known algorithm for k-SAT (k§3) is

exponential in N [31]. Using statistical physics methods it has been

shown that changing the constraint density a the solution space

goes through several phase transitions. The hardness of problems

is related to these different phases and the hardest instances appear

just before the satisfiability threshold [33–35].

Previous analog approaches
There have been several attempts to solve k-SAT by mapping

the Boolean variables onto a continuous space. In [36,37] k-SAT is

formulated as a global optimization problem in the x[½0,1�N
continuous space, however it is solved with various local search

and backtracking methods characteristic to digital computing (not

continuous-time dynamical systems). Refs. [38–40] use Lagrange

programming neural networks for k-SAT. They define a Lagrange

function using a linear combination of the individual constraints,

with coefficients serving as Lagrange multipliers. The employed

ODEs are similar to a Hopfield neural network, whose trajectories

however, cannot guarantee that the corresponding dynamics does

not get trapped by non-solution fixed points.

In [28] we provided a new and exact mapping of Boolean

satisfiability into a set of ODEs with a unique correspondence

between its set of attractors and the k-SAT solutions. This

eliminates the key weaknesses of previous attempts. The Boolean

variables are mapped to the s[½{1,1�N continuous space.

si[½{1,1�, i~1, . . . ,N, such that si~{1 if the ith Boolean

variable (xi) in the SAT problem is 0 (FALSE) and si~1 when it is

1 (TRUE). Each constraint can be formulated as a function

Km(s)[½0,1� which is 0 if and only if the constraint is satisfied.

Accordingly an energy function can be defined as

E(s)~
PM

m~1 K2
m(s). Finding a solution to the SAT problem (if

it exists) is equivalent to finding the global minima, s�, of this

function (E(s�)~0). A dynamical system defined via e.g., a simple

gradient descent to find the global minimum of E(s), however, will

typically get trapped in local minima where E(s)w0. The

continuous trajectories approach these attracting non-solution

fixed-points at an exponential rate (the vector field is analytic) and

hence, a corresponding exponential extraction is needed from

these regions by an algorithm that does not get stuck. To achieve

that, we modified the energy function by introducing auxiliary

variables for each constraint (am[½1,?),m~1, . . . ,M), acting

Asymmetric Neural Network for Optimization
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similar to Lagrange multipliers: V (s,a)~
PM

m~1 amK2
m(s). The

dynamics of s is defined as a gradient descent on the energy

surface and the role of the auxiliary variables is to provide extra

dimensions along which the trajectory escapes from local wells.

The dynamics ensures that whenever a constraint is not satisfied,

the respective auxiliary variable grows exponentially, modifying the

energy function and ultimately extracting the trajectory from the

local minima/wells [28]. Due to the unbounded auxiliary variables

exhibiting exponential growth when needed, this system achieves

polynomial continuous-time efficiency, however at the cost of

exponentially large fluctuations in the energy function V (s,a). This

study has also shown that the hardness of (solvable) problems

appears as chaotic dynamics, however, it is of transient type

[41,42] as the system still finds the solution.

While using unbounded auxiliary variables one can avoid local

traps and achieves polynomial efficiency in the analog search

times, the question is whether one can design a continuous-time

dynamical system for k-SAT using only bounded variables

(implementation friendly), but preserving as many of the desirable

features of the system as possible. At a recent conference [30] we

presented an implementation friendly model for solving k-SAT (see

below), which is a cellular neural network model similar to those

used in CNN computers and also similar to Hopfield models. Here

we rigorously define the parameter region where a one-to-one

correspondence between solutions and fixed-points can be

achieved. We also show that the optimal region of parameters

(where the system is most efficient) is independent of the properties

of the problem. Most importantly, our system does not get trapped

in local minima, finding the solution is one single continuous-time

process which does not need ‘‘intervention’’ and tuning of

parameters.

Continuous-time asymmetric neural network for k-SAT
Continuous-time recurrent neural networks in general are

defined as:

dxi(t)

dt
~{xi(t)z

X
j

wijf (xj(t))zui ð2Þ

where xi is the state value, or activation potential of the cell, f (x) is

the output function of the neuron (usually a sigmoid), ui is the

input, or bias of the neuron and wij are connection weights.

Cellular neural networks have the same form, however in real

implementations the cells are placed on a square lattice, and so far

only neighbors can influence each other.

We defined our continuous-time asymmetric neural network

model on a bipartite graph with two types of nodes (cells) (Fig. 1A)

[30]. One type (‘‘s-type’’) represents the variables of k-SAT, whose

state value will be denoted by si, i~1, . . . ,N and their output

function defined via (see Fig. 1B):

f (si)~
1

2
Dsiz1D{Dsi{1Dð Þ: ð3Þ

When the Boolean variable is true (xi~1) we will have f (si)~1,

when it is false (xi~0) then f (si)~{1. However, during the

dynamics we allow any continuous value f (si)[½{1,1�. For

simplicity we say that f (s) is a solution of k-SAT, whenever

x~½f (s)z1�=2 is a solution. The input of these cells will not be

needed, we fix them as ui~0 Vi. The self-coupling parameter will

be a constant value wii~A, this being one of the important

parameters of the model.

The clauses are represented by the second type of cells with state

value am, m~1, . . . ,M and output function (Fig. 1C):

g(am)~
1

2
(1zDamD{D1{amD): ð4Þ

These variables, or ‘‘a-type’’ cells will play a similar role as the

auxiliary variables in [28,29]. They determine the impact a clause

has at a given moment on the dynamics of the s variables. For this

reason g(am)~0 will correspond to the clause being true, and

g(am)~1 to the clause being false. The second important

parameter of the model is the self-coupling of these cells

wmm~B. Their input will be um~u~1{k where k represents

the number of variables in the clause (k~3 for 3-SAT, k~4 for 4-

SAT, etc.). As we will see later, this is needed in order to achieve

the correspondence between k-SAT solutions and stable fixed

points. The connection weights between the cells are determined

by the cmi matrix elements of the given k-SAT problem. The

dynamical system is defined via:

_ssi(t)~
dsi(t)

dt
~{si(t)zAf (si(t))z

X
m

cmig(am(t)) ð5Þ

_aam(t)~
dam(t)

dt
~{am(t)zBg(am(t)){

X
i

cmif (si(t))z1{k ð6Þ

This neural network is asymmetrical: the influence of a clause on a

variable (with connection weight cmi) is exactly the opposite of the

influence of the variable on the same clause (with weight {cmi).

We cannot assign a Lyapunov function (or energy function) to this

system, the dynamics is not a simple gradient descent, and in case

of hard problems it can show complex chaotic dynamics.

Important theorems
Here we list some important theorems showing the properties of

the model. The proofs are presented at the end of the paper (in

section Proof of Theorems).

Theorem 1

Variables remain bounded: If initially Dsi(0)Dƒ1 and 0ƒam(0)ƒ1, then

the state values of cells si(t) and am(t) remain bounded for all tw0, Vi,m:

Dsi(t)Dƒ1zAz
X

m

Dcmi D ð7Þ

{2kƒam(t)ƒ2zB ð8Þ

Theorem 2

Every k-SAT solution has a corresponding stable fixed point: Given a k-

SAT formula F , if f (s�i )~+1, i~1, . . . ,N is a solution of F and

Aw1, Bw1 then the (s�,a�) point:

s�i ~Af (s�i ) , a�m~{
X

j

cmjf (s�j )z1{k ð9Þ

i~1, . . . ,N, m~1, . . . ,M is a stable fixed point of the system (5–6).

Theorem 3

A stable fixed point always corresponds to a solution. If 1vAv2,

1vBv2½k
2
�z2 and (s�,a�) is a stable fixed point, then f (s�) must be a

solution of the k-SAT formula. (½:� denotes the integer part.)

Asymmetric Neural Network for Optimization

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e73400



When proving this third theorem it was relatively easy to see

that it holds for 1vBv2 [30]. Simulation results, however,

indicate that the optimal value of parameter B is larger than 2.

Indeed, here we present a more general proof showing that the

correspondence between stable fixed points and solutions is

preserved in the larger interval 2ƒBv2½k
2
�z2 (see Proof of

Theorems).

Numerical results
The theorems presented above guarantee that all stable fixed

points of the system correspond to k-SAT solutions. However,

there is no guarantee that there are no other attractors - such as

limit cycles or chaotic attractors - in the system. The existence or

non-existence of such attractors is very difficult to show

analytically, but simulation results indicate that parameters (A,B)

have an optimal region fairly independent of the properties of the

problems, where the dynamics avoids getting trapped in non-

solution attractors and finds a k-SAT solution.

We performed the simulations using the fifth-order adaptive

Runge-Kutta method. In Figure 2 we plot the time evolution of a

few s-type and a-type variables and the energy function

E(f (s))~
PM

m~1 K2
m(f (s)) mentioned above (for details see [28])

for a large 3-SAT problem with N~1000 variables and a~4
constraint density. While our neural network does not explicitly

use an energy function (like Hopfield networks do), we use this

function to monitor the evolution of the trajectory in its search for

a solution. This strongly depends on the parameters (A,B). In

Figs. 2A, B, C we show a case when there is transient chaotic

dynamics, but finally a solution is found (A~1:54,B~2:18). In

spite of the fluctuations the energy consistently decreases until

finding the solution where E~0. There are parameter values A

and B, however, where the dynamics gets trapped in limit cycles,

with an example shown in Figs. 2D, E, F (A~1:1,B~1:1). In such

cases some of the si and am variables remain constant but others

follow complicated periodic orbits. The energy is very noisy in the

simulation, but we can see it gets trapped and fluctuates in a

narrow interval. This usually happens when the A and B values are

small (see also below). In these situations the dynamics gets out

very slowly from the subspace (s,a)[½{1,1�N
S
½ 0,1�M , inside

which the dynamics is linear and limit cycles can easily occur.

These are not necessarily stable limit cycles, it can happen that the

dynamics escapes after a very long time. Similar phenomenon of

extremely long transient oscillations have been observed in CNN

systems with a particular ring shape [43].

We needed to investigate how the efficiency of the system in

finding solutions depends on the (A,B) parameters. As mentioned

above the standard way of testing algorithmic performance is to

use random SAT instances. In Figs. 3, 4 we show maps covering

the A[(1,2), B[(1,3) parameter region, depicting the performance

of the system and how it changes as the system size varies. We ran

100 random 3-SAT (Fig. 3) and 4-SAT problems (Fig. 4) for each

point of the maps (out of the randomly generated instances we use

only the satisfiable ones). The resolution of the maps is 0.02. This

means that preparing these maps is equivalent to solving

50|100|100~5|105 instances for each N. Because these are

computationally costly, we had to use relatively small instances.

Constraint densities from the hardest regions of 3-SAT (a~4:25)

and 4-SAT (a~9:55) were used [33–35]. In the first column of

Figs. 3, 4 the color indicates the fraction of solved problems in the

given time tmax~5000, . . . ,15000. In the second column we show

the average continuous-time (not the simulation running time) the

system takes to solve them (see color bars). When the solution is

not found we include tmax in the average. The maps show a

peculiar shape consistent while changing the system size. The

bottom left corner and the top middle is a parameter region where

solutions are hard to find. Our observations also indicate that this

is caused by limit cycles in the bottom left corner, and extremely

long chaotic transients (super-transients) at the top of the map. In

the middle, however there is a large region where the solution is

found efficiently. As the system size increases this middle region

gets lighter in the first (red) column and darker in the second one

(blue). This is because the time needed to solve problems increases

with the system size. In order to solve the same fraction of

problems (to achieve the same red shade on the map) we would

need to greatly increase the simulation times for the larger systems

(see also Fig. 7), which is too costly in our case. The statistics being

based on only 100 random instances, instead of searching for the

Figure 1. Structure of the neural network. (A) The system is defined on a bipartite graph with two types of nodes. (B) The output function of s-
type variables f (si)~(Dsiz1D{Dsi{1D)=2. (C) Output of a-type variables g(am)~(1zDam D{D1{amD)=2.
doi:10.1371/journal.pone.0073400.g001
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optimal (A,B) parameter setting we indicate the 4% of the whole

map (orange squares) where the fraction of solved problems is the

largest (when the fractions are identical comparisons are made

based on time values). This optimal region is fairly consistent while

changing the size of problems (also see Fig. 6A, B).

We also checked how the map and the optimal parameter

region changes as varying the constraint density a, and by this the

hardness of problems. In the first row of Fig. 5 we show the maps

for 3-SAT problems with N~40 and a~3:5,4:0,4:25 (from left to

right). In the last column the frames of the optimal regions of the

three maps are placed on each other showing an excellent match.

Maps in the second row show results obtained on 4-SAT problems

with N~20 and a~8:5,9:0,9:55 and in the third row on 5-SAT

problems with N~20 and a~15,18,20:8 (the hardest region in 5-

SAT being around a~20:8 [34]). Again the optimal areas show a

good match. Because for larger k the B parameter can have larger

values (see Theorem 3), for 5-SAT we show the maps on the

B[(1,4) interval. However, we see that the optimal region still

remains at the lower values close to the optimal parameter range

of 3-SAT and 4-SAT.

These maps indicate that the optimal parameter region is

surprisingly consistent while changing the size (N) and hardness (a)

of problems. On Fig. 6A, B, C we draw on top of each other the

frames of these optimal areas found on maps of all simulations

Figure 2. Time evolution of s-type and a-type variables. In a given 3-SAT instance with N~1000,a~4 the evolution of three different si

variables (different colors on (A), (D)), two different am variables (B), (E) and the energy of the system (C), (F) is shown for two different parameter
settings. (A), (B), (C) A = 1.54, B = 2.18 the solution is found after a chaotic transient. (C), (D), (E) A = 1.1, B = 1.1 the dynamics gets trapped in a limit
cycle.
doi:10.1371/journal.pone.0073400.g002
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performed on 3-SAT, 4-SAT and 5-SAT problems, respectively.

On Fig. 6D we compare 3-SAT (black frame), 4-SAT (red) and 5-

SAT (green) by showing the optimal regions in case of N~20
and constraint densities a~4:25,9:55,20:8 these being the hardest

SAT phases for each. This indicates that there is a smaller region

(in the middle) which seems to be part of the optimal regions of

all k.

Because the variables remain bounded and there is no extra

energy introduced into the system (contrary to the system in [28])

the dynamics naturally has an exponential continuous-time

complexity in the hard-SAT region. In Fig. 7A, B, C we plot

the fraction p(t) of problems which remain unsolved after a time t

for various sizes (N~20,30, . . . ,100) of randomly chosen 3-SAT,

4-SAT and 5-SAT instances with constraint densities in the

hardest a regions. We chose a parameter setting (A~1:4,B~2:24)

from the common part of the optimal regions shown in Fig. 6D.

The distributions are decreasing as a power law (p(t)*t{b(k,N)),

where the power b(k,N) depends on k and the size N of the k-SAT

instances. b(N) is again a power law, b(N)*N{c

(c%0:95,1:76,2:23 for k~3,4,5) indicating that the time com-

plexity of the model is exponential for solving a fixed fraction of

problems (Fig. 7D). This power-law decrease of p(t) shows that the

probability of not finding the solution goes to zero (not a positive

constant), supporting the claim that in this optimal parameter

region (common for all k) the dynamics does not get trapped in

limit cycles and a solution is always found after a transiently

chaotic period.

Discussion

Solving NP-complete problems is a key test for any non-

conventional computation. Here we presented an asymmetric

continuous-time neural network that can efficiently solve Boolean

satisfiability without getting trapped in non-solution attractors, and

without requiring careful parameter tuning during the dynamical

process. In particular, it has the following key properties: 1) It has a

deterministic continuous-time dynamics. 2) All variables remain

bounded. 3) The dynamics can be implemented with analog

circuits (has almost the same form as used in CNN computers). 4)

There is a one-to-one correspondence between the stable fixed-

points of the system and the solutions of the k-SAT problem.

Numerical simulations show that our method works consistently

and efficiently on 3-SAT, 4-SAT and 5-SAT problems. A careful

study of the dynamics as function of the two important parameters

of the system shows that their optimal interval has a peculiar shape

surprisingly consistent when changing the size and hardness of

SAT instances. Comparing the optimal parameter regions for the

different k~3,4,5 SAT classes we find a common parameter

range which seems to work efficiently for each k-SAT instance.

This assures that the system does not need careful choosing of

parameters depending on the properties of SAT formulae.

While there are parameter intervals where limit cycles

frequently occur (mainly the smaller values of A and B), statistics

done with a parameter setting (the same for all k) chosen from the

optimal region shows that here the dynamics does not get trapped

in long cycles. The distribution of transient times shows a clear

power-law decay in contrast with the distributions obtained with

non-optimal parameters (not shown on the figures), where it goes

to a positive constant value indicating that a part of problems are

not solved because the dynamics gets trapped in long oscillations.

Previous approaches mainly concentrated on symmetric - and

dominantly on discrete-time - neural networks. Most of the time

gradient descent dynamics was used possibly combined with

annealing processes. Here we have shown that asymmetric continuous-

time neural networks can be designed to solve constraint

satisfaction problems on their own, without additional annealing

processes. This dynamics does not get trapped in non-solution

attractors and transient chaotic behavior appears as an unavoid-

able byproduct of optimization hardness [28,29].

On an analog device this algorithm would take a single

operation: the connection weights are based on the cmi matrix

corresponding to the given k-SAT instance (the input of the

operation) and starting from any initial condition the system

searches until finding a solution, without the need of any further

intervention by the user.

Our model is implementation friendly, being similar to neural

networks used in analog CNN computers. However, when

considering analog computation, an important question - which

needs to be investigated - is the effect of noise on the dynamics.

Preliminary studies show that similarly to other transiently chaotic

systems [41,42], the p(t) distribution of transient times (and thus the

efficiency of finding the solution) is not sensitive to noise. Actually

noise effects may even help avoiding long transient oscillations,

thus extending the optimal parameter region.

Proof of Theorems

Proof of Theorem 1
Let us recall the dynamics of si(t):

dsi(t)

dt
~{si(t)zAf (si(t))z

X
m

cmig(am(t)) ð10Þ

This is a first-order ODE and its solution can be written as:

si(t)~si(0)e{tz

ðt

0

e{(t{t) Af (si(t))z
X

m

cmig(am(t))

 !
dt ð11Þ

It follows that

si(t)j jƒ si(0)e{tj jz
ðt

0

e{(t{t) Af (si(t))z
X

m

cmig(am(t))

 !
dt

�����
�����ð12Þ

ƒ si(0)j je{tz

ðt

0

e{(t{t) Af (si(t))z
X

m

cmig(am(t))

�����
�����dt ð13Þ

ƒ si(0)j je{tz

ðt

0

e{(t{t) A f (si(t))j jz
X

m

cmig(am(t))j j
 !

dt ð14Þ

Figure 3. Parameter dependence of dynamics in 3-SAT problems with critical constraint density. For each point A[(1,2),B[(1,3) on the
map we solve 100 randomly chosen satisfiable 3-SAT instances, with N~20,30,40,50,100 and a~4:25. Maps in the first column show the fraction of
solved problems, in the second column the average continuos-time needed (see color bars). The maximal time tmax~5|103 for N~20, 10|103 for
N~30, 15|103 for N~40, 20|103 for N~50, 25|103 for N~100. Orange squares on the red maps indicate 4% of the map with highest efficiency.
doi:10.1371/journal.pone.0073400.g003
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ƒ si(0)j je{tz Az
X

m

cmij j
 !ðt

0

e{(t{t)dt ð15Þ

ƒ si(0)j jzAz
X

m

cmij j ð16Þ

ƒ1zAz
X

m

cmij j ð17Þ

where we used the facts that f (si)j jƒ1, 0ƒg(am)ƒ1 and the

initial condition si(0)j jƒ1. It is also easy to see that

0ƒ

Ð t

0
e{(t{t)dtƒ1.

For proving Eq. (8) we recall the dynamical equation:

dam(t)

dt
~{am(t)zBg(am(t)){

X
i

cmif (si(t))z1{k ð18Þ

which has the solution:

am(t)~am(0)e{t

z

ðt

0

e{(t{t) Bg(am(t)){
X

i

cmif (si(t))z1{k

 !
dt
ð19Þ

Figure 4. Parameter dependence of dynamics in 4-SAT problems with critical constraint density. For each point A[(1,2),B[(1,3) on the
map we solve 100 randomly chosen satisfiable 4-SAT instances, with N~20,30,50,70 and a~9:55. Maps in the first column show the fraction of
solved problems, in the second column the average continuos-time needed (see color bars). The maximal time tmax~5|103 for N~20,30,50 and
tmax~15|103 for N~70. Orange squares on the red maps indicate 4% area of the map with highest efficiency.
doi:10.1371/journal.pone.0073400.g004

Figure 5. Parameter dependence of dynamics in 3-SAT, 4-SAT and 5-SAT problems with fixed size and varying constraint density.
For each (A,B) on the map we solve 100 randomly chosen satisfiable instances. The color indicates the fraction of solved problems (see color bar).
Simulations were performed on 3-SAT problems (first row) with N~40 and constraint densities a~3:5,4:0,4:25 (left to right), 4-SAT (second row) with
N~20 and a~8:5,9:0,9:55, and 5-SAT (third row) with N~20 and a~15,18,20:80. The optimal parameter regions are shown with orange squares on
the color maps. In the last column we compare the optimal regions of the three maps in each particular row (black, red, green from left to right), by
drawing the frames of these regions.
doi:10.1371/journal.pone.0073400.g005
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First we will prove the rhs of Eq. (8).

am(t)ƒam(0)e{t

z

ðt

0

e{(t{t) Bg(am(t)){
X

i

cmif (si(t))z1{k

�����
�����dt

ð20Þ

ƒam(0)e{t

z

ðt

0

e{(t{t) B g(am(t))j jz
X

i

cmif (si(t))j jz1{k

 !
dt

ð21Þ

Because there are exactly k variables in a clause and f (si)j jƒ1,

then
P

i cmif (si(t))j jƒk. Recall also that g(am)ƒ1, and the initial

condition am(0)ƒ1. Using this we can write:

am(t)ƒam(0)z Bz1ð Þƒ2zB ð22Þ

For proving the lhs of Eq. (8) we will use that Bw0, g(am)§0,

am(0)§0,
P

i cmif (si(t))
�� ��ƒk and 0ƒ

Ð t

0
e{(t{t)dtƒ1:

am(t)§am(0)e{tz

ðt

0

e{(t{t) Bg(am(t)){
X

i

cmif (si(t))

�����
�����z1{k

 !
dt

§am(0)e{tz

ðt

0

e{(t{t) {kz1{kð Þdt

§{2k:

ð23Þ

Proof of Theorem 2
We presented this proof in the conference paper [30], however

we briefly recall it here to make it easier to readers to follow the

next proof.

Given the definitions, it follows that if f (s�i ) satisfies the clause

Cm then cmif (s�i )~1 and if it does not satisfy it, when cmi=0, then

cmif (s�i )~{1. Accordingly, the sum
P

i cmif (s�i ) in Eq. (9) can

take kz1 possible values: {k,{kz2, . . . ,k{2,k. Only the

value of 2k corresponds to the clause Cm not being satisfied, in all

other cases there is at least one variable satisfying the constraint.

Because by assumption f (s�i ) is a solution, we must have:

Figure 6. Consistency of the optimal parameter region. The optimal (A,B) parameter regions are shown with different colors for all maps
obtained for A) 3-SAT, B) 4-SAT, C) 5-SAT instances. D) We compare the maps for different k~3,4,5 by choosing N~20 and the hard-SAT phase for
each k: a~4:25 in 3-SAT (black), a~9:55 in 4-SAT (red) and a~20:8 in 5-SAT (green).
doi:10.1371/journal.pone.0073400.g006
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X
j

cmjf (s�j )§{kz2[

[a�m~{
X

m

cmif (s�i )z1{kƒ{1[
(4)

[g(a�m)~0, V m~1, . . . ,M

ð24Þ

Using Eqs. (9, 24) and including the values of s�i , a�m, g(a�m) into the

dynamical equations (5) and (6) we get ds�i =dt~0 and da�m=dt~0,

confirming that we have a fixed point.

To prove stability, we will show the following: Starting in any

point (s,a)~(s�zE,a�zd) in a compact vicinity of the fixed point,

such that Dsi{s�i D~DEi DvEvA{1 Vi and Dam{a�mD~DdmDvdv1

Vm, the square distance from the fixed point:

R(s(t),a(t))~
X

i

(si(t){s�i )2z
X

m

(am(t){a�m)2 ð25Þ

is decreasing, that is dR(s(t),a(t))=dtv0, until the dynamics

reaches the fixed point where dR(s(t),a(t))=dt~0.

From Eq. (9) we know that Ds�i D~ADf (s�i )D~Aw1Vi. We have

two cases: 1) If s�i ~A and f (s�i )~1 then s�i zEiwA{

(A{1)~1[ f (s�i zEi)~f (s�i )~1. 2) If s�i ~{A and f (s�i )~{1

then s�i zEiv{Az(A{1)~{1[ f (s�i zEi)~f (s�i )~{1. In

both cases f (s�i zEi)~f (s�i ).

Similarly from Eq. (24) a�mƒ{1 and condition dv1 it follows

that a�mzdmv0[g(a�mzdm)~g(a�m)~0.

Inserting these in Eqs. (5, 6) and using Eq. (9) it can be easily

seen that _ssi~{sizAf (s�i )~{sizs�i ~{Ei and _aam~{am{P
i cmif (s�i )z1{k~{amza�m~{dm and the derivative of the

distance is:

dR(s,a)

dt
~2

X
i

Ei _ssiz2
X

m

dm _aam~

~{2
X

i

E2
i {2

X
m

d2
mƒ0:

ð26Þ

Because the distance from the fixed point cannot increase along

any of the axes: dE2
i =dt~{E2

i , dd2
i =dt~{d2

i , the conditions set

for Ei, di remain valid for all i,m and the distance continues to

Figure 7. Distribution of transient times. The number of k-SAT problems p(t) which remain unsolved as function of the continuous-time t of the
system, for A) k~3, a~4:25, B) k~4, a~9:55 C) k~5, a~20:8 for different values of N (see the legends). The statistics was made on 104 problems for
each k and N. The last part of the distributions are fitted with a power law p(t)*t{b(k,N), and D) shows the dependence of the exponent b on N. For
k = 3 this can be fitted with a power law b(N)*N{0:95. For 4-SAT and 5-SAT the b values for larger N are not precise (statistics would be needed on
much longer time interval), but the exponents are expected to be around 21.76 and 22.23.
doi:10.1371/journal.pone.0073400.g007
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decrease until the dynamics reaches the fixed point where (and

only there) dR(s,a)=dt~0.

Proof of Theorem 3
It is easy to see that similarly to CNN models our system has the

following property (the proof for CNN can be found in [12]): if

Aw1 then in a stable fixed point Ds�i Dw1 (Df (s�i )D~1) Vi; if Bw1

then a�mv0 or a�mw1 (g(a�m)[f0,1g) Vm. (If these conditions do not

hold, there is always an unstable direction along which the

dynamics can escape from the fixed point, see [12].)

Being in a stable fixed point s�:

_ss�i ~{s�i zAf (s�i )z
X

m

cmig(a�m)~0, Vi~1, . . . ,N ð27Þ

Multiplying Eq. (27) with f (s�i ) we get:

{s�i f (s�i )zAf (s�i )2z
X

m

cmif (s�i )g(a�m)~0u

{Ds�i DzAz
X

cmif (s�
i

)~1

g(a�m){
X

cnif (s�
i

)~{1

g(a�n)~0u

Ds�i D~AzJ
(z)
i {J

({)
i w1u

J
({)
i {J

(z)
i vA{1u

J
({)
i {J

(z)
i v1

ð28Þ

where we used Aƒ2 and introduced the notation J
(z)
i and J

({)
i

for the two parts of the sum, the first (second) part includes the

clauses which are satisfied (not satisfied) by variable s�i .

As discussed in the previous theorem, for an unsatisfied clause

Cm the sum
P

i cmif (s�i )~{k. Inserting this into the dynamical

equation (6) if in the fixed point we have an unsatisfied clause Cm,

then:

_aa�m~{a�mzBg(a�m){
X

i

cmif (s�i )z1{k

~{a�mzBg(a�m)z1~0:

ð29Þ

Because g(a�m) must be 0 or 1 and Bw1, this can hold if and only if

g(a�m)~1 and a�m~Bz1 for unsatisfied constraints. When

parameter Bv2 it can be shown that contrary to unsatisfied

clauses, satisfied clauses must have g(a�m)~0 (see [30]). However,

this second statement is no longer true when B can have values

larger than 2: there can be satisfied constraints for which g(a�m)~1.

So let us denote as M (q) (q[Z,0ƒqƒk), the number of clauses for

which g(a�m)~1 and there are exactly q variables satisfying the

clause. (Here M (0) is exactly the number of unsatisfied constraints.)

If there are M (q) clauses with g(a�m)~1 and satisfied by exactly q

variables, from the definitions introduced in Eq. (28) we get:

X
i

J
(z)
i ~

X
i

X
cmif (s�

i
)~1

g(a�m)~
Xk

q~1

qM (q) ð30Þ

X
i

J
({)
i ~

X
i

X
cmif (s�

i
)~{1

g(a�m)~
Xk

q~0

(k{q)M (q) ð31Þ

It follows that:

X
i

J
({)
i {

X
i

J
(z)
i ~kM(0)z

Xk

q~1

(k{2q)M (q)~

~kM(0)z
X

1ƒqƒk=2

(k{2q)M (q){
X

k=2vqƒk

(2q{k)M(q)

ð32Þ

We will show that the second sum is zero. If we have a clause

satisfied by qwk=2 variables, q being an integer this is equivalent

with the condition q§½k
2
�z1, where ½:� denotes the integer part of

the number. Using the boundaries defined for parameter B it

follows that q§½k
2
�z1w

B
2
. Using again that we are in a fixed point

(Eq. (29))

_aa�m~{a�mzBg(a�m){
X

i

cmif (s�i )z1{k~0[ ð33Þ

a�m~Bg(a�m){
X

i

cmif (s�i )z1{k~

~Bg(a�m){({kz2q)z1{k~

~Bg(a�m){2qz1v2qg(a�m){2qz1ua�mv1

ð34Þ

where we used again that the clause is satisfied by exactly q

variables, so
P

i cmif (s�i )~q{(k{q)~{kz2q. Because of this

inequality (34) we cannot have g(a�m)~1 and it follows that

M (q)~0. In Eq.(32) the negative sum disappears and we have:

X
i

J
({)
i {

X
i

J
(z)
i ~kM (0)z

X
1ƒqƒk=2

(k{2q)M(q)
§kM (0) ð35Þ

Because M (0) equals the number of unsatisfied clauses, if f (s�) is

not a solution, then M (0)
§1[

X
i

J
({)
i {

X
i

J
(z)
i §k ð36Þ

Because the values of J
({)
i and J

(z)
i are non-negative integers, and

kw1 it follows that there must be at least one value j such that:

J
({)
j {J

(z)
j §1 ð37Þ

contradicting condition (28). This means that if f (s�) is not a

solution of F it cannot be a fixed point.
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