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Schizophrenia affects more than 1% of the world’s population and shows very
high heterogeneity in the positive, negative, and cognitive symptoms experienced by
patients. The pathogenic mechanisms underlying this neurodevelopmental disorder
are largely unknown, although it is proposed to emerge from multiple genetic and
environmental risk factors. In this work, we explore the potential alterations in the
developing blood vessel network which could contribute to the development of
schizophrenia. Specifically, we discuss how the vascular network evolves during
early postnatal life and how genetic and environmental risk factors can lead to
detrimental changes. Blood vessels, capillaries in particular, constitute a dynamic and
complex infrastructure distributing oxygen and nutrients to the brain. During postnatal
development, capillaries undergo many structural and anatomical changes in order to
form a fully functional, mature vascular network. Advanced technologies like magnetic
resonance imaging and near infrared spectroscopy are now enabling to study how the
brain vasculature and its supporting features are established in humans from birth until
adulthood. Furthermore, the contribution of the different neurovascular unit elements,
including pericytes, endothelial cells, astrocytes and microglia, to proper brain function
and behavior, can be dissected. This investigation conducted among different brain
regions altered in schizophrenia, such as the prefrontal cortex, may provide further
evidence that schizophrenia can be considered a neurovascular disorder.

Keywords: schizophrenia, blood vessels, claudin-5, neurovascular unit, neurovascular coupling

INTRODUCTION

Affecting 1% of the global population, schizophrenia (SCZ) is a disabling neurodevelopmental
disorder that has seen little improvement in treatments over the last decades (Insel, 2010), leaving
patients with a low quality of life (Ritsner et al., 2003). SCZ shows very high heterogeneity in the
positive (i.e., hallucinations, delusions), negative and cognitive symptoms (i.e., incoherent alogia,
affective flattening, anhedonia, learning, memory deficits) experienced by patients, which can be
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linked to dysfunction in different brain regions (Norris and
Strickland, 2017; Glausier and Lewis, 2018). Many features of
this disorder are being investigated and have been reviewed
from different perspectives, such as the role of the immune
system (Sekar et al., 2016; Hui et al., 2018), dopamine pathways
(Weinstein et al., 2017), psychiatric deficits (Bora and Murray,
2014; Catalano et al., 2018) and sex differences (Bordeleau
et al., 2019). Known risk factors include genetic variants
(Marshall et al., 2017) and environmental factors (e.g., air
pollution, stress, infection) (Huttunen and Niskanen, 1978;
Gomes and Grace, 2017; Korpela et al., 2020). Another
important aspect to consider for proper understanding of
the pathogenesis of SCZ is the characterization of postnatal
development of the brain and its vasculature, as proper
establishment of the neurovasculature via bidirectional
communication between endothelial cells (ECs) and central
nervous system (CNS) cells (Segarra et al., 2018) is crucial for
CNS development.

As the highway of the brain, the neurovasculature serves many
roles for brain support by providing ions, oxygen, nutrients,
and energy metabolites, while also allowing for communication
between the periphery and the brain (McConnell et al., 2017).
In homeostatic conditions, cerebral blood flow is regulated
by the vasculature based on brain activity, increasing and
reducing the flow in regions of high or low need (Peterson
et al., 2011). To accomplish these functions, cerebral blood
vessels need to develop and mature as an efficient network.
Vascularization has been shown to be tightly guided by glial cells,
such as microglia and astrocytes (Tata et al., 2015). Previous
literature shows evidence of vascular impairments contributing
to developmental disorders such as autism (Ouellette et al.,
2020), and potentially SCZ (Najjar et al., 2017; Kealy et al.,
2020). Although the role of these vascular alterations in SCZ
is still not clear, one could hypothesize that vascular changes
during development affect the establishment of the blood
vessel network, leading brain maturation down a path that
eventually results in the symptoms experienced by SCZ patients.
This review will underline the current view on the vascular
hypothesis through discussing normal postnatal development of
the neurovascular unit (NVU) in humans and animal models,
the establishment of the neurovascular coupling, as well as the
misshaping of this development as a potential contributor to
SCZ pathogenesis.

DEVELOPMENT OF THE
NEUROVASCULAR UNIT

The NVU is a relatively recent concept (Iadecola, 2017) that refers
to the cellular components [e.g., endothelial cells (ECs), pericyte
and astrocyte] that contribute to the functional relationship
between brain cells and cerebral vasculature (Coelho-Santos and
Shih, 2020) with each cell type having their specific molecular
signature (Vanlandewijck et al., 2018). This relationship notably
allows for neurovascular coupling (NVC) between neuronal
activity and blood flow and the establishment of a properly
selective blood-brain barrier (BBB) required to protect the brain

against homeostatic disturbance from the periphery (Bell et al.,
2019; Sweeney et al., 2019).

Neurovascular Coupling During Normal
Development
Although still an area of active research, the various cellular
elements of the BBB play a role in coupling neuronal activity
to vascular tone and cerebral blood flow. Astrocytes can react
to glutamatergic synaptic signaling by producing vasoactive
compounds that cause pericytes to dilate capillaries (Hall et al.,
2014; Mishra et al., 2016; Kisler et al., 2017). Capillary ECs can
also detect potassium ionic currents and subsequently propagate
a vasodilatory signal to upstream arterioles (Longden et al., 2017).
Various neuronal subtypes directly signal to the vasculature by
producing vasodilative or vasoconstrictive molecules (Uhlirova
et al., 2016), for example nitric oxide release by glutamatergic
neurons was proposed to suppress release of the vasoconstrictor
20-hydroxyeicosatetraenoic acid by astrocytes (Hall et al., 2014).
This neurovascular coupling (NVC) explains the relationship
between neuronal activity and the tight modulation of local
oxygen/glucose concentration (Iadecola, 2017) and can provide
an indirect measure of metabolic demand, which is altered in
certain disorders including SCZ (Zhu et al., 2017).

NVC is also the basis for hemodynamic based non-
invasive imaging of brain activity. When neuronal activity
elicits an increase in blood flow in a given brain region,
the rate of oxygen delivery exceeds the rate at which it is
consumed, leading to a localized increase in oxyhemoglobin
concentration concomitant with a decrease in deoxyhemoglobin
(HbR) concentration (Buxton, 2013). With hemodynamic based
functional imaging techniques, this change in oxygenation can
be measured and used as a proxy for neuronal (and glial)
activity. Among those techniques, functional magnetic resonance
imaging (fMRI) and near infrared spectroscopy (NIRS) are the
most commonly used for imaging neurovascular development
in infants (Kozberg and Hillman, 2016; Hendrikx et al., 2019).
In fMRI, changes in HbR concentration create the positive
(HbR decrease) or negative (HbR increase) blood oxygenation
level-dependent (BOLD) signal (Ogawa et al., 1992; Kim and
Ogawa, 2012). Optical functional techniques, such as NIRS and
its more invasive equivalent used in rodents, intrinsic optical
signals (IOS), also measure HbR as well as oxy- and total
hemoglobin concentration changes. Performing MRI in infants
is still very challenging because of its sensitivity to motion
artifacts (Dean et al., 2014), whereas NIRS offers a portable
alternative for measuring functional hemodynamic signals in
the cortex at low cost and which can be used in multiple
experimental environments, even in schools (Soltanlou et al.,
2018; Whiteman et al., 2018).

MRI and NIRS have shown great potential to measure
hemodynamic signals longitudinally (Demirci et al., 2008; Yang
et al., 2019) with growing literature investigating development
as gathered in Table 1. This table compares results from
previous studies in which task-evoked hemodynamic responses
were measured in healthy young children or rodents using
fMRI or NIRS/IOS.
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TABLE 1 | Summary of 20 years of studies investigating hemodynamic responses at several stages of homeostatic cerebrovascular development.

fMRI studies

References Species State Stimulation Age BOLD results

Born et al. (2000) Human Asleep/Awake Visual 48 weeks ↑

56 weeks ↓

Yamada et al. (2000) Human – Visual 0–7 weeks ↑

8–22 weeks ↓

Anderson et al. (2001) Human Awake Auditory 40–50 weeks ↑

50 weeks ↓

Sie et al. (2001) Human Sedated Visual 18 months ↓

Born et al. (2002) Human Sedated Visual 4–71 weeks ↓

Erberich et al. (2006) Human Sedated Somatosensory 28–46 weeks ↓

Colonnese et al. (2008) Rats Sedated Somatosensory P13 to adulthood ↑

Heep et al. (2009) Human Sedated Somatosensory Preterm infant (26.5 weeks) ↓

Term infant (39 weeks) ↓

Arichi et al. (2010, 2012) Human Sedated Somatosensory Preterm
Term

↑

↑

Optical imaging studies

References Species State Stimulation Age HbO HbR HbT BOLD
equivalence

Sakatani et al. (1999) Human Awake Visual 3 years – – ↑ –

Hoshi et al. (2000) Human Asleep Visual 4–5 days ↑ ↑ ↑ –

None

↓

Zaramella et al. (2001) Human Awake/Asleep Auditory 0–7 weeks – – ↑ –

Taga et al. (2003) Human Awake Visual 2–4 months ↑ ↓ – ↑

Kusaka et al. (2004) Human – Visual 4–16 weeks ↓ ↑ ↑ ↓

Watanabe et al. (2008) Human Awake Visual 2–4 months ↑ ↓ – ↑

Karen et al. (2008) Human Asleep Visual 2–9 days ↑ ↓ ↑ ↑

Liao et al. (2010) Human Asleep Visual 2 days ↑ ↓ ↑ ↑

Kozberg et al. (2013) Rats Anesthetized Somatosensory
P12–P13 ↑ ↓ ↑ ↑

(∼1 year human in humans) ↓ ↑ ↓ ↓

Sintsov et al. (2017) Rats Non-sedated Somatosensory 0–3 months (∼8 years in
humans)

↑ ↓ – ↑

The up or down arrows indicate an increase or a decrease,
respectively, in the value of the measure of blood oxygen
level dependent (BOLD) signal, oxyhemoglobin (HbO),
deoxyhemoglobin (HbR) and total hemoglobin (HbT) during the
activation period in comparison to the resting period. Multiple
arrows in the same box signify different responses observed
within the group of the study and no change between those two
states is identified by “None.” Parameters not reported in these
studies are identified with a hyphen (-). Equivalence between rat
and human ages were estimated based on (Sengupta, 2013).

Overall, these results are difficult to properly interpret.
Although it is known that the hemodynamic response is
necessary to induce vessel remodeling (Lucitti et al., 2007), the
timeline of developmental patterns of the various components of
NVC are not all well-defined, making it difficult to know if the
varied hemodynamic responses observed are caused by altered
neuronal activity in infants or an immature NVU. Second, as was
previously noted (Harris et al., 2011), the lack of standardization
in imaging parameters and stimulation paradigms adds many

confounding variables when looking for consistent trends in
results from functional imaging studies. Given the vascular
component of SCZ, it can be investigated using techniques
reported in Table 1. In our review of the literature on the
hemodynamic response in SCZ patients investigated using NIRS
(Ikezawa et al., 2009; Takizawa et al., 2009; Fujita et al., 2011;
Kinou et al., 2013; Pu et al., 2015, 2016; Noda et al., 2017) and
fMRI (Barch et al., 2003; Kircher et al., 2004; Tregellas et al.,
2004, 2009; Ford et al., 2005; Dyckman et al., 2011; Mayer et al.,
2013, 2016; Hanlon et al., 2016), no studies were found during
development, a question that should be addressed to better
understand NVC deficits in SCZ. The structure of the NVU is also
a growing field for SCZ research (Villabona-Rueda et al., 2019).

Development of the Capillary Network
During postnatal development, bidirectional communication
between brain cells and the nascent vasculature ensures that
capillaries grow side-by-side with the maturing neurons and
glial cells so that the latter are provided with sufficient energy
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substrates (Paredes et al., 2018). This results in a dense mesh of
capillaries matching the metabolic demand of the neurons and
glial cells they support (Craigie, 1945; Weber et al., 2008; Lacoste
et al., 2014). In rodents, at birth, the capillary bed is sparse, but
goes through a rapid expansion in the first few postnatal weeks.
Studies examining capillary growth from birth to adolescence in
rodents have consistently shown more than a twofold postnatal
increase in measures such as vessel density and volume compared
to neurons density and branching before the growth stabilizes at
postnatal day (P)20 (Keep and Jones, 1990; Wang et al., 1992;
Zeller et al., 1996; Harb et al., 2013). A similar increase is seen in
postnatal primates, in which relative vascular volume can double
between birth and adulthood, reducing the distance between
tissue and the vasculature by 32%. This doubling occurs mostly
via angiogenesis and partly from the lengthening of existing
vessels (Risser et al., 2009). This vascular increase is thought to
originate almost solely from the capillary bed, as the network
of larger penetrating arterioles and ascending venules is stable
throughout postnatal development (Norman and O’Kusky, 1986;
Risser et al., 2009). Interestingly, an earlier study in young rats
showed that the vascularization of the capillary bed is not a
continuous process, but rather occurs in distinct bouts of intense
sprouting between P0 and P4, P7 and P8, at P10 and at P14,
across the cerebral cortex (Rowan and Maxwell, 1981) but not
the cerebellum (Craigie, 1924). The temporal pattern of sprouting
was different across cortical layers, but always more intense in
the middle layers, peaking within cortical layer 4 at adulthood
(Harrison et al., 2002; Blinder et al., 2013).

Angiogenesis in the capillary bed is highly adaptive during
early development. In rodents, enhanced sensory stimulation
of the whiskers or complex experiences (e.g., vision) in the
first postnatal month can increase capillary density in the
somatosensory and visual cortices, respectively (Black et al.,
1987; Lacoste et al., 2014). On the other hand, both sensory
deprivation and hyperstimulation during that period can result in
lower capillary density (Lacoste et al., 2014; Whiteus et al., 2014)
without measurable changes in neuronal density in the regions
analyzed. The pial vasculature for its part does not seem to adapt
to sensory stimuli (Adams et al., 2018).

Following an early critical window, the microvasculature
becomes less adaptive: for example, Whiteus et al. (2014) showed
that the decreases in capillary density observed following chronic
hyperstimulation by repetitive sounds, whisker deflection or
motor activity in mice neonates (P15) can be restored if the
perturbations were stopped after 5 days, but not if they were
sustained for 15 days. Chronic hypoxia, which can induce robust
angiogenesis in young mice during the second week of life,
has also been shown to stop evoking capillary responses in
the somatosensory and motor cortices after 3 months of age
(Harb et al., 2013).

Development of the Cellular
Components of the NVU
The main components of the NVU (Figure 1), ECs, exert
functions such as the active transport of ions and nutrients
through the BBB via membrane transporters whose levels

vary during development. Expression of the P-glycoprotein
(PGP) efflux transporter, which is hardly detectable at birth,
is upregulated throughout the first postnatal month in mice
(Daneman et al., 2010). ECs also upregulate the glucose
transporter (GLUT) 1 in the second week to reach adult levels
by P30 in rats (Harik et al., 1993; Vannucci and Vannucci, 2000).

The second main component of the NVU is astrocytes
and their endfeet. In rodents, astrocytes start to be present
in the cortex shortly after birth, and their endfeet typically
fully ensheath capillaries by P15 (Mathiisen et al., 2010; Gilbert
et al., 2019). In parallel, the gliovascular interface undergoes
maturation, as protein complexes at the junction between
perivascular astrocytic endfeet are assembled between P10 and
P15 (Gilbert et al., 2019). The timing of astrocyte appearance
in the cortex differs between species. In humans, this begins
embryonically (El-Khoury et al., 2006). When astrocytes appear
postnatally, the BBB is already functional meaning that astrocytes
are not required for BBB function but rather seem to have a role in
BBB maintenance later in life (Daneman et al., 2010). In addition,
microglia were shown to ensheath the basement membrane of
capillaries and contribute to the glia limitans, although their roles
in the BBB formation and maintenance remain largely elusive
(Bisht et al., 2016; Joost et al., 2019).

In contrast, pericytes coverage of capillaries is already
established in neonatal rodents and is vital for BBB establishment,
playing a role in proper tight junction orientation (Daneman
et al., 2010; Ben-Zvi et al., 2014). Furthermore, during postnatal
angiogenesis, pericytes are recruited to induce the formation of
new capillaries via platelet-derived growth factor signaling in
mice (Lindblom et al., 2003). Pericyte proliferation decreases
steadily in mice from birth to P25 in the somatosensory
and motor cortex (Harb et al., 2013). Initially, ECs express
cluster of differentiation 146 (CD146) in order to upregulate
claudin-5 forming the BBB. Expression of CD146 by pericytes
promote their migration toward the ECs which in turn release
transforming growth factor beta 1, down-regulating endothelial
CD146 to reduce the expression of claudin-5 (Chen et al.,
2017). Of the many components required for the development
of the NVU, claudin-5, the dominant component of tight
junctions forming the BBB, is already expressed in capillary
ECs at P0 (Ek et al., 2006; Greene et al., 2019). In mice,
its production increases more than threefold by P15 before
stabilizing, indicating continued postnatal maturation of the BBB
(Gilbert et al., 2019). Claudin-5 deficiency, resulting in BBB
dysfunction, is causal in animal models of stress and depression
(Menard et al., 2017; Pearson-Leary et al., 2017). Furthermore,
mutation in claudin-5 is also seen in SCZ human patients
(Omidinia et al., 2014) with dysfunction linked to change in other
tight junction proteins such as ZO-1 and occludin (Maes et al.,
2019; Greene et al., 2020).

Cellular, Vascular, and Genetic
Dysfunction in SCZ
SCZ is recognized to be linked to genetic vulnerabilities
(Strawbridge et al., 2018; Chen et al., 2019;
D’Ambrosio et al., 2019) (also reviewed in Comer et al., 2020a)
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FIGURE 1 | Schematic based on cumulative observations made on SCZ patients in the PFC region. The vasculature appears to have deficits at the neurovascular
unit where we see: (1) Thickening and deformation of basal lamina. (2) Increase in the area of the astrocytic endfeet. (3) Haplodeficiency of claudin-5. (4) Cytoplasm
vacuolation; and (5) Reduced GFAP labeling. When investigating the vasculature as a network surrounded by glial cells, cumulative evidences shows: (6) Diminished
fractalkine signaling. (7) Decreased VEGF expression. (8) Reduced cerebral blood flow. (9) Lower capillaries density; and (10) Abnormal arborization. Altogether, these
findings propose a potential vascular signature for SCZ that might explain the neuronal (and glial) functional deficits.

and environmental factors during adolescence and into young
adulthood (Pulver, 2000; Gomes and Grace, 2017; Qiu et al.,
2019; Barichello et al., 2020). On the vascular level, genetic
mutation on the chromosome 22q11 results in the loss of about
40 genes, one gene of interest being claudin-5 (Graw et al., 2012;
Tang et al., 2014; Thompson et al., 2017). In mice engineered with
a mutation in 22q11, claudin-5 expression is reduced by 75% in
ECs, which was reproduced in cell culture (Greene et al., 2018).
Furthermore, using MRI in SCZ patients, the 22q11 mutation
was associated with decreased brain volumes for both total grey
(g = −0.81) and total white matter (g = −0.81) calculated by a
meta-analysis of between-group differences in mean volumes,
representing the effect size (g) (Rogdaki et al., 2020). Considering
that most investigations on vascular alterations in patients with
SCZ are done using post-mortem tissue (McGlashan, 2011;
Harris et al., 2012; Katsel et al., 2017), it is difficult to have a
good idea on the temporal development of those deficits. To our
knowledge, no longitudinal studies have been performed on the
vascular aspect of SCZ, a question that remains to be addressed
in the field. When the NVU and the BBB are altered in SCZ, then
the vasculature would be unable to answer neuronal and glial
cells engaging in their normal activities. A post-mortem study
showed cardiovascular disorders as the primary cause of death
in SCZ patients (Sweeting et al., 2013). More clinical evidence
was extensively reviewed by Najjar et al. (2017). Notably, patients
show elevation in CSF albumin (higher ratio of CSF-albumin to
P-albumin), IgG, IgM, S100B and in several vascular endothelial
adhesion molecules (soluble platelet selectin, serum L-selectin,
integrin αIIbβIIIa, receptors on platelets) as well as decreases in

vascular endothelial growth factor (VEGF) (Najjar et al., 2017;
Melkersson and Bensing, 2018). In living human studies using
dynamic contrast-enhanced (DCE)-MRI to study BBB integrity
of the hippocampus, investigations pertaining to dementia and
related disorders are extensive (Raja et al., 2018; Nation et al.,
2019) but have not yet been targeted at the specific case of SCZ.

Vascular Dysfunction in SCZ PFC
Brain imaging in SCZ patients investigating the hemodynamic
response has been performed using fMRI (Hanlon et al., 2016).
Although data is lacking about the prodromal stage, many
vascular correlates of the disease have been identified. The PFC
has been the subject of a great number of studies detailing the
vasculature in SCZ, but is not the only region implicated. Whole
brain analysis using inflow-based vascular-space-occupancy MRI
also show significant reduction in arterial cerebral brain volume
in temporal cortex grey matter of SCZ patients (Hua et al., 2017).
Studies using different MRI sequences found reduced CBF in
the frontal lobe (Malaspina et al., 2004), temporal lobe (Kindler
et al., 2015), parietal lobe (Scheef et al., 2010) and occipital lobe
(Pinkham et al., 2011).

SCZ patients also show morphological and functional
alteration in glial cells present in this region, such as microglia
(Bordeleau et al., 2019) and astrocytes (Abbink et al., 2019). Dark
microglia, classified as such by their electron dense cytoplasm,
have been found in numerous pathological conditions including
in patients with SCZ and animal models of schizophrenia-
like disorder simulated with the viral mimic poly I:C (Hui
et al., 2018; St-Pierre et al., 2020). These altered microglia
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make extensive interactions with the NVU and have been
suggested to take over astrocytic functions in SCZ (St-Pierre
et al., 2020). Investigations of astrocytes in SCZ patients revealed
larger astrocytic endfeet covering vessels (Uranova et al., 2010).
This could be a compensation mechanism for the decreased
astrocytic density seen in SCZ patients (Najjar et al., 2017),
resulting in missing NVU components (Figure 1). There are also
myelination deficits in patients with SCZ, implicating another
glial cell type, oligodendrocytes (Raabe et al., 2018). A recent
review has highlighted the need for NVU integrity to promote
oligodendrocyte survival, potentially explaining the myelination
deficit in SCZ (Hamanaka et al., 2018).

All three glial cell types appear to be key players in SCZ
as covered in reviews focused on the subject (Bernstein et al.,
2015). Astrocytes and microglia play key roles in controlling
cerebral blood flow in a calcium dependent way as shown
in mice (Mulligan and MacVicar, 2004; Mishra et al., 2016;
Kleinberger et al., 2017). Overall, defects in the PFC vasculature
and alterations in glial cells in SCZ investigations keep emerging,
allowing us to both revisit existing and draw new hypotheses on
its pathophysiology.

DISCUSSION

The Vascular Hypothesis
Although many of the findings discussed above are recent,
the vasculature hypothesis of SCZ is not. As highlighted in
a brief history (Meier et al., 2013) based on a century old
hypothesis (McGlashan, 2011), symptoms of SCZ could possibly
be explained by cerebral microvasculature damages (Hanson
and Gottesman, 2005). A possible mechanism is systemic
inflammation shown in SCZ patients (Cai et al., 2020) coming
from environmental factors (e.g., pollution, stress, nutrition
induced gut-brain axis dysbiosis, viral infection, maternal
immune activation) and genetic predisposition as the source
of perturbation (Comer et al., 2020a). This inflammation is
detrimental to the development of the vasculature, possibly
already weakened by genetic mutation resulting in cellular
damage (Hanson and Gottesman, 2005). The affected cells of
the NVC would fail to maintain BBB integrity resulting in
leakiness, associated with homeostatic disturbance from the
periphery (e.g., inflammatory mediators and cells), and blood
flow reduction providing limited oxygen and nutrient supply
to the brain, impairing brain maturation. This mechanism
is consistent with evidence seen in other disorders such as
Alzheimer (Korte et al., 2020) and could explain the higher
probability of neurodegenerative disorder in diabetic patients
in which many vascular anomalies are observed (Nelson et al.,
2016). Alterations in glial cells (mainly microglia and astrocytes)
could contribute to this neurovascular fragility (Figure 1).
Growing evidence place the PFC as central in this hypothesis
because multiple investigations on SCZ patients found vascular
defects in this particular region, ranging from decreases in
claudin-5 (Greene et al., 2018), reductions in VEGF signaling
(Fulzele and Pillai, 2009; Huang et al., 2020), a less dense
capillary network (Uranova et al., 2013), to oversimplified

angioarchitecture (Senitz and Winkelmann, 1991; Uranova et al.,
2010), and other ultrastructural defects (Figure 1; Webster
et al., 2001; Uranova et al., 2010; Ishizuka et al., 2017; Hill
et al., 2020). As many key components of NVC are impacted
by SCZ, it is not surprising that one of the most consistently
observed neurovascular correlates of the illness is hypo-activity
in PFC regions and in the left superior temporal gyrus, as
revealed by a recent systematic review of both task and resting-
state fMRI cross-sectional studies in first-episode SCZ patients
(Mwansisya et al., 2017).

Although this hypothesis places the vasculature as a central
element of SCZ, it is not clear whether the structural and
functional abnormalities in blood vessels are a cause or a
consequence of the cortical maturation deficiency. Growing
evidence shows that an abnormal pruning of synapses and
neurons by microglia potentially causes the cortical deficiency
associated with SCZ (Sellgren et al., 2019). This altered removal
of synapses is still partially unexplained, although it may result
from dysfunctional fractalkine, triggering receptor expressed
on myeloid cells 2 or complement signaling (Paolicelli et al.,
2011; Hoshiko et al., 2012; Schafer et al., 2012; Filipello et al.,
2018), all involved in microglia-mediated synaptic pruning.
Complement is a prime suspect as work has shown upregulation
of complement 4 protein in SCZ patients’ brain (Sekar et al.,
2016) and mouse models of SCZ (Comer et al., 2020b). When
compared to other neurodegenerative disorders, the SCZ vascular
hypothesis has similitudes with the recent vascular hypothesis
for dementia (Ting et al., 2016), with differences in the affected
regions. For example, vascular dementia is considered to arise
from vascular defects in the white matter (Dichgans and Leys,
2017; Iadecola, 2017). For SCZ, beyond defects in the PFC
represented in Figure 1, recent evidence points in the direction
of vascular dysfunction in the brain network responsible for
treatment of visual stimuli (Lefebvre et al., 2020), possibly
resulting in hallucination.

CONCLUSION

Projects investigating the immune and vascular components
of SCZ in the same protocol are required more than ever
to shed light on the pathophysiology of SCZ. This should be
approached in more causal studies for the vascular hypothesis
to take traction in the SCZ field. A potential avenue would be
based on previous work suggesting microvascular damages are
coming from hypoxia induced factor 1 after lack of oxygenation
during prenatal or early postnatal development (Schmidt-
Kastner et al., 2012). This could mean inducing the conditional
production of hypoxia induced factor 1 in a double hit protocol
to potentially reproduce SCZ-like behavior, thus providing an
effective model to the field. The models could then be investigated
using 2-photon microscopy to measure blood velocity and
glial interactions with the vasculature (Letourneur et al., 2014).
Another way would be to directly induce hypoxia in animal
models, as done for other pediatric conditions (Johnson et al.,
2018; Kiernan et al., 2019) and see if this can reproduce a similar
outcome as seen in SCZ patients. In both models, investigating
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the vascular and the immune dynamic could provide a new
understanding leading to novel therapeutic approaches for SCZ.
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