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ABSTRACT

The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-
immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration 
of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome 
depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the 
most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, 
especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform 
vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the 
migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells 
and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, 
macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. 
Likewise, immune cells from the inflammatory infiltrate have modulatory activities over 
Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by 
generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-
21. Th17 cell activities and synergies are crucial for the resistance of the infection during the 
early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This 
review discusses the synergies between Th17 cells and the inflammatory infiltrate and how 
these interactions might destine the course of CL.

Keywords: Th17 cells; Cutaneous leishmaniasis; Host-pathogen interactions;  
Immune response; Immunomodulation

INTRODUCTION

Cutaneous leishmaniasis (CL) is a worldwide spread vector-borne parasitic disease caused 
by various members of the Leishmania genus and transmitted by sand flies (1). The World 
Health Organization estimates 600,000 to 1 million new cases worldwide, occurring 
mainly in the Americas, Middle East, and Central Asia; however, some factors such as rapid 
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urbanization, human migration, and climate change lead to the risk of transmission and 
emergence of CL in non-endemic zones (2). This disease manifests in multiple clinical 
forms, influenced by both the pathogen species and the host’s immune response. Among 
these clinical manifestations are localized and disseminated cutaneous leishmaniasis (LCL 
and DCL, respectively) and other severe outcomes like mucocutaneous leishmaniasis (ML) 
and post-kala-azar dermal leishmaniasis (1,3). The clinical features of CL range from the 
LCL single skin papule that may or may not ulcerate and is occasionally self-healing, to 
DCL, characterized by dozen to thousands of polymorphic skin lesions to the more severe 
mucocutaneous involving tissue destruction and local deformities (3,4).

Leishmania life cycle is characterized by 2 stages: promastigote and amastigote. The cycle 
begins when the motile promastigote stage is transferred from the female sand fly to 
the mammalian host during a blood meal. Once inside the host, the immune system 
deploys monocytes and neutrophils to phagocyte promastigotes. Inside the phagocytes, 
promastigotes transform into non-motile amastigotes and reproduce through binary fission. 
Eventually, amastigotes burst from the phagocytes to infect new cells. The cycle is completed 
when a sand fly ingests phagocytes infected with amastigotes, which then transform into 
promastigotes in the sand fly’s gut (1,5).

The outcome of the disease is shaped by interactions between the host immune components, 
encompassing both adaptive and innate systems, and the parasite. Th1 response confers 
resistance against Leishmania infection by activating macrophages through IFN-γ. However, 
an excessive Th1 response can result in tissue destruction (5,6). Conversely, the Th2 response 
has been associated with an increased parasite load, rendering the host susceptible to the 
infection (7). It is important to note that the interactions within the immune system during 
Leishmania infection are intricate, especially when considering the inherent diversity stemming 
from study models (whether human or rodent), and the presence of multiple Th responses.

Th17 are a subset of Th cells mostly known for their production of IL-17, a critical molecule 
involved in recruiting neutrophils (8). Recent studies have reported contributions of the Th17 
response during cutaneous Leishmania infection (9). However, the effects of Th17 activities on 
the inflammatory infiltrate and adjacent tissues in the cutaneous lesions remain unclear. In 
this review, we further analyze this subject to gain a better understanding.

Th17 IMMUNOBIOLOGY

Th17 cells are a specific subset of CD4+ T cells first identified by Harrington et al. (10) in 
2005. They reported in their seminal work the existence of a novel lineage of CD4+ T cells 
characterized by their production of IL-17 (10). Th17 cells were generated in response to IL-23 
stimulation in naïve CD4+ cells and showed a new developmental program different from 
those of Th1 and Th2 cells. Notably, the differentiation of the Th17 phenotype was inhibited 
when naive CD4+ cells were exposed to IFN-γ and IL-4, both critical cytokines in Th1 and Th2 
responses, respectively (10).

However, Th17 differentiation cannot be achieved by IL-23 alone. Instead, it requires the 
presence of other molecules, such as IL-6, IL-1β, IL-21 and TGF-β (10,11). These cytokines 
induce the expression of the retinoid-acid-receptor-related orphan nuclear receptor gamma 
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(RORγt) in naive T cells, ultimately leading to their polarization, with IL-23 stabilizing the 
differentiation process (12).

Dendritic cells (DCs) play a pivotal role in Th17 differentiation, and their functions are closely 
linked to the tissue in which they reside and the prevailing inflammatory environment (13). 
For instance, DCs stimulated with infected apoptotic cells release TGF-β, IL-6 and IL-23. This 
combined release triggers the secretion of IL-17 and upregulation of Rorc, the gene encoding 
RORγt in naive CD4+ cells, leading to the induction of the Th17 phenotype (14). Inflammatory 
monocyte-derived DCs have a specialized role in driving Th17 cell development by secreting 
IL-1β, IL-6, IL-23 and likely TGF-β (15).

Additionally, Ag-presenting T cells have the ability to trigger Th17 differentiation. T cells 
acquire MHC receptors from Ag-presenting cells (APCs) during the immunological synapse 
through a process called trogocytosis. Subsequently, through T-T Ag presentation, the 
presenting T cell interacts with a naive T CD4+ cells, promoting their differentiation into the 
Th17 cell subset (16). However, specific conditions are required for this Th17 differentiation, 
including high T cell to APC ratios and low Ag concentrations (16). Interestingly, the 
presenting T cell differentiates into a pro-tolerogenic Treg, as evidenced by their expression 
of Foxp3, the Treg cell master regulator (16).

Th17 and Treg cells both depend on TGF-β as a crucial cytokine for their differentiation, as 
it triggers the expression of RORγT for Th17 cells and Foxp3 for T reg cells. However, these 
2 cell subsets are governed by different main transcription factors and serve distinct roles 
(17). Nonetheless, during inflammatory events, Th17 and Treg cells are interconnected, not 
only due to their initial signals, but also because of their roles in regulating inflammation. 
Molecules such as hypoxia-inducible factor 1, mTOR and cytokines like IL-6 and IL-21 play 
crucial roles in maintaining the balance between Th17 and Treg cells (18-20). Disruption 
of this balance have severe consequences. For instance, during a Th17-driven autoimmune 
response, Treg cell populations may decrease, impairing the self-tolerance and the control of 
autoreactive T cells, thereby promoting helping disease development (19).

The IL-17 family of cytokines comprises several members, with IL-17A being the signature 
cytokine of Th17 cells, and it ranges from IL-17A to IL-17F (21). IL-17A, often referred to simply 
as IL-17, is a pleiotropic pro-inflammatory cytokine with both beneficial and detrimental 
effects. It plays a role in the progression of various autoimmune diseases and the clearance of 
infections (21). IL-17, including IL-17F, another cytokine secreted by Th17 cells, has the ability 
to activate innate and tissue-resident cells, leading to the production of various cytokines, 
chemokines, matrix metalloproteinases, and antimicrobial peptides (22). Additionally, IL-17 
promotes the recruitment and activation of neutrophils, leading to the release of extracellular 
traps (neutrophil extracellular traps [NETs]) (23).

Another notable feature of IL-17 feature is its capacity to amplify ongoing inflammatory 
responses rather than initiating them de novo (24). Instead, IL-17 synergizes with other 
molecules like TNF and IFN-γ to sustain the inflammatory environment (25). For instance, 
the synergy between IL-17 and TNF enhances the chemoattraction and rolling of neutrophil by 
activating the endothelial cells, leading to the expression of cellular adhesion molecules like P- 
and E-selectin, as well as and chemokines such as CXCL1, CXCL2, CXCL5 and CXCL8 (25,26).
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Additionally, Th17 cells also produce IL-21 and IL-22 (27). IL-21 is a cytokine involved in the 
differentiation, function, and regulation of both innate and adaptive immune cells (28). 
In contrast, IL-22 primarily targets non-hematopoietic cells such as epithelial cells and 
fibroblasts. It plays a role in tissue regeneration by inhibiting apoptosis in epithelial cells and 
promoting their proliferation (29).

Th17 AND CL

The presence and impact of IL-17 and Th17 responses have been extensively investigated 
across various Leishmania species. As mentioned earlier, Th17 cells play a crucial role in host 
defense against pathogens, including bacteria and intracellular parasites (30-32). Indeed, 
reports indicate that Th17/IL-17 responses confer resistance against different Leishmania 
species, both in visceral and cutaneous clinical manifestations (32,33).

Regarding the beneficial role of Th17 cells during a Leishmania infection, studies have shown 
that early expansion of Th17 cells, along with CD4+ cells producing IFN-γ and IL-10, correlates 
with self-healing of wounds in B6 mice infected with Leishmania braziliensis (34). As the 
infection progresses, the number of these cells tends to diminish, likely to aid in parasite 
clearance (34), and mitigate the risk of an excessive pro-inflammatory response. Additionally, 
research has revealed the presence of cytokines associated with the differentiation, 
maintenance, and activity of Th17 cells in lesions of human patients infected with Leishmania 
panamensis (33). Furthermore, also, it was suggested that Th17 cell activity contributes to 
parasite control, possibly through the production of IL-17 and the activation of the NLRP3 
inflammasome (33). Although solid evidence supporting this phenomenon is lacking, the 
correlations observed between parasite burden and IL-17+ cell density indicate a potential 
beneficial effect (33). However, since the IL-17+ cell density exceeded that of RORγt+ cells, it 
is possible that other mechanisms, such as Th1 IL-17+ cells (35), also play a role in parasite 
clearance. Conversely, patients with subclinical L. braziliensis infections exhibit an atypical 
type 1 immune response. Instead, innate immune responses, aided by IL-17 producing cells, 
are responsible for rapid parasite control (36).

Pentraxin 3 (PTX3) is an innate pattern recognition molecule that plays a multifaceted role 
in host defense against pathogens, as well as in the regulation of inflammation and tissue 
remodeling (37). PTX3 is expressed in various cell types including epithelial and endothelial 
cells, fibroblasts, and myeloid lineage cells, such as monocytes and neutrophils. It has 
been associated with the regulation of Th17 cells and the production of IL-17 (38). Studies 
have shown that PTX3 is overexpressed in inflamed sites of mice infected with Leishmania 
major (39). Moreover, infected PTX3-deficient (PTX3−/−) mice exhibited smaller lesion sizes 
compared to their wild-type (WT) counterparts, which correlated with a lower parasite 
load at 10 wk post-infection (39). Furthermore, the infected PTX3−/− mice showed higher 
concentration of IL-17A+CD4+ T cells, which were consistent with in vitro production of IL-
17A from splenocytes isolated from the knockout (KO) mice and stimulated with soluble 
Leishmania Ag (39). Additionally, PTX3 was found to negatively regulate Th17 transcription 
factors, such as RORγt and STAT3 and inhibit the production of IL-17 transcripts (39). These 
findings suggest that PTX3 suppresses IL-17 responses, and its absence leads to increased 
Th17 activity and resistance against CL caused by L. major. These observations show the 
complex interplay between PTX3, Th17 cells and IL-17 in Leishmania infections and their 
impact on disease outcomes.
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However, despite their potentially beneficial role, Th17 cells can also exacerbate pro-
inflammatory responses to the point of disease progression and worsening (40). Th17 cells 
can enhance and sustain pro-inflammatory responses by recruiting neutrophils, which may 
lead to parasite spread and host susceptibility (40,41). For instance, ear wounds in L. major-
infected IL-17−/− BALB/c mice had fewer neutrophils due to the absence of chemokines like 
CXCL1, CXCL2, and CXCL5, which were recovered by injecting IL-17, consequently increasing 
neutrophil recruitment (40). Interestingly, the wounds in IL-17−/− mice did not develop 
necrosis, in contrast to the control, demonstrating that IL-17 is a molecule required for the 
progression of the disease (40). Moreover, we demonstrated that the chronicity of Leishmania 
mexicana infection is associated with a concomitant increase in Th17 cells and neutrophils 
in the inflamed sites, using both the susceptible BALB/c and the semi-resistant C57BL/6 
mouse models (41). The mouse models BALB/c and C57BL/6 have been used for studying 
leishmaniasis due to their different genetic backgrounds (42). After 90 days of infection, Th17 
and neutrophil infiltration, as well as lesion size, were greater in the BALB/c model compared 
to the C57BL/6 model, indicating that BALB/c susceptibility is likely due to an uncontrolled 
inflammatory response that facilitates parasite spreading (41).

ML represents the most severe clinical outcome of dermal infections, characterized by an 
uncontrolled immune response directed against a low number of parasites. This immune 
response leads to the formation of ulcer lesions and subsequent destruction of mucosal 
and cartilaginous tissues (43). Boaventura et al. (44) demonstrated the presence of IL-17 in 
the tissue samples of ML patients. Interestingly, IL-17 was found to be secreted not only by 
Th17 cells but also by CD8+ and CD14+ cells. Crucial cytokines and markers associated with 
Th17 differentiation, such as IL-23, TGF-β and RORγt, were also detected in these samples 
(44). Furthermore, IL-17 acted as a chemotactic molecule for neutrophils, which, in turn, 
secreted various enzymes like neutrophil elastase, myeloperoxidase and metalloproteinase 9, 
contributing to tissue damage (44).

The host’s genetic background is another variable that determines the outcome of 
leishmaniasis. Single nucleotide polymorphisms (SNPs) in the IL-17 gene have been 
associated with autoimmune and infection diseases (45,46). One such SNP, r2275913, leads to 
the substitution of guanine for adenine in the promoter region of the human IL17A gene (47). 
This SNP affects the binding motif of the NFAT, a crucial regulator of IL17A expression (48). 
In patients with CL infected with L. braziliensis who carry the r2275913 SNP, there were fewer 
Th17 cells, resulting in reduced IL-17 production and a greater parasite burden compared to 
individuals without the SNP (47). While this mutation was not directly linked to susceptibility 
in patients with CL, researchers did not rule out its possible association with the acquisition 
and development of CL outcomes.

Conversely, Leishmania parasites possess the ability to modulate the host immune response 
to their advantage. Exosomes are vesicles formed within the cell’s multivesicular bodies that 
are expelled into the extracellular space (49). These vesicles carry various cargos, including 
lipids, proteins, and genetic material, which, upon uptake by other cells, can reprogram 
the recipient cells (50). When footpad-lesions in L. major-infected mice were inoculated 
with isolated parasite exosomes, the lesions exhibited a larger volume and a higher parasite 
burden compared to those inoculated with parasites alone (51). Additionally, L. major 
exosomes exacerbated lesion development by favoring parasite replication and promoting 
the production of IL-17, suggesting a potential involvement of Th17 cells in this process (51). 
Notably, these exosomes were found in the sand fly's gut, implying that the contents of 
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exosomes inoculated by the sand fly during its blood meal, could influence early events in the 
infection process (51).

Th17 EFFECTS ON THE INFLAMMATORY INFILTRATE OF CL

Multiple factors determine the intensity of the immune response against Leishmania, 
including the species of the parasite, the components injected by the sand fly’s saliva, and 
the genetic and inflammatory background of the host. Furthermore, interactions among 
immune cells and resident tissues during the infection are also key factors in leading to either 
a proper or detrimental inflammatory response. In general, the inflammatory infiltrate in CL 
is characterized by the presence of neutrophils, macrophages, CD4+, CD8+, IL-17+ T cells, NK 
cells, B cells, plasma cells, and DCs (52-55). However, the proportions and activities of these 
cells vary depending on the study model, the clinical manifestation, and the stages of the 
infection (41,56,57).

Furthermore, both inflammatory and non-inflammatory skin resident cells participate in the 
responses against Leishmania and are also targets of Th17 cytokines (22,57,58). Here, we will 
discuss the modulation and potential scenarios arising from Th17 interactions with the cells 
in the inflammatory infiltrate in CL.

Neutrophils
Neutrophils belong to the myeloid lineage of innate immune cells and are known to be one of 
the first lines of defense against pathogens. They possess an extensive array of weaponry and 
cellular mechanisms, including phagocytosis, respiratory burst, and the release of molecular 
components (granules containing metalloproteinases, antimicrobial peptides, cytokines, and 
NETs (59). Due to these activities, neutrophils have been recognized as crucial for controlling 
Leishmania infection. Neutrophils are rapidly and massively recruited to the site of infection 
following the inoculation of Leishmania parasites (60,61). However, the functional role of 
neutrophils can be either beneficial or detrimental to the host depending on the species of 
the parasite and its stage (62).

It was reported that neutrophils aid in the early elimination of L. major (63), L. braziliensis 
(64) and Leishmania amazonensis (65). In contrast, experiments involving neutrophil-depleted 
mice have shown fewer parasite loads, smaller lesion sizes and an overall better resolution 
of infection, suggesting a harmful role of neutrophils (60,66). Additionally, some Leishmania 
parasites have developed countermeasures against neutrophil microbicidal mechanisms to 
the point of using the neutrophils as vehicles for infecting other cells (62). This phenomenon, 
described as the “Trojan horse” model, was first reported in 2003 and outlines a scenario in 
which Leishmania hijacks neutrophils, inhibits their effector mechanisms, proliferates within 
them, and then infects macrophages (67,68).

Th17 cells and neutrophils have an intimate relationship due to the ability of IL-17 to induce 
the recruitment of neutrophils (69). IL-17 synergizes with TNF to trigger the secretion of 
chemokines, such as CXCL1, CXCL5 and CXCL8, from endothelial and epithelial cells (26,70). 
These chemokines are just a few examples of those that attract neutrophils are attracted (Figs. 1 
and 2) (71). Furthermore, Pelletier et al. (72) demonstrated that activated Th17 cells can also 
produce CXCL8, therefore inducing neutrophil migration. Interestingly, neutrophils secrete 
CCL2 and CCL20, which are chemokines for Th1 and Th17 cells, illustrating a reciprocal system 
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Figure 1. Th17 cell’s main activities during acute leishmaniasis. We distinguish 3 Th17 cell main activities: 1) 
Chemotaxis of phagocytes such as neutrophils and macrophages via CXCL8 and IL-17. 2) Activation of cytotoxic 
cells, namely NK and CD8+ cells, and pro-inflammatory-cytokine secretion. 3) Negative feedback between the 
activation of Tregs cells via TNF and Th17 cells inhibition via IL-10.

Figure 2. Th17 cell’s main activities during chronic leishmaniasis. We sort Th17 cell main activities into 4 categories. 
1) Chemotaxis feedback between neutrophils and Th17 cells via CCL2 and CXCL8, respectively. 2) Activation loop 
between Treg and Th17 cells via TGF-β and TNF, respectively. 3) Inhibition of pro-inflammatory responses through 
IL-17 and IL-21 release targeting Th1 and CD8+ cells. This inhibition mechanism is sustained by the differentiation 
of Th2 cells to Th2/Th17 cells via IL-10 from activated B cells. 4) Induction of anti-inflammatory responses through 
differentiating macrophages towards an M2 phenotype via IL-17 and IL-21. Additionally, these cytokines activate 
CD8+ cells, which lyse infected macrophages, liberating the amastigotes and perpetuating the infection.



of chemoattraction between neutrophils and Th17 cells (Fig. 2) (72). These findings, along with 
our report of a concomitant increase in both neutrophils and Th17 cells (41), suggest a positive 
feedback loop that intensifies over time, potentially leading to chronicity of the disease.

NETs are composed of microbicidal proteins bound to decondensed chromatin fibers and are 
released by neutrophils. Despite their beneficial role against pathogens, NETs have also been 
implicated in the development of various autoimmune diseases (73). Leishmania parasites have 
been reported to stimulate the release of NETs release; however, some Leishmania species 
have developed evasive mechanisms that allow them to survive the toxic effects of NETs (62). 
Supernatants from the culture of IL-17-stimulated KPC cells (an epithelial lineage), have 
been shown to enhance the ex vivo PAD4-dependant release of NETs compared to the direct 
addition of recombinant IL-17 (23). This evidence underscores the essential role of IL-17 in 
stimulating epithelial cells to modulate neutrophil activities and NETs release, potentially 
augmenting the pro-inflammatory response against Leishmania. Surprisingly, cathelicidin 
(LL-37), an antimicrobial peptide released from neutrophils during degranulation and NETs 
liberation, enhances the expression of RORγT and IL-17 on CD4+ T cells, inducing their 
differentiation toward a Th17 phenotype in a TGF-β-dependent manner (74). Altogether, the 
Th17/neutrophil axis represents a close relationship where both cell types reciprocate stimuli 
for activation, migration and proliferation. In the context of CL, this relationship may initially 
seem beneficial but potentially becomes detrimental over longer time frames (Figs. 1 and 2).

Macrophages
Macrophages play an indispensable role in the Leishmania life cycle. Once engulfed by the 
macrophages, Leishmania parasites are capable of surviving within the phagolysosome by 
converting it into a parasitophorous vacuole (PV) (75). The PV nurtures the parasite, allowing 
it to differentiate into an amastigote and to proliferate. When the macrophage becomes 
overwhelmed by the parasites, it may either burst or undergo apoptosis, leading to the 
clearance of the parasites and debris by newly recruited immune cells, thereby infecting 
other cells (75). However, in the presence of IFN-γ and TNF, macrophages activate their 
leishmanicidal activities by producing of nitric oxide (76). Conversely, alternative activated 
macrophages, via IL-4 and IL-13 (considered the regulatory phenotype), favors the parasite 
survival and growth (77).

IL-17 is a cytokine with the potential to induce various effects on macrophages. First, IL-17 
exerts a chemotactic role on macrophages as they express IL-17RA, the IL-17 receptor (78,79). 
Furthermore, IL-17 induces the alternative activation of macrophages (M2) (80). THP-1 
derived-macrophages treated with IL-17 overexpress characteristic markers and cytokines 
of the M2 phenotype, such as CD163 and CD206, TGF-β, VEGF and IL-10 (80). IL-17 also 
elicits the phosphorylation of IkBα, suggesting this alternative activation is mediated via the 
NF-κB pathway (80). M2 macrophages have been associated with the diffuse clinical form 
of CL. Wounds from DCL patients show greater concentrations of molecules related to the 
activity of M2 macrophages, such as IL-10, TGF-β, prostaglandin E2 and arginase-1 (81,82). 
Infected M2 macrophages enzymatically produce polyamines via arginase-1 activity, which, in 
turn, promotes the intramacrophagic proliferation and survival of Leishmania parasites (83). 
Additionally, IL-21, another cytokine released by the Th17 cells, plays a role in macrophage 
polarization towards an M2 phenotype (Fig. 2) (84). THP-1derived macrophages stimulated 
with IL-21 during the M2-polarization process, overexpress markers such as CD86, CD163 and 
IL-10 (84). Based on these reports, we can hypothesize that an uncontrolled Th17 response 
during the late stage of the Leishmania infection will provoke the recruitment of macrophages 
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and the subsequent polarization into an M2 phenotype. Later, these M2 macrophages, along 
with neighboring neutrophils, will become infected, sustain the infection, and most likely, 
contribute to its spread, leading to the chronic phase.

DCs
DCs are a group of immune cells responsible for orchestrating the immune response by 
linking and modulating the innate and adaptive systems. As members of the professional 
APCs family, DCs have the ability to phagocytose particles and present them for priming T 
cells activities (85). DCs exist in 2 different states: immature and mature, with the mature 
state being the only one capable of activating T cells. DCs’ activation and maturation are 
elicited through the presence of extracellular signals such as pathogen-associated molecular 
patterns (PAMPs) and damage-associated molecular patterns, which stimulate DCs’ pattern-
recognition receptors, leading to changes in the expression of surface costimulatory proteins 
(CD40, CD80, CD83, CD86 and MHC II), chemokines receptors, metabolic activity and 
cytokine secretion (85,86).

Multiple reports have addressed DCs as important players in the modulation of the immune 
response during Leishmania infection (87). DCs participate in parasite uptake, Ag presentation 
and the priming of CD4+ cells (54,77). DCs secrete IL-12, a vital cytokine for initiation of Th1 
responses and clearing Leishmania parasites (88). IL-12 induces IFN-γ secretion by CD4+, CD8+ 
T cells and NK cells, which, in turn, activates the leishmanicidal mechanisms in phagocytes, 
killing the parasite (88,89).

However, Leishmania parasites have mechanisms for neutralizing and subverting DC activities 
in their favor. GP63, a Leishmania surface protease, helps the parasite to evade elimination in 
the phagolysosome by cleaving and modulating host signaling molecules (90,91). Indeed, 
GP63 cleaves VAMP8, a protein of the SNARE group, hindering the assembly of the NADPH 
oxidase complex (92), promoting parasite survival. As a result, T cell activation is reduced 
due to an impaired cross-presentation (92).

Furthermore, DCs have demonstrated the potential to induce the differentiation of Th17 cells 
(15,93). Human inflammatory DCs, CD11c+HLA-DR+BDCA+CD16−, secrete Th17-polarizing 
cytokines, such as IL-1β, IL-6 and IL-23, inducing the production of IL-17 in memory CD4+ 
T cells and the expression of RORγT in naive CD4+ T cells (15). Regarding leishmaniasis, 
Dietze-Schwonberg et al. (93) reported that DCs play a key role in the induction of Th17 cells 
through the secretion of IL-23p19. IL-23p19−/−BALB/c and IL-17A−/−BALB/c mice presented 
smaller wound sizes and lower parasite burdens during the first 14 wk post-infection, along 
with reduced levels of IL-17A (93). This evidence reinforces the theory that Th17 cells activities 
are responsible for the progression of leishmaniasis; however, other cells like DCs might 
induce the polarization of this phenotype, which, in turn, is triggered by the influence of 
Leishmania parasites or other immune cells. Indeed, IL-17A treatment reduced the production 
of IL-12, TNF-α, or IL-6 by DCs (94).

Epidermal DCs, also known as Langerhans cells (LCs), are a specialized subset of DC that 
reside in the outer layer of the skin, where they survey for Ags by forming cellular networks 
(95). LCs express surface markers such as CD45, CD11b and c, MHC-II, CD1a, E-cadherin and 
CD207 (C-type lectin langerin) (95,96). Langerin is not only found in the membrane of LCs, 
but is also associated with specialized organelles called Birbeck granules, where it acts as an 
endocytic receptor (97).
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Given that CL is a skin disease, it is feasible to consider LCs as a vital component of the 
defense against Leishmania through parasite uptake, Ag presentation and T cell activation 
(98). Indeed, LCs, but no other APCs, have the ability to internalize L. major parasites and 
rapidly transporting them to the nearest lymph node, where they induce the proliferation of 
L. major-primed T cells (99). Notably, LCs from L. major-sensitized mice were able to induce 
delayed-type hypersensitivity when transferred to naive recipient mice, demonstrating 
their stimulatory effect on T cells in situ (99). On the contrary, depletion of Langerin+ DCs, 
specifically LCs, led to smaller wounds and a reduced parasite burden caused by L. major in 
Langerin-DTR C57BL/6 mice (100). LCs depletion also resulted in a reduction of Treg cells, 
which are implicated in the suppression of resistant Th1 responses (100). However, C5B7L/6 
mice self-healed their wounds whether they had LCs or not, showing that LCs alone are 
insufficient to drive susceptibility to leishmaniasis in this strain (100). Ultimately, Leishmania 
amastigotes can acquire CD1a molecules upon exiting LCs via exocytosis (101). Although this 
phenomenon has not been functionally characterized, various Leishmania species have been 
reported to possess the CD1a marker (102).

Since LCs derive from DCs, they share some modulatory roles over Th17 cells. Aliahmadi et al. 
(103) reported the secretion of Th17-polarizing cytokines such as IL-6, IL-1β, TGF-β and IL-23 
from TLR2-activated LCs. Additionally, TLR2-activated CD1c+/langerin+ monocyte-derived 
LC-like cells induces the expression of RORγT and IL-17 from CD3/CD28 co-stimulated CD4+ 
T cells (103).

Lipophosphoglycan (LPG) is the most prominent molecule on the Leishmania surface and 
plays a critical role in its survival and infectivity (104). LPG activates phagocytes through 
TLR2, leading to the production of pro-inflammatory cytokines for parasite resistance (105). 
Notably, LCs secret not only Th17 cytokines upon TLR2 stimulation but also IL-12, making 
them another source for inducing a Th1 response (106).

Altogether, infection with Leishmania parasites might lead to the activation of LCs through 
TLR2 upon LPG stimulation, resulting in the secretion of beneficial pro-inflammatory 
cytokines. However, an imbalance in this response, might lead to the induction of the Th17 
phenotype and the perpetuation of a pro-inflammatory environment.

Mast cells (MCs)
MCs are sentinel skin-resident cells that play a role in host defense by modulating the 
immune response through a plethora of receptors and secretory mediators (107). Their 
effector mechanisms include the production of pro-inflammatory cytokines, degranulation 
of various molecules such as histamine, heparin and chondroitin sulfate, and the release of 
extracellular traps (108,109). MCs are mainly activated through the binding of an Ag to their 
surface protein complex, comprised of IgE and FcεRI. However, MCs can also be activated 
through other stimuli, such as chemokines, cytokines, IgA, IgG, adenosine, C3a and PAMPs 
(108). They release cytokines associated with both Th1 responses (TNF, IFN-γ and IL-12) 
and Th2 responses (IL-4, IL-5, IL-10 and TGF-β) (110). Nevertheless, MCs’ activation has the 
potential to become harmful to the host, leading to chronic inflammation, tissue remodeling 
or even death (107).

The role of MCs role during leishmaniasis has not reached a consensus; while some reports 
show MCs to play a protective role for the host, others suggest they may have negative or 
neutral (111). Since MCs are among the first lines of defense, their activities might bias 
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the immune response during the inoculation of Leishmania promastigotes (112). Studies 
supporting the protective role of MCs have reported MC-deficient mice have larger skin 
lesions with greater parasite loads when infected with L. major (113). Granuloma formation 
during leishmaniasis is linked to parasite containment for subsequent elimination, and 
MC-deficient mice failed to form granulomas, leading to the dissemination of L. major 
parasites and systemic disease (113). MCs also promote the recruitment of neutrophils, 
macrophages and DCs, so their absence causes an impairment in the phagocyte activities 
(113). Consequently, L. major-T cell priming is impaired, and the IFN-γ/IL-4 ratio is skewed 
towards a Th2 response, revealing the importance of MCs for a resistant response against 
L. major (113). In another study, it was shown that MCs release extracellular traps (MCETs), 
when co-cultured with Leishmania tropica promastigotes, and these MCETs contain histones 
and tryptase that reduce parasite viability (114). However, Romão et al. (115) demonstrated 
that non-degranulated MCs favor susceptibility to leishmaniasis. BALB/c and C57BL/6 mice 
pretreated with 48/80—a compound that triggers MCs degranulation—, and infected with 
L. major promastigotes, had smaller lesion sizes and lower parasite loads compared with 
their control counterparts (115). Moreover, 48/80 pretreated BALB/c mice had an augmented 
production of IFN-γ and up-regulated CCL5, CCL2 and inducible nitric oxide synthase 
(iNOS), shifting their typical Th2 response toward a Th1 (115).

MCs activities have the potential to activate Th17 cells both directly and indirectly. MC-DC 
binding and cross-talk lead to the maturation of immature DCs, as evidenced by the expression 
of surface markers such as CD80, CD86 and CD40, crucial molecules for T cell activation 
(116). Furthermore, MC-primed DCs promote the polarization of CD4+ T cells toward both 
Th1 and Th17 phenotypes, as evidenced by the secretion of IFN-γ and IL-17, respectively (116). 
The Th17 profile is also induced upon TLR/FcεRI triggering and inflammasome-independent 
IL-1β production from MCs (117). Altogether, the ambivalent potential of MCs’ activities during 
leishmaniasis may lead to a favorable outcome of the infection, although it is more likely to 
drive Th17 differentiation, thereby fostering the infection.

Th1 and Th2 cells
As previously mentioned, numerous studies have extensively investigated the effects of 
Th1 and Th2 polarization on leishmaniasis by employing BALB/c and C57BL/6 mice as 
susceptibility and resistance models, respectively. BALB/c mice are characterized by an anti-
inflammatory Th2 response, distinguished by the production of cytokines such as IL-4, IL-5 
and IL-13. In contrast, C57BL/6 mice exhibit a resistant pro-inflammatory profile in which 
cytokines such as IFN-γ, TNF, and IL-12 trigger leishmanicidal mechanisms in phagocytes 
(42,118). However, in humans, this relationship is more complex due to the variations in 
the patients’ immune response and Leishmania species. Moreover, new Th profiles have 
been discovered, further complicating our understanding of the role of T CD4+ cells in 
leishmaniasis. Yet for the sake practicality, we will only focus on both Th1 and Th2 profiles.

It is worth noting that Th1 and Th2 responses are correlated with the severity of certain 
clinical outcomes in CL. Th2 profile is involved in the progression of DCL due to the 
production of anti-inflammatory cytokines that lead to an unresponsive immune response 
(118). Interestingly, while the Th1 profile is associated with clearing the infection, it is also 
related to an exacerbation of pro-inflammatory responses that can give rise to ML (118).

Th17 cells share a close relationship with both Th1 and Th2 CD4+ T cells. Some evidence 
suggests that Th1 and Th17 cells may have a regulatory role on each other. In experimental 
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autoimmune uveitis, Th17 cells from IFN-γ KO mice immunized with interphotoreceptor 
retinoid-binding protein infiltrated the eye and produced significant amounts of IL-17, 
contributing to disease susceptibility (119). However, blocking IL-17 at any stage of the 
disease reversed the inflammatory response, providing protection. Conversely, when Th17 
cells were absent, Th1 cells played a central pathogenic role by producing IL-22, IFN-γ, IL-6 
and IL-1α (119). This suggests that mediators from each cell type inhibit the development of 
the other. Indeed, IFN-γ has been shown to have inhibitory effects on Th17 differentiation, 
while IL-17A does the same to Th1 cells (120,121). This same phenomenon occurs in 
leishmaniasis. In an L. major infection mice model with the absence of IL-10, IFN-γ produced 
by Th1 cells inhibits the differentiation of Th17 cells and subsequent neutrophil recruitment, 
ultimately controlling the infection (122).

Th2 cells are commonly known for deploying suppressive signals through the production 
of cytokines such as IL-4, IL-5, IL-9 and IL-13, even though they also play an active role in 
helminth infections by activating eosinophils (123). In CL, Th2 responses are associated 
with non-healing wounds as they counteract beneficial activities of Th1 cells (124,125). 
Susceptible BALB/c mice lacking IL-4−/−, IL-13−/− and IL-4Rα−/− have been shown to delay 
or even control the progression of the disease (126). However, the premise that Th2 cells 
antagonize resistance against leishmaniasis remains unclear, and other approaches are 
reviewed elsewhere (124). Nevertheless, the microenvironment created by the Th2 cells can 
modulate Th17 activities, and vice versa. In asthma patients with varying severity, 2 mutually 
exclusive clusters were detected based on their Th2 and Th17 signatures with a broad range 
of severity (127). Blockade of Th2 cytokines, IL-4 and IL-13 in an asthma mice model led 
increased production of IL-17A (127). Conversely, blocking IL-17A resulted in overexpression 
of Th2 cytokines, indicating mutual regulation between these cell subsets (127). In fact, IL-4 
has been found to inhibit Th17 differentiation by preventing STAT3 from binding to the IL17A 
promoter, mediated by STAT6 (128). On the contrary, IL-17A−/− BALB/c mice infected with 
L. major exhibited smaller lesions and fewer parasites compared to WT mice, even though 
the BALB/c mice maintained their Th2 response (40). Interestingly, Th2 activated cells can 
transdifferentiate into a Th2/Th17 phenotype characterized by the expression of GATA3 
and Foxp3 along with their signature cytokines of both T cell subtypes (129). These cells 
were generated after stimulation with IL-1β, IL-6 and IL-21 cytokines (129). These pieces 
of evidence suggest that Th2 and Th17 cells counteract each other; however, it appears in 
leishmaniasis, having both responses may increase the likelihood of an unfavorable outcome, 
possibly due to the presence of Th2/Th17 cells (Fig. 2).

Tregs
Tregs comprise a subset of Th cells essential for regulation and suppression of the immune 
response by producing anti-inflammatory cytokines such as IL-10 and TGF-β (17,130,131). 
Tregs and Th17 cells share the common differentiation factor TGF-β. However, the absence 
of pro-inflammatory cytokines in the microenvironment promotes the up-regulation of the 
transcription factor Foxp3, dictating the fate of a Treg program (17). Tregs can be generated in 
the thymus or extrathymically at peripheral sites, being called tTregs and pTregs, respectively 
(132). However, there is a third type of Tregs induced with the stimuli of TGF-β and IL-2 
(17). Tregs participate in tolerance towards favorable microbiota and as immune response 
modulators (130). Nonetheless, they are also able to inhibit beneficial activities during 
an infection or sterile immunity (131,133). Tregs are also able to suppress Th17 cytokine 
production via IL-10, not only from Th17 cells but also from other immune cells (134).
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Tregs role during CL have been associated with wound-healing and prevention of exacerbated 
inflammatory responses. Ablation of Tregs through inhibition of indoleamine-2,3-
deoxygenase demonstrated that mice infected with L. panamensis manifest intense pro and 
anti-inflammatory cytokine productions consisting of IFN-γ, IL-13 and IL-17, along with 
larger lesion sizes and higher parasite concentrations (135). Moreover, transfer of Tregs from 
healthy to infected mice ameliorated their established lesions and reduced the production 
of the before-mentioned pro and anti-inflammatory cytokines (135). Conversely, persistence 
of L. major after healing of C57BL/6 mice is related to IL-10 production in Tregs (136). L. 
major-infected RAG−/− mice failed to resolve the infection when transferred with CD4+CD25+ 
Treg cells from WT mice (136). Surprisingly, a similar outcome was observed in IL-10−/− mice 
that were healed from L. major infection and then reinfected (136). Thus, Tregs modulate 
the immune response through IL-10 dependent and independent mechanisms, leading to 
persistence of infection (136).

Despite their contradictory activities, there is evidence of the cooperation between Tregs and 
Th17 cells (137). TGF-β secreted from Tregs induces the differentiation of naive CD4+ T cells 
into Th17 cells (as evidenced by their production of IL-17), when they are in the presence of 
IL-6 secreted by LPS-stimulated DCs (138). Furthermore, immunization and depletion of Treg 
cells in Foxp3.luciDTR4 mice, lead to a reduction in the proportion of IL-17+ cells compared 
with their non-depleted counterpart (139). Additionally, Th17 cell development was recovered 
after the transfer of Tregs into RAG-deficient hosts (139). Interestingly, TGF-β from Tregs was 
not necessary for Th17 cells development. Tregs regulate IL-2 availability, which modulates 
Th17 induction, either by inhibiting its production from other cells or consuming it (139). 
On the other hand, Th17 cells provide advantageous cytokines for Tregs development. When 
RAG-deficient mice were co-transferred with Tregs and other Th subsets (Th0, Th1, Th2, 
Th17), the Treg/Th17 pair was the one with the highest Foxp3 expression, revealing that Th17 
cells promote the expansion of Tregs via TNF (137). Regarding leishmaniasis, and supported 
by the present evidence, we hypothesized that the reciprocal stimulation between Tregs and 
Th17 might be linked to the persistence of the infection and an exacerbated activity of Th17 
cells. Indeed, lesions from CL patients infected with L. tropica exhibited high levels of RORγt, 
Foxp3, IL-10, and IL-17 mRNA, which correlated with the state of the infection (140).

CD8+ T cells
CD8+ T cells, also known as CTLs, conform another branch of the adaptive immune response 
endowed with the task of the Ag-specific cell-mediated lysis. This mechanism is achieved 
through the recognition of an Ag presented by MHC-I on target cells via the TCR-CD8 
receptor for a subsequent release of peptidases, such as, perforin and granzyme (141). To 
achieve this, APCs must prime CD8+ T cells in secondary lymphoid organs from where 
they subsequently proliferate and migrate to infection sites or tumors (141,142). For their 
differentiation, CD8+ T cells require cytokines, such as IFN-α and prominently IL-2 and IL-12, 
that in turn, will activate the regulator Blimp-1 and differentiation factor T-bet, respectively 
(143). Furthermore, the uptake and processing of peptides in the cytosol are essential for 
MHC-I Ag presentation. However, Leishmania parasites are instead harbored in PVs. Thus, 
2 hypotheses for Leishmania Ag presentation were proposed: 1) Leishmania peptide leakage 
from the vacuole to the cytosol and, 2) Ag presentation by the phagolysosome, although no 
concrete evidence supports either (144). Nevertheless, CD8+ T cells are able to recognize 
Leishmania Ags and drive different immune responses. CD8+ T cells specifically targeted 
for the leishmanial Ag GP46/M-2 induced the lysis of GP46/M-2-transfected cells and, 
more importantly, of macrophages infected with L. amazonensis (145). This event is averted 
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with the addition of cytosolic proteasome inhibitors, proving that leishmanial Ags can be 
classically presented through MHC-I (145). Also, IFN-γ–producing CD8+ T cells are involved 
in immunity during Leishmania reinfection. After 5 days after reinfection with L. major, 
parasite-specific high IFN-γ–producing CD8+ T cells expand in lymph nodes and spleen, and 
recirculate in the bloodstream of BALB/c mice (146). Additionally, immune BALB/c mice 
presented smaller footpad swellings and lower parasite burdens, showing the effectiveness of 
the CD8+ T cell memory response against L. major (146).

Yet, CD8+ T cell have also been related to detrimental activities in CL. In a differential study 
of inflammatory profiles in the early and late stages of L. amazonensis infections, a higher 
proportion of granzyme A+ CD8+ T cells were found in lesions from late stages compared with 
the early stages (147). Furthermore, a positive correlation was found between the number 
of granzyme A+ CD8+ T cells and the intensity of the inflammatory infiltrate in lesions from 
late stages, suggesting that granzyme A might be involved in tissue destruction, leading to 
ulceration of the lesions (147). Another study reported that skin and circulating CD8 T+ cells 
overexpressed cytolytic molecules such as perforin, granzyme A, granzyme B, granulysin and 
the degranulating marker CD107a in patients infected with L. braziliensis (148). Interestingly, L. 
braziliensis-infected RAG−/− BALB/c mice transferred with WT CD8 T cells showed uncontrolled 
lesions, as seen with the destruction of the tissue and parasite spread, confirming the 
metastasis of the infection (148). This last report inspired Novais and Scott (144) to propose 
a model in which cytolysis of Leishmania-infected phagocytes by CTLs is probably responsible 
for the liberation and further metastasis of the parasites. Additionally, IL-21 upregulates the 
expression and production of granzyme B and perforin in CD8+ T cells (Fig. 2) (149). Overall, 
functions of CTLs can be both augmented and diminished by Th17 cells. While IL-17 inhibits 
the migration of CTLs to the site of infection, those CD8+ T cells that are already present, 
perform their cytolytic mechanisms enhanced by IL-21, provoking the dissemination of the 
parasites and leading to a chronic state of the disease.

Cytokines of Th17 cells induce multiple responses on CD8+ T cells. IL-2 secreted from DC-
activated Th17 cells stimulates the proliferation and cytotoxic activity, mediated by perforin, 
of CD8+ T cells (150). Surprisingly, these effects were mediated by the peptide MHC I (pMHC 
I), which Th17 cells acquired during their early interaction with DCs, likely via trogocytosis 
(150). In contrast, in another study, CD8+ T cells treated with IL-17A, notably down-regulated 
the expression of chemokine receptor CXCR3 (151). This study group concluded that Th17 
cells are the primary source of IL-17A and that the STAT3 signaling pathway is responsible 
for the down-regulation of CXCR3, thereby inhibiting the migration capabilities of CD8+ T 
cells (151). These reports demonstrate that interaction of CD8+ T cells with Th17 cells through 
MHC-I is beneficial for the expansion and activation of CD8+ T cells, whereas IL-17A alone 
mitigates their activities. Unfortunately, there is no report about pMHC I-TCR interaction 
between Th17 and CD8+ cells during CL, so we can only hypothesize that the interaction 
between these 2 cell types through the pMHC I-TCR complex, drives the activation of CTLs 
and possibly exacerbates the immune response.

B cells
B cells are a cornerstone for the well-functioning of the adaptive immunity, mainly by 
producing antibodies, but they also modulate various immune responses. One of their 
immunomodulating functions during infections includes the activation of DCs and T-cell 
subsets, through the release of both cytokines and chemokines, as well as acting as APCs 
(152,153). The specific roles of B cells during viral, bacterial and protozoan infections are 
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discussed elsewhere (152,154,155). In CL, outcome of B cells activities depends on factors such 
as the Leishmania species or strain, reinfection and the specific B cell subset involved. They are 
often regarded as key cells in the susceptibility of infection. Anti-IgM-treated BALB/c mice, 
which lack B cells, are able to control their cutaneous lesions when infected with L. major (156). 
Furthermore, BALB/c µMT, another B cell-lacking mouse, showed resistance when infected 
with the L. major strain, LV39 (157). These mice displayed a Th1 response that resulted from 
the adaptive transfer of B cells specific for leishmanial Ags (157), where direct presentation of 
leishmanial Ags from B cells led to susceptibility towards infection with L. major (157).

B1 cells comprise a subset of innate-like B cells with various functions, such as, constitutive 
IgM secretion, Ag presentation and IL-10 production (158,159). In mice, B1 cells are divided 
into 2 subsets, depending on the expression of the surface marker CD5: B1a (CD5+) and B1b 
(CD5−) cells (160). In addition to expressing CD5, human B1 cells also express CD27+CD43+ 
(159). Although, depletion of IL-10-producing B1 cells did not contribute to susceptibility 
to the infection with L. major, IL-10 secreted from CD1d+CD5+ regulatory B cells is crucial 
for developing Th2 cell response, and therefore, contributes to the susceptibility against 
L. major in BALB/c mice (161,162). L. major-infected BALB/c µMT mice reconstituted with 
IL-10−/− B cells, developed lesion sizes and parasite burdens comparable to their non-
transferred counterparts (162). Additionally, IL-10 produced either through an autocrine 
pathway or through a secreted pathway by B cells, inhibits the production of IL-12 from L. 
major-stimulated bone marrow DCs, showing that this cytokine is responsible for the Th2 
polarization most likely through the down-regulation of IL-12 (162). On the other hand, B 
cells have beneficial roles against L. braziliensis, contrary to what happens during L. major 
infection. L. major-infected C3HeB/FeJ mice exhibit resistance when challenged with L. 
amazonensis promastigotes, leading to a the decrease in parasite load and wound healing 
after 10 wk of infection (163). Noteworthy, C3HeB/FeJ mice display resistance against L. major 
infection but show susceptibility to L. amazonensis. Furthermore, antibodies from MHC-II+/
CD11b- B cells of lymph nodes and other soluble factors derived from CD4+ T cells isolated 
from L. major-infected mice trigger activation of L. amazonensis-infected bone marrow derived-
macrophages, thus killing the parasites (164). Interestingly, LPS-stimulated macrophages 
activated via IgG-FcγR and IFN-γ, induce the production of ROS, such as superoxide and 
nitric oxide, which are well-known leishmanicidal mechanisms (165).

The role of Th17 cells, and therefore of IL-17, in the support and maintenance of B cells 
has been a controversial topic. Co-culture of B cells and Th17 cells led to an increase in 
proliferation of B cells, as well as to an antibody isotype switch to IgG1, IgG2a, IgG2b, and 
IgG3 (166). Moreover, Th17-recipient TCRα KO mice showed an augmented formation of 
germinal centers (GCs) in their lymph nodes and spleen after 7 days of immunization (166). 
Transfer of Th17 cells to IL17R KO and IL21R KO mice led to fewer and smaller GCs or a total 
absence of GCs, respectively, confirming that Th17 cytokines, IL-17 and IL-21, must synergize 
in order to activate various effects on B cells (Fig. 2) (166). In another similar study, mice that 
received Th17 cells presented a higher number and percentage of GCs, indicating that Th17 
cells promote B cell clonal expansion along with the enhanced production of Ag-specific Abs 
(167). Furthermore, these Th17 cells were localized at close proximity of follicles in lymph 
nodes during the early development of the humoral immune response (167). In contrast, 
Shibui et al. (168) demonstrated that IL-17a, IL-17F, IL-21, or IL-25 had little to no effect on 
B cell antibody production or isotype switching in vitro. It is difficult to infer the outcome 
of Th17 activities over B cells in leishmaniasis with the previous reports alone, so further 
exploration of this topic is required for designing new therapeutic targets or vaccines.
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Lastly, B cells also produce IL-17, which has been associated with autoimmune diseases and 
parasitic infections (169,170). In Chagas disease caused by Trypanosoma cruzi, B cells are the 
major source of IL-17 (171). IL-17 from B cells is secreted through a pathway different from the 
canonical RORγT-Th17 program. Interestingly, IL-17 +B cells outnumbered Th17 cells, providing 
a protective role during the acute stage of the T. cruzi infection (171). Although the infectious 
mechanisms of both parasites are different, we can hypothesize that IL-17+B cells can play a 
beneficial role, similar to Th17 cells, during the early stages of Leishmaniasis. Yet, if they are not 
properly regulated, they can also lead to a chronic phenotype, similar to Th17 cells.

NK cells
NK cells are lymphoid cells that mediate responses against tumors, viral infected-cells and 
other pathogens, such as bacteria and parasites. These responses mainly encompass the 
secretion of pro-inflammatory cytokines such as TNF and IFN-γ and the lysis of targeted 
cells (172). Cellular lysis is achieved through the balance between activating and inhibitory 
signaling receptors in the membrane surface of NK cells and their ligands on the target 
cell. Once NK cells are activated, cytoskeleton rearrangements take place. Later, the lytic 
granules are transported to the membrane, releasing cytolytic molecules such as perforin 
1 and granzyme B, thus causing apoptosis in the target cell (172). For this to occur, an 
immunological lytic synapse between the NK cell and the target cell needs to be formed (173).

The role of NK cells in CL has been described in several reports. Human NK cells incubated 
with purified LPG from metacyclic L. major, exhibited a nuclear translocation of NF-κB, and 
overexpression of TLR2, IFN-γ and TNF (174). In summary, NK cells activation resulting 
from the recognition of LPG from L. major is beneficial for the host, because the release of 
pro-inflammatory cytokines is essential for controlling the infection (174,175). However, 
the cytolytic activity of NK cells appears to be impaired during leishmaniasis. Mononuclear 
phagocytic cells were resistant to NK cell cytotoxicity, both when they were infected with L. 
major or with L. infantum amastigotes, either in vivo or in vitro (176). Incubation of mononuclear 
phagocytic with L. major promastigotes did not alter the expression of activating nor 
inhibitory ligands, turning NK cells unresponsive for a cytolytic attack (176). Nonetheless, 
cytokine-activated NK cells triggered leishmanicidal mechanisms (NO2 production) on L. 
infantum-infected macrophages through the secretion of IFN-γ, TNF and the activation of 
iNOS (176). Although L. infantum is known for causing visceral leishmaniasis, there have been 
cases where it was isolated from cutaneous lesions (177). The activation of macrophages 
does not require contact with NK cells. Yet a direct contact between NK cells and L. major 
and L. aethiopica promastigotes has been reported, with a probable exchange of cytoplasm 
(178). Surprisingly, this direct contact did not kill the parasites but instead killed NK cells 
(178). NK cells were only able to eliminate L. aethiopica promastigotes in a 5:1 ratio or a ratio 
superior to that (176,178). It is noteworthy that L. major promastigotes impaired the cytotoxic 
activity of NK cells against susceptible cell lines (178). These NK cells had been activated in 
an IL-12-independent way, even though IL-12 is essential for their activation, along with the 
formation of a synapse between NK cells and mature DCs (179). Remarkably, leishmanial 
zinc metalloprotease gp63, which plays a role during the infection of macrophages and also 
modulates the complement system (180), reduces the expression of CD16, CD56, and NKp30 
and impairs the proliferation of NK cells (181).

The activities of NK cells vary depending on the clinical manifestation of leishmaniasis. Thus, 
patients with LCL, infected with L. mexicana, showed a higher number of NK cells in peripheral 
blood and lesions compared to patients with DCL (182). Additionally, NK cells from DCL 
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patients showed a down-regulation of TLR1, TLR2 and TLR6, (all of which bind to LPG) and 
a diminished production of IFN-γ and TNF, which renders these NK cells unable to exert 
leishmanicidal mechanisms on infected macrophages, thus contributing to disease progression 
(182). Thus, the role of NK cells in leishmaniasis is not always beneficial for the host, since 
parasites have developed multiple means to interfere with their activities. Furthermore, 
cytotoxic molecules from NK cells have been linked with progression of leishmaniasis, 
which was evidenced in lesions of CL patients infected with L. braziliensis, that showed a high 
concentration of cytotoxic NK cells and extracellular granzyme B in the lesions (183).

NK cells and Th17 cells are able to modulate each other through multiple signals and 
mediators. Incubation of NK cells with IL-17a leads to an increase in the number of NK cells, 
yet their expression of killer Ig-like receptors, remained unchanged (184,185). Furthermore, 
stimulation of NK cells with IL-17A, D and F only leads to a slight increase in the cytokine 
production and to a moderate cytotoxic activity (184). In contrast, stimulation of NK cells 
with IL-21 activates them through the IL-21R, triggering the production of IFN-γ and TNF, 
and enhancing their cytolytic activity (Fig. 1) (186). Interestingly, IL-21 also promotes 
the differentiation of Th1 cells to a Th17 phenotype, as evidenced by their expression of 
RORγt and IL-17A (186). Hence, during CL, IL-21 produced by Th17 cells is likely to induce 
the activation and differentiation of NK and Th17 cells, respectively. Although the role of 
IL-21 during leishmaniasis remains controversial, some evidence shows that they can be 
detrimental for the host (187). During pregnancy, CD56brightCD27+NK cells abrogate the 
inflammation mediated by Th17 cells through the secretion of IFN-γ at the maternal-fetal 
interface, yet this is reverted when the numbers of Th17 cells are elevated (188).

Th17 cells and NK cells are also capable of expressing each other’s key molecules. Thus, NK 
cells are an alternative source of IL-17, which has been linked to the progression of asthma 
in experimental mouse models (189). Similarly, the danger and stress sensor NKG2D, 
commonly expressed in NK cells but also in CD4+ T cells and in T-bet+Th17 cells, modulates 
the behavior of Th17 cells, enhancing their production of pro-inflammatory cytokines such as 
IFN-γ and GM-CSF (190).

Taken together, NK and Th17 cells interact with each other through multiple signals that can 
counteract, synergize or replace their responses. During leishmaniasis, the activation of NK 
cells triggered by Th17 cells possibly favors the resolution of the infection, yet a finely tuned 
control system is needed, to avoid an exacerbated pro-inflammatory response.

Concluding remarks and perspectives
Th17 cells are a subset of T cells that have been related to an exacerbated pro-inflammatory 
response. This can lead to the progression of various autoimmune diseases but also to the 
protection against pathogens. The main contribution of Th17 cells during leishmaniasis 
involves the immunomodulation of the inflammatory infiltrate via the release of pro-
inflammatory cytokines (primarily but not exclusively IL-17A). Several cells of the 
inflammatory infiltrate are capable of regulating the activities of Th17 cells and their 
interplay affects the disease outcome. Resident skin cells, such as epithelial cells from all 
substrates, endothelial cells, keratinocytes and fibroblasts, among others, are also affected 
by the Th17 cells and can influence the inflammatory infiltrate. Current evidence points to 
Th17 cells as ambivalent cells, depending on the stage of infection: in the early stages they 
are beneficial, since they recruit and activate neutrophils and macrophages in the infection 
site, favoring the uptake and elimination of parasites (Fig. 1), yet they can also be harmful, if 
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this pro-inflammatory response is not correctly regulated, which leads to the chronic stage 
of the infection (Fig. 2). This regulation is influenced by different cells of the inflammatory 
infiltrate, many of which can trigger the differentiation towards a Th17 phenotype, thus 
sustaining a detrimental pro-inflammatory environment.

Altogether, Th17 cells are likely to play a key role in leishmaniasis, steering the disease 
evolution from an acute to a chronic phase of the infection, by modulating molecular signals 
and cellular interactions. The molecular and cellular players that influence the disease 
progression in CL remain a complex field of research that needs to address the cellular 
network and interactions to allow for a more complete understanding of this disease.
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