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A B S T R A C T

Benign prostatic hyperplasia (BPH) is one of the most frequently observed diseases in the elderly male population
worldwide. A variety of factors such as aging, hormonal imbalance, chronic inflammation, and oxidative stress
play an important role in its pathogenesis. We have previously shown that HX109, an ethanol extract prepared
from 3 plants (Taraxacum officinale, Cuscuta australis, and Nelumbo nucifera), alleviates prostate hyperplasia in the
BPH rat model and suppresses AR signaling by upregulating Ca2þ/CAMKKβ and ATF3. In this study, we used
macrophage cell lines to examine the effects of HX109 on inflammation, which is considered an important
causative factor in BPH pathogenesis. In the co-culture system involving macrophage-prostate epithelial cells,
HX109 inhibited macrophage-induced cell proliferation, migration and epithelial-mesenchymal transition (EMT)
by inhibiting the expression of CCL4 and the phosphorylation of STAT3. Furthermore, HX109 inhibited the
expression of inflammatory cytokines and the phosphorylation of p65 NF-κB in a concentration dependent
manner. Taken together, our results suggested that HX109 could regulate macrophage activation and its crosstalk
with prostate cells, thereby inhibiting BPH.
1. Introduction

BPH is the most common chronic diseases in the elderly male popu-
lation around the world. It is reported that 50% of men over the age of 50
have enlarged prostates, with the incidence increasing with age [1, 2].
BPH is characterized by prostate enlargement and induces lower urinary
tract symptoms (LUTS) such as nocturia, dysuria, and bladder obstruction
[3, 4].

Despite the worldwide prevalence of BPH, the pathogenesis of the
disorder is unclear, although several factors, such as aging, hormonal
imbalance, chronic inflammation, and oxidative stress have been postu-
lated [5]. Many recent studies show that prostatic inflammation is an
important causative factor in BPH pathogenesis [6, 7, 8, 9]. In BPH pa-
tients, infiltrated lymphocytes and macrophages were commonly found
in prostate tissue [10]; and the number of inflammatory infiltrates,
mostly macrophages and T cells, is higher in aged mouse prostates [11].

Studies using co-cultures between macrophages and prostate cells
have elucidated how these two cell types communicate with each other.
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Co-culture with macrophage increases cell proliferation of the prostate
epithelial cells and stromal cells [12, 13]. In addition, macrophages play
an important role in BPH development and progression by promoting the
migration of prostate epithelial cells and EMT, a highly conserved
cellular process [14, 15]. In the crosstalk process between the two cells, a
variety of cytokines and chemokines are reported to be involved [16, 17,
18]. Macrophage activation in prostate tissue secretes a large number of
different inflammatory cytokines to induce the inflammatory response as
well as crosstalk with prostate cells. Since these pro-inflammatory cyto-
kines enhance the proliferation of prostate epithelial cells and stromal
cells [19, 20, 21], targeting the activated macrophage of prostate tissue
may be a strategy for developing therapeutic agents for BPH.

HX109 is an ethanol extract prepared from three plants: Taraxacum
officinale, Cuscuta australis, and Nelumbo nucifera. We previously reported
on the development of standardization and quality control methods for
HX109 by using HPLC and MS analyses, and the capability of this
botanical extract inhibiting BPH in in vivo studies, probably by sup-
pressing AR signaling through the upregulation of Ca2þ/CAMKKβ and
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Table 1. Sequences of primers used for quantitative real-time polymerase chain reaction (qRT-PCR).

Target gene Primer sequence (5’->30)

Forward Reverse

hE-cadherin CGAGAGCTACAC GTTCACGG GTGTCGAGGGAAAAATAGGCTG

hN-cadherin GTTTGATGGAGGTCTCCTAACAC ACGTTTAACACGTTGGAAATGTG

Snail GAGGCGGTGGCAGACTAGAGT CGGGCCCCCAGAATAGTTC

hCCL3 AGTTCTCTGCATCACTTGCTG CGGCTTCGCTTGGTTAGGAA

hCCL4 CTGTGCTGATGATCCCAGTGAATC TCAGTTCAGTTCCAGGTCATACA

hCCL5 ATCCTCATTGCACTGCCCTC GCCACTGGTGTAGAAATACTCC

hIL-6 CGGGAACGAAAGAGAAGCTCTA CGCTTGTGGAGAAGGAGTTCA

hTNFα CCTCTCTCTAATCAGCCCTCTG GAGGACCTGGGAGTAGATGAG

hGAPDH CCCCTTCATTGACCTCAACT ATGACCTTGCCCACAGCCTT

mIL-6 CCTCTGGTCTTCTGGAGTACC ACTCCTTCTGTGACTCCAGC

mTNFα ATGAGCACAGAAAGCATGA AGTAGACAGAAGAGCGTGGT

mGAPDH CTGGAAAGCTGTGGCGTGAT CCAGGCGGCACGTCAGATCC

CCL: CC-motif ligand; IL, interleukin; TNF, tumor necrosis factor
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ATF expression [22]. AR has been known to play an important role in this
cell-to-cell communication [23]. As such, this study, hypothesizes that
HX109 might regulate crosstalk between macrophages and prostate
epithelial cells. In addition, since Taraxacum officinale has been reported
to contain anti-inflammatory activities [24], it was hypothesized that
HX109 might also inhibit macrophage activation.

Here, we demonstrate that HX109 could inhibit macrophage-induced
proliferation, migration, and EMT of prostate cell and macrophage acti-
vation. These results suggest that HX109 might be used to inhibit infil-
trated macrophage-mediated prostate hypertrophy.

2. Materials & methods

2.1. Cell culture & reagents

RWPE-1 cells (human prostate epithelial cell line) and THP-1 cells
(human acute monocytic leukemia cell line) were purchased from ATCC
(Manassas, VA). RWPE-1 cells were cultured in Keratinocyte-serum free
medium(KSFM) supplemented with bovine pituitary extract (BPE) and
EGF in a humidified 5% CO2 atmosphere at 37 �C. THP-1 cells were
maintained in RPMI1640 containing 10% heat-inactivated fetal bovine
serum, HEPES (10 mM), penicillin and streptomycin in a humidified 5%
CO2 atmosphere at 37 �C. THP-1 cells were differentiated into macro-
phages (THP-1 macrophages) with 60 ng/ml phorbol myristate acetate
(PMA) for 48 h. Then the plates were washed with PBS and incubated
Figure 1. Effects of HX109 on macrophage-induced prostate epithelial cells. (A) Eff
wells including THP-1 macrophages or control media were placed into each cell-see
eration was measured by WST-1 assay. (B) Effects on cell viability. RWPE-1 cells w
viability was measured by WST-1 assay. ####p < 0.0001 (one-way ANOVA) compare
co-culture. n.s, not significant. Values are normalized to control. All Data are shown
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with normal RPMI1640 with 10% FBS medium for 48 h, and later used
for further experiments. Lipopolysaccharides from Escherichia coli
O111:B4 (Sigma-Aldrich, MA) were used at 100 ng/ml for macrophage
activation. HX109 was prepared, and its batch-to-batch consistency was
controlled as previously described [22]. Briefly, combination of three
plants—Taraxacum officinale, Cuscuta australis, and Nelumbo nucifer-
a—was extracted in 25% EtOH at 20 �C for 8 h, followed by filtration,
concentration, and lyophilization.

2.2. Co-culture experiments

Co-culture experiments were performed using 24-well transwell in-
serts (0.4 μm pore; Corning, NY, USA). RWPE-1 cells (104 cells/well)
were seeded in 24-well transwell plates and insert wells including THP-1
macrophages (104 cells/well) were put into each cell seeded-well and
cultured with or without HX109 treatment. Cells were harvested for 48 h
and WST-1 assay or RNA isolation were performed. For protein prepa-
ration, cells were harvested for 24 h and total proteins were prepared
from RWPE-1 cells.

2.3. Cell migration assay

Cell migration assay was performed using 24-well transwell inserts (8
μm pore; Corning, NY, USA) according to the manufacturer's instructions.
RWPE-1 cells (105 cells/well) were seeded in the upper chamber of
ects on cell proliferation. RWPE-1 cells were plated in culture media, and insert
ded well, and incubated with or without 2 mg/ml HX109 for 48 h. Cell prolif-
ere cultured in the presence of various concentrations of HX109 for 48 h. Cell
d with control, ***p < 0.001 (one-way ANOVA) compared with RWPE-1/THP-1
as mean � S.E.M of three independent experiments.



Figure 2. Effects of HX109 on epithelial cell migration and EMT in macrophage-prostate epithelial co-culture. (A) Effects on cell migration. RWPE-1 cells were seeded
in the upper chamber of 8 μm transwell plates and THP-1 macrophage or control medium was added to the lower chamber. Cells were incubated with or without 2 mg/
ml HX109 for 24 h. The cells migrated through pores were stained with 0.2% crystal violet and counted in 6 random fields. In the graph, the number of migrated cells
is expressed as the average number of cells per field. (B) Effect on the RNA levels of EMT-related genes. The RNA levels of RWPE-1 cells 48 h after co-culture with THP-
1 macrophages in the presence of 2 mg/ml HX109 were analyzed by qRT-PCR. Values of qRT-PCR were normalized to GAPDH. ##p < 0.01, ###p < 0.001, ####p <

0.0001 (one-way ANOVA) compared with control, **p < 0.01, ***p < 0.001 (one-way ANOVA) compared with RWPE-1/THP-1 co-culture. All Data are shown as
mean � S.E.M of three independent experiments.
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transwell plates and THP-1 macrophages (105 cells /well) or control
medium was added to the lower chamber. Cells were incubated for 24 h
with or without HX109 treatment. The cells migrated to the lower part of
the membrane were stained with 0.2% crystal violet and counted in six
random fields.

2.4. RNA isolation and qRT-PCR

Total RNA was prepared from RWPE-1cells using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer's proto-
col. One microgram of RNA was converted to cDNA using oligo dT
primers (QIAGEN, Hilden, Germany) and Reverse Transcriptase XL
(avian myeloblastosis virus [AMV]) (Takara, Kusatsu, Japan). Real-time
quantitative RT-PCR was performed with SYBR Premix (Takara, Kusatsu,
Japan) and Thermal Cycler Dice Real Time System TP800 (Takara,
Kusatsu, Japan). PCR conditions were denaturation at 95 �C for 5 s,
followed by annealing and extension at 60 �C for 30 s. The sequences of
synthesized PCR primer sets (Bioneer Co.Ltd., Seoul, Korea) are listed in
Table 1. Single amplicons were verified for each set of primers.

2.5. Western blot

RWPE-1 cells or THP-1macrophageswerewashedwith cold PBS lysed
with RIPA lysis buffer (Sigma-Aldrich, MO) containing a protease inhib-
itor (Roche, Basel, Switzerland) and a phosphatase inhibitor (Roche,
Basel, Switzerland). Equal amounts of proteinwere then separatedby10%
SDS-polyacrylamide gel and electrophoretically transferred to PVDF
membranes (Millipore, MA, USA). Themembranes were blockedwith 5%
BSA (Gibco, MA) in TBST (1 M Tris-HCl [pH 7.4], 0.9% NaCl, and 0.1%
Tween 20) for 1 h and incubated with primary antibodies diluted in a 3%
BSA blocking solution overnight at 4 �C. Membranes were then treated
with HRP-conjugated anti-mouse or anti-rabbit IgG (1: 100,000; Sigma-
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Aldrich, MO) for 1 h, and protein bands were visualized with an ECL
(Millipore, MA, USA) and X-Omat film (Kodak, Rochester, NY).

2.6. Enzyme-linked immunosorbent assay (ELISA)

Human TNFα, IL-6, mouse TNFα, IL-6 (R&D systems, Minneaplis, MN)
in cell culture supernatants were measured using commercially available
ELISA kits according to the manufacturer's instructions.

3. Results

3.1. HX109 inhibits macrophage induced prostate epithelial cell
proliferation

To investigate the effects of HX109 on macrophage induced prostate
epithelial cell proliferation, co-culture of macrophages and prostate
epithelial cell lines were prepared and treatedwith 2mg/ml of HX109. The
presence of THP-1 macrophages increased proliferation of prostate epithe-
lial cell line RWPE-1 cells by 34%compared to the control group,whichwas
inhibitedwhen treatedwith 2mg/ml HX109 (Figure 1A). To be certain that
these inhibitory effects were not due to cytotoxicity, cells were treated with
various concentrations of HX109. HX109 did not show cytotoxic effects in
any of the concentrations (Figure 1B). These data indicate that HX109
inhibited the macrophage-mediated proliferation of prostate cells.

3.2. HX109 suppresses prostate epithelial cell migration and EMT in
macrophage-prostate epithelial cell co-culture

It has been reported that prostate cell migration and EMTmarkers are
increased in the co-culture of macrophages with prostate cells, resulting
in the promotion of the development of prostatic hyperplasia [23]. To
investigate the effect of HX109 on the macrophage-induced migration of



Figure 3. Effects of HX109 in macrophage-epithelial cell co-culture are mediated by the CCL4/STAT3 dependent pathway. RWPE-1 cells were plated in culture media
and insert wells including THP-1 macrophage or control media were put into each cell-seeded well, and incubated with or without 2 mg/ml HX109. (A) Effects on
STAT3 pathway. Total proteins were prepared after 24 h co-culture and analyzed for the protein levels of pSTAT3, STAT3, COX-2 and GAPDH proteins used as loading
control. For Western blot, three independent experiments were performed, and one representative result is shown here. (B) Effects on chemokine expression levels. The
RNA levels of RWPE-1 cells 24 h after co-culture with THP-1 macrophages in the presence of 2 mg/ml HX109 were analyzed by qRT-PCR. Values of qRT-PCR were
normalized to GAPDH. (C) Effects on protein level of CCL4. The protein level of CCL4 in co-culture supernatant was determined by ELISA, 48 h after co-culture in the
presence of 2 mg/ml HX109. ##p < 0.01, ###p < 0.001, ####p < 0.0001 (one-way ANOVA) compared with control, **p < 0.01, ****p < 0.0001 (one-way ANOVA)
compared with RWPE-1/THP-1 co-culture. All Data are shown as mean � S.E.M of three independent experiments.
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prostate cells, THP-1 macrophages and RWPE-1 cells were co-cultured
and a migration assay was performed. The migration ability of RWPE-1
cells, when co-cultured with THP-1 macrophages, was increased by
89% compared to the control group, which was highly suppressed by
treatment with 2 mg/ml of HX109 (Figure 2A).

Co-culture of RWPE-1 cells with THP-1 macrophages has been known
to induce the expression of various EMT-related genes in these epithelial
cells [25]. Total RNA was prepared for 48 h of co-culture followed by
quantitative RT-PCR. The RNA levels of N-cadherin and snail were
increased after co-culture, but were significantly reduced when treated
with 2 mg/ml of HX109 (Figure 2B). These results suggest that HX109
could inhibit macrophage-induced prostate epithelial cell migration and
EMT gene expression.
3.3. HX109 regulates macrophage-prostate epithelial cell crosstalk by
inhibiting the CCL4-STAT3 pathway

It has been shown that constitutively active forms of STAT3 promote
EMT and the migration of prostate epithelial cells [26], so we examined
the effect of HX109 on the STAT3 signaling pathway. RWPE-1 cells were
co-cultured with THP-1 macrophages for 24 h, and total proteins were
4

prepared followed by Western hybridization analysis. As shown in
Figure 3A, co-culture of the two cell types increased the level of phos-
phorylated STAT3 and its downstream gene, COX-2 (Figure 3A). When
treated with HX109 2 mg/ml, however, the levels of pSTAT3 and COX2
which had been increased by co-culture was reduced.

It was reported that chemokines such as CCL2, CCL3 and CCL4 are
involved in the regulation of STAT3 signaling in co-cultures between
macrophages and prostate epithelial cells [25, 27, 28]. To determine
which mediators are involved in the HX109-mediated regulation of
STAT3 signaling, we measured the RNA levels of these chemokines.
Among the three chemokines whose levels were increased in the
co-culture, only CCL4's expression was inhibited by HX109 (Figure 3B).
These results suggest that HX109 might inhibit STAT3 signaling through
the regulation of CCL4 levels during macrophage-prostate epithelial cell
crosstalk.
3.4. HX109 suppresses macrophage activation by inhibiting TAK1-IKK-
Iκbα–NF–κB pathway

Next, we investigated the effects of HX109 on macrophage activation
at the molecular level, using two macrophage cell lines, THP-1



Figure 4. Effects of HX109 on activated macrophages. THP-1 macrophages were treated with or without 100 ng/ml LPS and cultured in the presence of various
concentrations of HX109. (A) Effects on the RNA levels of inflammatory cytokines. The RNA levels of THP-1 macrophages after 3 h of LPS and HX109 treatment were
analyzed by qRT-PCR. Values of qRT-PCR were normalized to GAPDH. (B) Effects on the protein levels of inflammatory cytokines. The protein levels of inflammatory
cytokines were analyzed by ELISA after 24 h. (C) Cytotoxicity effects of HX109. THP-1 macrophages were treated with or without 100 ng/ml LPS, and cultured with
various concentrations of HX109 for 24 h. Cell viability was measured by WST-1 assay.####p < 0.0001 (one-way ANOVA) compared with control, *p < 0.05, ***p <

0.001, ****p < 0.0001 (one-way ANOVA) compared with LPS only. All Data are shown as mean � S.E.M of three independent experiments.

Figure 5. Effect of HX109 on p65 NF-κB signaling pathway. THP-1 macrophages were treated with or without 100 ng/ml LPS and cultured in the presence of various
concentrations of HX109. Total proteins of THP-1 macrophage were prepared after 30 min of LPS and HX109 treatment and analyzed by Western blot. GAPDH
proteins were used as loading control. Three independent experiments were performed, and one representative result is shown here. The level of each phosphorylated
protein was normalized to that of respective total protein, except that GAPDH was used for IκBα. #p < 0.05, ##p < 0.01 (one-way ANOVA) compared with control, *p
< 0.05 (one-way ANOVA) compared with LPS only. All Data are shown as mean � S.E.M of three independent experiments.
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Figure 6. Role of HX109 in prostate epithelial-macrophage crosstalk and inflammatory response of macrophages. HX109 suppresses macrophage-mediated CCL4
expression and STAT3 phosphorylation, thereby inhibiting macrophage-mediated EMT, proliferation, and migration. HX109 also downregulates the expression of
inflammatory cytokines in activated macrophages by controlling TAK1-IKK–NF–κB signaling.
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macrophages and Raw264.7. In LPS-stimulated THP-1 macrophages,
both RNA and protein levels of IL-6 and TNFα increased radically
(Figures 4A and 4B), but treatment with HX109 lowered the levels of
both inflammatory cytokines in a concentration-dependent manner.
Similar results were also obtained when Raw264.7 cells were used
(Supplement Figure 1).

Regulation of NF-κB phosphorylation via Toll-Like-Receptor 4 (TLR4)
is a key feature in the LPS-induced inflammatory response in macro-
phages [29]. To test whether HX109 controls NF-κB, THP-1 macrophages
were treated with LPS and HX109 for 30 min, and the levels of NF-κB
signaling proteins were measured by Western blot hybridization. LPS
stimulation increased the levels of phosphorylated TGF-β activated ki-
nase 1 (TAK1), IκB kinase (IKK) and p65, but co-treatment with HX109
lowered of these proteins in a concentration dependent manner
(Figure 5). On the other hand, IκBα levels, which had dropped after LPS
treatment, were recovered after HX109 treatment in a
concentration-dependent manner (Figure 5) These results showed that
HX109 could suppress macrophage activation and the induction of in-
flammatory cytokines by inhibiting the TAK1-IKK-IκBα–NF–κB pathway.
The role of HX109 in prostate epithelial-macrophage crosstalk and in-
flammatory response of macrophage is shown in schematic diagram
(Figure 6).

4. Discussion

In this study, we show that the botanical extract HX109 regulates
crosstalk between macrophages and prostate cells and macrophage-
mediated inflammation. In co-culture experiments, HX109 controlled
macrophage-induced proliferation and the migration of prostate epithe-
lial cells, and also inhibited EMT. Treatment of THP-1 macrophage and
RWPE-1 cultures with HX109 reduced the level of pSTAT3 and COX2
while lowering the expression level of CCL4 specifically, indicating that
CCL4-STAT3 signaling might be the major target of HX109. In addition,
HX109 suppressed the expression of inflammatory cytokines in activated
macrophages by controlling NF-κB signaling.
6

It is well established that inflammation plays important roles during
the pathogenesis of prostatic hyperplasia [30, 31, 32]. For example, it
promotes the infiltration of immune cells like macrophage, and induces
the expression of a variety of cytokines and chemokines that influence
the proliferation of prostate cells [17, 20, 33]. Our data reveals that
HX109 could exert multiple effects to regulate the pathogenies of BPH.
Firstly, HX109 could inhibit the effects of macrophages on prostate
epithelial cells at the cellular as well as gene expression levels. It appears
that in epithelial cells, CCL4 and STAT3 signaling are the main target of
HX109. Secondly, HX1019 seems to directly target macrophages to
suppress their inflammatory effects as demonstrated by the effective
reduction of the protein levels of phosphorylated TAK1, IKK, and p65
NF-κB and increase in that of IκBα. In summary, HX109 simultaneously
targets two key cell types involved in BPH pathogenesis, indicating that it
might be an ideal starting point for developing safe and effective thera-
peutic agents.

In BPH pathogenesis, crosstalk between prostate and immune cells,
particularly macrophages, has been reported to be important. In this
process, AR is shown to play a key role by controlling the expression of
several chemokines that mediate crosstalk and increase prostate hyper-
trophy [12]. Indeed, knock-out of AR resulted in decrease of macrophage
infiltration [28]. Therefore, the regulation of the CCL4-STAT3 pathway
by HX109 may have resulted from the inhibition of AR signaling by
HX109. The understanding of how HX109 does this would be important
in developing agents that control crosstalk between the two major cell
types involved in BPH pathogenesis.

The in vitro co-culture systems used in this study mimic crosstalk
between infiltrated macrophage and prostate epithelial cell. In this
context, it is worth noting that the most commonly used prostatic hy-
pertrophymodels are induced by excessive androgen, which do not cause
inflammatory responses or the infiltration of immune cells in the prostate
[34]. To study crosstalk in vivo, it would be necessary to use a mouse
model showing macrophage infiltration to the prostate, such as the
recently developed prolactin-induced BPH model [35].

We have yet to identify the active compounds responsible for the
effects of HX109. Indeed, the major challenge associated with developing
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botanical therapeutics as medicines is that they contain multiple com-
pounds, making it difficult to pinpoint the biologically responsible
compound(s). There are two ways to overcome this obstacle. One is to
identify all the compounds present in an extract and match respective
chemicals to certain biological activities. Although no one has shown
convincing results with this approach, the recent development of
massive, high throughput analytical devices, together with advances in
informatics technology may make this approach more viable than before.
The other approach, which we have taken, was to accept the complex
nature of a "mixture" as it is, and use cell-based bioassays to ensure the
consistency of the extract. in the context of bioactivities. In our previous
report, we described the development of cell-based bioassays for HX109,
using human PSA as a biomarker whenever different batches of the
extract were prepared [22].

Our data indicate that HX109, previously shown to have significant
therapeutic effects in the rat prostate hyperplasia model, controls mul-
tiple targets. Examples include: modulating the crosstalk between
macrophage and prostate cells; inhibiting increased levels of prolifera-
tion, migration and EMT gene expression through the downregulation of
the CCL4-STAT3 pathway in epithelial cells; and controlling the pro-
duction of inflammatory cytokines in macrophages by suppressing NF-κB
signaling. Given the high unmet medical needs in BPH treatment, further
molecular and clinical studies of HX109 are warranted to unravel the
detailed mechanisms and determine the safety and efficacy for patients
with BPH.
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