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Abstract
Low grade inflammation is present in pre-clinical and human type 2 diabetes. In this pro-

cess, several cytokines like IL-1β and inflammatory cells like macrophages are activated

and demonstrated to participate to the disease initiation and progression. IL-20 is a cytokine

known to play non-redundant roles in progression of several inflammatory diseases. To

address the therapeutic effect of inhibiting the IL-20 pathway in diabetes, diabetic db/db

mice were treated with neutralizing anti-IL20 antibodies in vivo and both metabolic and

inflammatory parameters were followed. Diabetic islets expressed the IL-20 cytokine and all

IL-20 receptor components in elevated levels compared to resting non-diabetic islets. Islets

were responsive to ex vivo IL-20 stimulation measured as SOCS induction and KC and IL-6

production. Neutralizing anti-IL20 treatment in vivo had no effect on HbA1c or weight

although the slope of blood glucose increase was lowered. In contrast, anti-IL20 treatment

significantly reduced the systemic low-grade inflammation and modulated the local pancre-

atic immunity. Significant reduction of the systemic IL-1β and MCP-1 was demonstrated

upon anti-IL20 treatment which was orchestrated with a reduced RANTES, IL-16 and IL-2

but increased TIMP-1, MCP-1 and IL-6 protein expression locally in the pancreas. Interest-

ingly, anti-IL20 treatment induced an expansion of the myeloid suppressor CD11bGr1int

macrophage while reducing the number of CD8 T cells. Taken together, anti-IL20 treatment

showed moderate effects on metabolic parameters, but significantly altered the low grade

local and systemic inflammation. Hence, future combination therapies with anti-IL20 may

provide beneficial therapeutic effects in type 2 diabetes through a reduction of inflammation.
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Introduction
The prevalence of type 2 diabetes (T2D) is estimated to grow globally from 285 million cases in
2010 to 450 million people in 2030 [1]. T2D is associated with increased weight and a state of
obesity. In obesity, low grade inflammation associated with activation of immune cells due to
various exogenous and endogenous factors is present [2]. Peripheral insulin resistance in adi-
pose tissue is associated with a recruitment of macrophages which participates in pro-inflam-
matory responses and apoptosis of adipocytes forming crown like structures [3]. The enhanced
immune cell accumulation in the adipose tissue leads to enhanced local production of pro-
inflammatory cytokines. In T2D, these adipose macrophages constitutes one of the major
sources of the enhanced levels of the systemic cytokines [4]. TNFα influences the glucose and
lipid metabolism, inhibits insulin action and pancreatic β-cell function and triggers and aug-
ments acute and chronic inflammatory processes [5].

Langerhans islets show an accumulation of leukocytes, predominately macrophages [6].
These immune cells show an activated phenotype characterized by enhanced levels of MHCII,
galectin-3 and are M1-like polarized based on enhanced expression levels of CD11c [6]. This
M1-like macrophage subset is associated with enhanced capacity to produce pro-inflammatory
cytokines [7]. Furthermore, elevated glucose activates β-cells directly to release IL-1β [8]. Expo-
sure of β-cells to pro-inflammatory cytokines in vitro induces a reduction of insulin production
per cell and apoptosis of the β-cells [9–11]. The intricate balance and regulation of IL-1β is
termed the inflammasome and involved the regulation of the biological activity of the IL-1β
family through caspase-1 activity regulation [12]. This process is described to occur in the T2D
islets and to contribute to the disease progression. In pre-clinical experiments of T2D, inhibi-
tors to the IL-1β pathway has been shown to provide some beneficial effects such as recovered
β-cell function and improved glucose control although no clinical trials has provided evidence
that a stand-alone anti-inflammatory treatment will be efficacious in T2D management
[13,14].

IL-20 is a cytokine belonging to the IL-10 family of cytokines which is primarily produced
by activated keratinocytes and monocytes [15]. It signals through interactions with a receptor
heterodimer complex of IL-20RA/IL-20RB or IL-20RB/IL-22R which is expressed on cells
belonging to the epithelial origin [16]. Upon receptor activation, IL-20 phosphorylates STAT3
which regulates proliferation, differentiation of cells and provides a general enhanced pro-
inflammatory cytokine signature [17]. Over-activity of IL-20 has been demonstrated in inflam-
matory conditions of the skin like psoriasis and rheumatoid arthritis [17]. In these diseases,
IL-1β and TNFα has also been implemented to play a role in initiation and progression of the
disease [6,18].

With the recent understanding that T2D should be considered as an auto-inflammatory dis-
ease with low grade inflammation as a hallmark, we evaluated the importance of the IL-20 axis
in the pre-clinical spontaneous heterogenic db/db mouse model of T2D using unique neutral-
izing anti-IL20 antibodies in vivo. Our data demonstrate that both the IL-20 cytokine and all
the IL-20 receptors are present and functional in the diabetic pancreatic β-cells in the mouse.
Inhibition with IL-20 antibodies does not provide a significant effect on HbA1c levels, but does
provide a clear reduction of the systemic pro-inflammatory cytokine signature particularly by
reduction of IL-1β, reduce systemic CD8 T cells while increasing myeloid suppressor cells and
modulates the pancreatic protein composition.

IL-20 Drives Inflammation in Type 2 Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0131306 July 10, 2015 2 / 18

not alter the authors' adherence to PLOS ONE
policies on sharing data and materials.



Material & Methods

Ethics Statement
All animal experiments were approved by the Copenhagen Animal Ethics Committee and per-
formed according to their recommendations.

Cell culture
Mouse MIN6 pancreatic β-cells (AddexBio Inc) were cultured in DMEM (25 mM glucose,
2 mM l-glutamine, and 1 mM sodium pyruvate) supplemented with 10% FBS and 100 μM β-
mercaptoethanol at 37°C and 5% CO2.

Isolation of pancreatic islets
Islets of Langerhans were isolated as described previously [6]. Briefly, islets were hand-picked
from cold collagenase digested pancreas after repeated thermos shaking at 200 strokes/min
washing in HBSS and filtration through a 400 μM cell strainer.

Gene expression analysis
RNA was isolated from the treated Min6 β-cells and mouse islets or untreated db/db mouse
islets using the RNeasy kit with the QiaShredder column (Qiagen, Denmark) following the
manufacturer’s protocol. RNA was reverse transcribed to cDNA using cDNA Archive kit (Life
Technologies, Denmark) according to the manufacturer’s protocol. qRT-PCR was performed
on the Applied Biosystems Prism 7900HT real-time PCR machine and analyzed using SDS
2.4 software (Life Technologies, Denmark). The following primer/probes were purchased
from Life Technologies: IL20 (Mm00445341_m1), IL20Ra (Mm00555504_m1), IL20Rb
(Mm01232398-m1), IL22R (Mm00663697_m1), SOCS3 (Mm00545913_s1) and Rn18S
(Hs99999901_s1). Relative transcript quantities were calculated by the standard curve method
and normalized to the reference gene Rn18S.

Cytokine production from islets
The isolated islets were rested overnight in complete RPMI media and cultured in 96-well
plates at concentration of 10 islets/well in presence of increasing concentrations of recombi-
nant IL-20 ng/ml). Supernatants from IL-20 stimulated islets were analyzed on the Bio-Plex
200 (Biorad) using the Milliplex map kit (Millipore) according to the manufacturer’s
description.

In vivo evaluation of anti-IL20 effect in db/db mice
Male C57BL/KS db/db mice were obtained from Taconic (Denmark) at the age of 7 weeks
acclimatized for one week before start of the experiment. The IgG4 1400-250-5B7 anti-human
IL-20 antibody previously that show cross-reactivity to mouse IL-20 (American College of
Rheumatology/Association of Rheumatology Health Professionals Annual Scientific Meeting
2012) or vehicle were injected once weekly, day 1, 8 and 15 at a concentration of 20mg/kg i.p
with a volume of 5ml/kg. At day 22 the animals were terminated by cervical dislocation in
isoflurane.

End oral glucose tolerance test (OGTT)
At day 21, mice were fasted for 6 h before the OGTT. Mice received 2 g/kg of glucose (200
mg/ml) by oral gavage 10 ml/kg. Blood samples for measurement of blood glucose and
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p-insulin (marked in bold) were taken at 0 min (i.e. before glucose challenge), 30 min, 60min
and 120 minutes post challenge. At day 21, mice were fasted for 6 h before the OGTT. Mice
received 2g/kg of glucose (200 mg/ml) by oral gavage 10 ml/kg. Blood samples for measure-
ment of blood glucose and p-insulin were taken at before and at 30 min, 60min and 120 min-
utes post challenge.

Blood glucose measurement
Blood glucose was measured twice / week in 10 μl full blood sample taken from the tip of the
tail by puncturing the capillary bed with a lancet, using a 10 μl heparinized capillary tube to
sample the blood. The blood was then shaken into glucose/lactate System Solution and mea-
sured in a Biosen S_Line, autoanalyser (EKF Diagnostics GmbH, Germany) according to the
manufacturer’s instructions.

HbA1c measurement
HbA1c was measured once weekly in 5 ul full blood sample taken from the tip of the tail by
puncturing the capillary bed with a lancet, using a heparinized capillary tube to sample the
blood. The blood was shaken into 500 μl Hitachi Hemolyzing Reagent and measured in a Hita-
chi 912 autoanalyser (Roche A/S Diagnostics, Germany) according to the manufacturer’s
instructions.

Plasma insulin measurement
Insulin levels were determined in blood by the luminescence oxygen channeling immunoassay
(LOCI) [19]. Briefly, blood taken in capillary tubes was centrifuged in haematokrit centrifuge.
10 μl plasma was transferred directly to micronic tubes. Detection of insulin was by lumines-
cence oxygen channeling immunoassay (LOCI). Anti-insulin mAb RDI-TRK2IP10-D6C4 was
conjugated to LOCI acceptor beads (PerkinElmer) and another anti-insulin mAb RDI-TR-
K2IP10-D3E7 (binding to a different epitope) was biotinylated. The assay was conducted in
384 well plates by adding 1 μl of calibrator, control and unknown sample in the wells followed
by 15 μl of a mixture of acceptor beads and biotinylated antibody. After 1 h of incubation at
21–22°C, 30 μl of streptavidin-coated donor beads were added and the plates were further incu-
bated for 30 min. The plates were read in an Envision plate reader (PerkinElmer) at 21–22°C,
applying a 520–645 nm filter after excitation by a 680 nm laser. The total measurement time
per well was 210 ms including a 70 ms excitation time. During the assay the three reactants
combine with analyte to form a bead-aggregate-immunecomplex. Illumination of the complex
triggers chemiluminescence from the acceptor beads which is measured in the EnVision plate
reader. The amount of light generated is proportional to the concentration of insulin. The con-
centration of samples was calculated against a standard curve of rat insulin using a 5 parameter
fit. The lower limit of quantification was 0.36 ng/ml.

Expression of inflammatory proteins in the pancreatic tissue
Pancreatic protein lysate was obtained from frozen homogenized pancreatic tissue in presence
of protease inhibitors (10 μg/mL Aprotinin, 10 μg/mL Leupeptin, and 10 μg/mL Pepstatin) and
1% Triton X-100. Cellular debris was removed by centrifugation. Eqimolar protein levels were
added to the membranes and protein array profiler was then performed according to manufac-
turer’s description (R&D Systems). Relative expression was determined using Image J software.
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Plasma cytokine analysis
The mice were anaesthetized with isoflurane and blood drawn from the heart into EDTA
coated tubes, centrifuged and plasma pipetted into micronic tubes and frozen at -20 C. Levels
of IL-1β, TNF-α, IL-6, MCP-1, KC, IL-17 and CXCL10 was determined by Bio-Plex 200 (Bio-
Rad, Hercules, CA, USA) using the Milliplex MAP kit (mouse cytokine/chemokine magnetic
bead panel; EMDMillipore, Billerica, MA, USA), according to the manufacturer’s description.

Flow cytometry analysis of splenocyte
Flow cytometric analysis was performed according to standard procedures. Briefly, mice were
anaesthetized with isoflurane, terminated by cervical dislocation and spleen removed. Single
cells suspensions were obtained after spleens were mashed through a 70um cell strainer and
erythrocytes were lysed with cell lysis buffer. Splenocytes were then first blocked for unspecific
binding with anti-CD16/CD32 (BD PharMingen, San Diego, CA, USA), followed by surface
staining of CD19, CD4, CD8, CD11b and Gr-1 all from BD PharMingen.

Samples were then acquired on a FACS LSRFortessa, equipped with blue, red, and violet
laser, followed by data analysis using FACSDiva software (BD Biosciences, San Jose, CA, USA).

Graphs and statistics
Data are presented as mean ± SEM and were analyzed by one-way ANOVA with Dunnett’s
post hoc test for comparisons to the diabetic control group. Analyses were performed using
GraphPad Prism for Windows version 6.04.

Results

IL-20 is expressed in diabetic db/db islets and contributes to
inflammation
In order to determine if the IL-20 axis was present and regulated in islets of Langerhans, the
expression of IL-20 and IL-20Rs was evaluated by qPCR. Receptor functionality was monitored
by SOCS3 expression and production of pro-inflammatory cytokines.

Healthy islets express all IL-20 receptor chains on mRNA level (Fig 1A–1C). Cytokine
activation of islets, significantly down-regulated the IL-20RA while it up-regulated both the IL-
20RB and the IL-22R expression (Fig 1A–1C). To determine if the expression was on the β-
cells or another cells present within the islets, IL-20R expression was evaluated in the β-cell line
MIN6. Similar to the islets, all IL-20 receptor chains were present on MIN6 cells (Fig 1A–1C).
In contrast to islets, MIN6 cells showed no regulation of IL-20RA or IL-22R in response to
inflammatory cytokines (Fig 1A and 1C). A significant up-regulation of IL-20RB was noted in
cytokine activated MIN6 cells (Fig 1B). In the diabetic db/db islets, a clear expression of IL-20
and all IL-20Rs chains were shown to be present (Fig 1D). In fact, the relative expression of IL-
20RB and IL-22RA corresponded to the levels obtained in cytokine activated non-diabetic islets
(Fig 1A–1D).

Activation with IL-20 for 30 min up-regulated SOCS3 mRNA in murine islets, but not in
MIN6 cells (Fig 1E). Healthy islets stimulated with IL-20 weakly induced KC and IL-6, but not
IL-1β (Fig 1F–1H). In contrast, diabetic islets responded much more rigorous to IL-20 stimula-
tion with markedly higher production of KC and IL-6 as well as a pronounced induction of IL-
1β (Fig 1F–1H). The potency of IL-20 was the same in both diabetic and healthy islets with an
estimated EC50 for KC at 50 ng/ml, IL-6 at 20 ng/ml and IL-1β at 100ng/ml.
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These data demonstrate the regulation of IL-20Rs to be dependent on local inflammation
and positively regulated by diabetes. Moreover, the data places the IL-20 and functional IL-
20Rs in the micro environment of the diabetic Langerhans islet in the db/db mouse.

Neutralizing anti-IL20 antibody treatment fails to modulate HbA1c in
db/db mice
Based on the ex vivo functional support for IL-20 in islets, the effect on metabolic parameters
was evaluated in the diabetic db/db model upon neutralizing with anti-IL20 antibody
administration.

HbA1c was progressively increased similarly in both vehicle and anti-IL20 treated animals
(Fig 2A). When blood glucose levels were monitored, the vehicle treated mice however showed
a highly significant progressive increase measured as significantly higher blood glucose levels
at the end of the study compared to at the beginning of the study (Fig 2B). However, the anti-
IL20 treated mice although showing elevated levels at the end of the treatment period did not
show a significant increase compared to the start values (Fig 2B). Despite this difference in
slopes (vehicle: 0.4202 mmol/L / day ± 0.06327 versus anti-IL20 treated: 0.2876 mmol/L /
day ± 0.05928), there was no significant reduction of blood glucose levels at the end of the
study period between the vehicle and the anti-IL20 treated animals. Neutralizing anti-IL20
treatment had no effect on weight gain (Fig 2C).

With the potential effects on blood glucose increase rate by anti-IL20 treatment, an oral glu-
cose tolerance test was performed and the insulin levels were measured. Although levels of glu-
cose were lower in the anti-IL20 treated animals during the oral glucose evaluation, the effect
did not reach significance during the 120 minute test (Fig 2D and 2E). The plasma level of insu-
lin was also shown to be similar in the vehicle treated group and in the anti-IL20 treated group
(Fig 2F).

These data demonstrate that anti-IL20 treatment for 3 weeks had no effect on HbAc1 or
weight gain but did reduce the slope of blood glucose increase. Anti-IL20 did not improve
OGTT or modulated the circulating insulin levels.

Neutralizing anti-IL20 antibody treatment significantly reduces the
systemic low grade inflammation in diabetic mice
To evaluate if neutralizing anti-IL20 antibody treatment reduced the low grade cytokine signa-
ture present in T2D, plasma cytokine levels was determined after treatment.

Vehicle treated animals showed low heterogeneous expression of several pro-inflammatory
cytokines in the plasma (Fig 3A–3G). Treatment with neutralizing anti-IL20 significantly
reduced the T2D associated IL-1β and MCP-1 cytokines (Fig 3A and 3B). Furthermore, anti-
IL20 treatment interestingly reduced both TNFα and IL-17 to levels below detection limit (Fig
3C and 3D). The effect of IL-6, CXCL10 and KC followed the same trend, but did not reach sig-
nificance (Fig 3E–3G).

Fig 1. mRNA expression of IL-20 receptors and IL-20 and functional evaluation of IL-20 in murine islets and β-cells. qPCR evaluation of mRNA levels
for IL-20RA (A), IL-20RB (B) and IL-22R (C) was evaluated in healthy murine islets and MIN6 β-cells. qPCR evaluation of mRNA levels for IL-20, IL-20RA, IL-
20RB and IL-22R was determined in isolated diabetic db/db islets (D). Receptor signaling was monitored in isolated murine islets and β-cells upon activation
with IL-20 by measurement of SOCS3 (E). IL-20 induced KC (F), IL-6 (G) and IL-1β (H) was determined in murine islets. To obtain sufficient material, islets
from 20 mice were pooled in each experiment (each dot) and all experiments are shown in the representative graphs. Statistical evaluation was performed
with 1-way ANOVA.

doi:10.1371/journal.pone.0131306.g001
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Fig 2. Metabolic effect and oral glucose test after anti-IL20 treatment.One week post last treatment with anti-IL-20, the mice was terminated. During the
experiment and at time of termination HbA1c (A), blood glucose (B) and weight (C) was determined. Oral glucose evaluation was conducted one day before
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Taken together, these data demonstrate that neutralization of IL-20 reduced the systemic
low grade inflammation thereby suggesting that IL-20 directly contributes to the pro-inflam-
matory signature noted in T2D.

Neutralizing anti-IL20 antibody treatment modulates the systemic
lymphoid composition in the spleen
With the therapeutic effect obtained on systemic cytokines after neutralization of IL-20, the
effect on the systemic immune cell compartment was determined in the spleen as this tissue
previously has been shown to reflect systemic immune modulations distinguishing healthy
from diabetic mice [6].

Anti-IL20 treatment had no effect on the presence of B cells or CD4+ T cells in the spleen
(Fig 4A and 4B). However, only three weeks of treatment with anti-IL20 significantly reduced
the number of CD8 T cells in the spleen (Fig 4C). Although not statistically modulated, the
CD68+F4/80- macrophage sub-population increased in number while the CD68+F4/80+ mac-
rophage sub-population was unaffected by anti-IL20 treatment (Fig 4D and 4E). Most interest-
ingly, the number of myeloid suppressor CD11bGr1int cells was significantly enhanced in the
spleen in response to anti-IL20 treatment (Fig 4F).

Taken together, these results show that neutralization of IL-20 modulated the systemic
immune cell composition of inflammatory cells in the spleen characterized by a reduction of
CD8 T cells and an increase of macrophages expressing CD11bGr1int.

Neutralizing anti-IL20 antibody treatment influences the expression of
inflammatory and tissue remodeling components in the pancreatic tissue
In order to determine if anti-IL20 treatment modulated the local composition of pro-inflam-
matory cytokines and remodeling proteins a protein array study was evaluated on the whole
pancreatic tissue.

Treatment with anti-IL20 significantly modulated expression of several proteins in the dia-
betic pancreatic tissue both by induction and by inhibiting the protein levels (Fig 5). In total
ten of the investigated proteins were significantly upregulated, while twelve proteins were
significantly down-regulated upon anti-IL20 treatment (Fig 5). Of the upregulated proteins
chemokines, cytokines and some tissue remodeling factors were noted (Fig 5). The down-
regulated proteins were either cytokines or chemokines, but importantly included effector
cytokines like IL-1β, IL-12p70 and IL-17 (Fig 5). Most pronounced inhibition was observed
on the levels of RANTES (p<0.0001), IL-16 (p<0.0001), IL-2 (p = 0.0007) and CXCL9
(p = 0.0013) (Fig 6A–6D). In contrast, the most pronounced induction by anti-IL20 treatment
was demonstrated on TIMP-1 (p<0.0001), MCP-1 (p = 0.0003), IL-6 (p = 0.0015) and
CXCL13 (p = 0.0016) (Fig 6E–6H).

Taken together, these data shows that systemic anti-IL20 treatment markedly modulates the
local expression of pro-inflammatory and tissue remodeling proteins in the diabetic pancreatic
tissue.

termination of the experiment (D). Area under the curve oral glucose test was calculated (E). Plasma level of insulin was measured during the oral glucose
tolerance test (F). Each group contained 12 animals. Statistical evaluation comparing the start value in each group with the termination value as well as the
termination value between the groups was performed with one way ANOVA in A-C. Linear regression analysis was performed to determine if the two groups
showed a difference in the slope of the parameter evaluated during the time of the experiment A-C. Student’s T-test was used to determine statistical
significance in E.

doi:10.1371/journal.pone.0131306.g002
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Fig 3. Plasma cytokine signature. At termination of the experiment, plasma was generated from the mice and analyzed for IL-1β (A), CCL2 (B), TNFα (C),
IL-17 (D), IL-6 (E), CXCL10 (F) and KC (G). Graph shows individual values from each mouse (each group had 12 mice) and the corresponding geometic
mean value. Statistical evaluation is performed with 1-way ANOVA.

doi:10.1371/journal.pone.0131306.g003
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Discussion
The epidemic growth of obesity and T2D emphasize the importance of novel therapies. Recent
molecular understanding in both clinical subjects and in pre-clinical models has provided sup-
port that inflammation is strongly associated with insulin resistance [20]. Furthermore, in the
recent years it has been demonstrated that inflammatory cells, particularly macrophages, accu-
mulate in the T2D Langerhans islet. Invading macrophages poses mechanisms that contribute

Fig 4. Flow cytometric evaluation of spleen after treatment with anti-IL20. At termination of the experiment, the spleen was removed and presence of B
cells (A), CD8 T cells (B), CD4 T cells (C) and CD11bGr1int macrophages (D) was determined by flow cytometric analysis. Each group had four spleen
evaluated. Statistical evaluation is performed with 1-way ANOVA.

doi:10.1371/journal.pone.0131306.g004
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to local enhanced inflammation leading to functional deficient islet function and ultimately of
direct macrophage dependent elimination of the insulin producing β-cells in T2D model
[6,21].

Fig 5. Heat map analysis and the relative expression of proteins in pancreas at the termination of the experiment. Heat map analysis showing the
proteins up (green) and down (red) regulated by anti-IL20 treatment arranged in order of fold modulation (increased on top and decreased on bottom)
compared for individual anti-IL20 antibody treated mice compared to vehicle treated mice. Four pancreatic tissues were evaluated in each group. Statistical
evaluation is performed with 1-way ANOVA.

doi:10.1371/journal.pone.0131306.g005
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Fig 6. Proteins regulated in the diabetic pancreatic tissue after anti-IL20 antibody treatment compared to vehicle treatment. The proteins
demonstrating most pronounced inhibition by anti-IL20 antibody treatment RANTES (A), IL-16 (B), IL-2 (C), CXCL9 (D). The proteins demonstrating most
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Our demonstration that IL-20 and the cognate receptors are present in elevated levels in
cytokine activated and T2D islets from db/db mice are hence intriguing and may provide a
novel approach to treat T2D disease so far not evaluated. Cytokine mediated apoptosis of β-
cells is a well-established phenomenon and is considered as key mechanisms in T2D by reduc-
ing the number of insulin producing cells at a stage when an increase is required to compensate
for the hyperglycemic state [9,10]. Our observation that whole T2D islets have an augmented
dose-dependent responsiveness, characterized by induction of IL-6 and KC, to IL-20 challenge
is intriguing as it suggests a functional linkage between IL-20 and the local inflammation
observed in the T2D islet [6,9]. KC is a chemokine produced by macrophages present in the
islets as well as by epithelial cells while IL-6 is a cytokine known to either promote or modulate
other inflammatory responses [22–24]. The observation that only whole islets respond to IL-20
whereas the β-cell line MIN6 is unresponsive suggests that the main responder cell might be
the endothelial cells present in the islet which augments the local inflammation in the islet
micro environment though IL-20 signaling. Presence and function of IL-20 has previously
been described in other endothelial systems that are linked to local inflammation such as ath-
erosclerosis, psoriasis and rheumatoid arthritis [25–28]. There, IL-20 mounts a more rigorous
immune response by activating the endothelial cells increasing the permeability allowing immi-
gration of effector immune cells like macrophages [26–28]. The macro vascular complication
atherosclerosis is common in T2D subjects and indeed associated with IL-20 activity [27,28].
In micro vasculature complication to diabetes such as diabetic nephropathy endothelial dys-
function such as increased vascular permeability is associated with both glomeruli sclerosis and
interstitial fibrosis. This leads to excessive tissue modulations that in a chronic phase lead to
enhanced protein in the urine. During the disease progression several inflammatory pathways
are activated with specific cytokine signatures and influx of various leukocytes such as macro-
phage subpopulations. Whether IL-20 plays a similar function in the diabetic islet micro vascu-
lature remains to be established, but the receptor expression and cytokine production implies
that this may indeed be the case.

T2D is characterized by a progressive increase in hyperglycemia and peripheral insulin
resistance [29]. Treatment with neutralizing anti-IL-20 antibodies did not significantly
improve the HbA1c or blood glucose at the end of the study period. However, the rate of blood
glucose increase was lower in the anti-IL20 treated animals. In humans the intra-individual
variation of HbA1c in non-diabetic subjects with normal glucose levels is reported to be mini-
mal [30] In contrast, several groups have reported that HbA1c values in patients may not be
constant among all individuals despite the presence of similar blood glucose or fructosamine
concentrations [31]. One potential explanation to this might be that the rate of the glycation of
hemoglobin may show intra-individual difference. In fact individuals can be divided into low
and high glycators which results in the so call termed glycation gap [32]. Although the db/db
mouse model is an inbreed mouse strain, the disease develops endogenously with onset starting
individually between mice from week 6 of age until week 10 of age. Furthermore, the severity of
T2D varies from moderate to very severe within 6–8 weeks, measured as HbA1c. Thus, the dis-
crepancy between the beneficial effects on the short term blood glucose levels and the lack of
long term effects on HbA1c could potentially reflect a heterogeneous population of glycotors
within the animals in the study.

The lifespan of the erythrocytes in non-diabetic subjects is approximately 140 days. In con-
trast, in diabetic subjects the erythrocyte life-span is reduced to 80 days [33]. As the level of

pronounced induction by anti-IL20 antibody treatment TIMP-1 (E), MCP-1 (F), IL-6 (G) and CXCL13 (H). Four pancreatic tissues were evaluated in each
group. Statistical evaluation is performed with 1-way ANOVA.

doi:10.1371/journal.pone.0131306.g006
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HbA1c is a measurement of the glycosylated level of hemoglobulin present at a given time-
point, the HbA1c level will increase if the life-span of the erythrocyte is prolonged by the treat-
ment regime due to the inertness in the system. IL-20 does not induce colony formation of
CD34+ precursor cells, but synergize with colony stimulating factor (CSF) to increase the size
of the colonies formed [34]. The colonies formed mainly consisted of erythrocytes and mega-
karyocytes, but also contained precursors for granulocytes and monocytes. In vivo, IL-20 trans-
genic mice have a moderately enhanced level of erythrocytes [34,35]. Thus, only hypothesis for
the discrepancy between the effects on blood glucose and HbA1c by neutralizing anti-IL20
could be that anti-IL-20 treatment potentially influences the level of erythrocytes being gener-
ated from precursor cells resulting. This could result in a shift in lifespan of mature erythro-
cytes which could influence the HbA1c levels differently compared to the more short term
blood glucose levels. This potential effect on erythrocyte lifespan by anti-IL20 remains to be
determined.

Diabetic subjects and pre-clinical models of T2D display a metabolic syndrome associated
with low grade inflammation [6,20,36]. This is associated with enhanced levels of cytokines
and influx of inflammatory cells into peripheral tissues [6,37,38]. The majority of the cells
invading islets are M1-like macrophages in early disease which over time are repolarized into
M2-like macrophage in the systemic compartment that contributes to excessive production of
tissue remodeling factors [6,21]. In T2D diabetic db/db mice, anti-IL20 had no effect on B cell
and CD4+ T cell, but did reduce the number of CD8+ T cells. Furthermore, treatment did show
an expansion of a specific myeloid suppressor macrophage subtype upon treatment which has
previously been suggested to have functions in inflammatory diseases such as asthma and is
present in elevated number in cancer patients where they inhibit tumor elimination [39–41].
The regulatory function in this subset of cells has been shown to be dependent on down-regula-
tion of the transcriptional component IRF-8 in a G-CSF dependent manner [41]. Our observa-
tion that anti-IL20 treatment significantly increases the expression of G-CSF locally in the
pancreatic tissue upon treatment suggests that IL-20 receptor signaling may regulate the pro-
duction of G-SCF and hence participate in myeloid suppressor cell induction. In fact, in the
pancreatic tissue a heterogeneous regulation of several cytokines and chemokines was noted
upon anti-IL20 treatment. Several pro-inflammatory cytokines like IL-1α previously demon-
strated to participate in the inflammasome activation in β-cells and to participate in develop-
ment of T2D was significantly reduced by anti-IL20 administration. In contrast, local
expression of MCP-1 was significantly induced by anti-IL20 treatment while it showed a signif-
icant reduction in the systemic compartment. Herder et al showed that the role of systemic
MCP-1 levels in development of T2D remains controversial [42]. TIMP-1 inhibits the activity
of several MMPs as well as controls proliferation and apoptosis of a variety of cells types. Anti-
IL20 treatment significantly induced protein expression of TIMP-1 locally in the pancreas.
Intriguingly, inhibition of the IL-20 axis in carbon tetrachloride induced liver injury reduces
diseases severity by restoring hepatocyte proliferation and prevents liver fibrosis by inducing
high expression levels of TMP-1 [43]. Moreover, Jiang et al demonstrated that overexpression
of TIMP-1 in pancreatic β-cells protects from diabetes induced by low dose administration of
streptozotocin by reducing β-cell apoptosis [44].

Taken together, our data shows that the full functional IL-20-axis is present in the diabetic
islet where it signals to further enhance the pro-inflammatory signature. Importantly, our data
shows that intervention with anti-IL-20 in diabetic mice fails to improve HbA1c, but does
modulate the systemic and local inflammatory response. Current therapeutic intervention in
the clinic although showing good effect on glycemic control, does not specifically target the low
grade inflammation in the patients which often remains even under optimal treatment regime
[6,21]. Furthermore,>30% of the diabetic patients progress to develop complications like
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diabetic nephropathy, which has been shown dependent on inflammatory pathways [45].
Thus, the data suggests that anti-IL-20 treatments might be considered as an add-on therapy to
reduce the low grade inflammatory response still present after current first line.
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