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Group, European Bioinformatics Institute, Cambridge CB10 1SD, UK and 3Plate-forme Technologique Biomics,
Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Université de Paris, Paris F-75015,
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ABSTRACT

We present ePeak, a Snakemake-based pipeline for
the identification and quantification of reproducible
peaks from raw ChIP-seq, CUT&RUN and CUT&Tag
epigenomic profiling techniques. It also includes
a statistical module to perform tailored differen-
tial marking and binding analysis with state of the
art methods. ePeak streamlines critical steps like
the quality assessment of the immunoprecipitation,
spike-in calibration and the selection of reproducible
peaks between replicates for both narrow and broad
peaks. It generates complete reports for data qual-
ity control assessment and optimal interpretation
of the results. We advocate for a differential anal-
ysis that accounts for the biological dynamics of
each chromatin factor. Thus, ePeak provides lin-
ear and nonlinear methods for normalisation as
well as conservative and stringent models for vari-
ance estimation and significance testing of the ob-
served marking/binding differences. Using a pub-
lished ChIP-seq dataset, we show that distinct popu-
lations of differentially marked/bound peaks can be
identified. We study their dynamics in terms of read
coverage and summit position, as well as the expres-
sion of the neighbouring genes. We propose that
ePeak can be used to measure the richness of the
epigenomic landscape underlying a biological pro-
cess by identifying diverse regulatory regimes.

INTRODUCTION

High throughput techniques aimed at profiling DNA bind-
ing proteins and histone modifications genome wide have
experienced and accelerated evolution in the past years. Af-
ter more than 10 years of Chromatin ImmunoPrecipita-

tion with sequencing (ChIP-seq) hegemony (1,2), enzyme-
tethering methods such as CUT&RUN and CUT&Tag
have been developed to improve the resolution of epige-
nomic profiles of samples with as few as 100–1000 cells
(3,4).

Best practices for ChIP-seq analysis have been defined
and validated for a long time by the ENCODE consor-
tium (5,6). Nevertheless, among the many available tools
for ChIP-seq analysis most do not include key data pro-
cessing steps and statistical controls necessary for the robust
and reproducible description of the local epigenomic land-
scape. Such is the case of the metrics to assess the quality
of the immunoprecipitation and the Irreproducible Discov-
ery Rate (IDR) (5,7) for the estimation of replicate repro-
ducibility, whose automation has proven to be difficult. For
CUT&RUN and CUT&Tag protocols, general pipelines are
being developed that incorporate essential adjustments like
the spike-in calibration and different peak calling strategies
(8,9).

Standards for the differential analysis of RNA-seq
datasets have been widely studied and implemented allow-
ing users to do an informed choice of the methods to op-
timise sensitivity and/or specificity (10,11). This is not yet
the case for ChIP-seq, CUT&RUN and CUT&Tag, where
most researchers are not aware of the effect that a statisti-
cal setting can have on their comparisons, depending on the
dynamics of the chromatin factor under scrutiny.

We present ePeak, a pipeline that streamlines the com-
plete analysis process from raw ChIP-seq, CUT&RUN and
CUT&Tag data to peak calling with the identification of
reproducible peaks if replicates are available. ePeak is com-
patible with any chromatin factor, e.g. histone modification
or transcription factor (TF), and can process at once mul-
tiple chromatin factors with different number of biological
replicates measured in one or more biological conditions. It
is designed to facilitate the analysis when the optimal pa-
rameters for each tool are known. However, it also permits
to efficiently estimate the optimal parameter values by iter-
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ating the analysis without repeating time consuming steps
such as mapping and deduplication.

Following peak calling, ePeak also offers a downstream
analysis module to evaluate the differential marking or
binding between multiple biological conditions. This im-
plies an additional level of complexity that is unknown
for RNA-seq experiments. Epigenomic profiling is per-
formed for histone modifications with different nucleation,
spreading and maintenance kinetics, as well as proteins
with variable affinity to tightly or loosely compacted chro-
matin. As a consequence, the proper quantification of the
marking/binding dynamics needs to consider these differ-
ences. ePeak provides a flexible set of statistical settings
with multiple options to adjust the quantification and sub-
sequent comparison. These include: linear, nonlinear and
spike-in methods for the library size normalisation as well
as two different variance estimation approaches, limma (12)
and DESeq2 (13).

As an example, we apply the various statistical settings
proposed by ePeak on a published dataset (14) of three hi-
stone modifications (H3K4me3, H3K27ac and H3K4me1)
and two transcription factors (Oct4 and Klf4) profiled with
ChIP-seq. We identify the differentially marked/bound
peaks between two biological conditions (shControl and
shUbc9) for each statistical setting. We show that the choice
of normalisation method and variance estimation model re-
sults in distinct sets of differentially marked/bound peaks,
depending of the chromatin factor. Furthermore we pro-
pose that such dependency can be described in terms of
the two sources of ChIP-seq variability: one related to the
read coverage and the other connected to the position of
maximum enrichment or summit. Most importantly, genes
neighbouring these differentially marked/bound peak pop-
ulations show different mean expression changes, which
suggests variable transcriptomic regimes and thus poten-
tially diverse regulatory mechanisms.

MATERIALS AND METHODS

Workflow description

ePeak is a modular pipeline designed to deal with various
chromatin factors, e.g. histone modifications, transcription
factors (TFs), profiled in multiple biological conditions
with/without replicates. It is built in five modules that exe-
cute specific and interdependent tasks as illustrated in Fig-
ure 1A (Supplementary material for detailed description).

The bioinformatic pre-processing module aims at obtain-
ing the deduplicated aligned reads. It includes: filtering,
trimming and quality assessment of the raw data; mapping
to the reference genome, correction of PCR amplification
biases and, when available, removal of biased regions (i.e.
blacklisted regions) that display artificially high coverage.
For experiments where global changes of histone modifica-
tions is supposed to take place a spike-in control is added
(15), this module executes the same steps for the exogenous
chromatin on the corresponding genome.

Next, the peak calling and selection of reproducible peaks
modules are two intermingled routines that provide the
ranked list of reproducible narrow or broad peaks. These
are identified using the irreproducible discovery rate (IDR)

for narrow peaks or the intersection approach for broad
peaks (Supplementary Figure S1).

The peak quantification module produces the input for
the differential analysis, namely the count matrix contain-
ing the marking/binding quantification (i.e. the read cov-
erage) of each sample over every peak. Rows of this count
matrix correspond to the non-redundant set of reproducible
peaks merged among all conditions. This guarantees that
the quantitative comparisons are performed between ge-
nomic regions of equal length.

Finally, the differential analysis module is designed
to estimate the significance of the observed changes in
marking/binding between the user-defined conditions for
each peak in the non-redundant set of reproducible peaks.
This module is intended to provide a wide range of statisti-
cal settings to obtain a comprehensive quantitative descrip-
tion of the epigenomic-mediated process. Given a proper ex-
perimental design, without confounding factors, this mod-
ule permits to correct unwanted technical variability (i.e.
batch effects) and to account for systematic technical vari-
ability such as different library sizes. It includes linear and
nonlinear methods for normalisation and different vari-
ance estimation models as implemented in the DESeq2 and
limma packages. For experiments with spike-in control this
module performs a linear normalisation using the scaling
factor calculated from the mapping coverage of the exoge-
nous chromatin (Supplementary Figure S2).

ePeak different running modes

ePeak proposes two main running modes, depending on the
specific needs of the user: (i) a production mode for users
who want to analyse their datasets using standard, pre-
defined parameters for the peak calling (narrow or broad
peaks) and for the differential analysis (library size nor-
malisation method and variance estimation approach) and
(ii) an exploratory mode for users dealing with epigenomic
projects where the behaviour of the chromatin factor under
study is uncertain.

Depending on the specific question or the available data,
ePeak allows for an analysis at different levels, as illustrated
in Figure 1A. A basic analysis stops at the peak calling step
when replicates could not be obtained. The outcome in this
case will be a list of peaks that can be ranked according
to the adjusted P-value or the log fold change of the ob-
served enrichment. Else, if biological replicates are avail-
able, the pipeline assesses the concordance of peak calls be-
tween replicates using the IDR or the intersection proce-
dures, and outputs a list of reproducible peaks. Finally, for
complete experimental designs with multiple replicated bio-
logical conditions, ePeak performs the differential analysis
as defined by the user.

The exploratory mode of ePeak allows to test multiple
combinations of peak calling and differential analysis pa-
rameters avoiding the re-calculation of intermediate steps.
The user can therefore gain a complete understanding of the
system while minimising the computing time. Some practi-
cal examples of the exploratory mode are: calling narrow
and broad peaks on the same pre-processed mapping files;
comparing normalisation methods for the differential anal-
ysis on the same count matrix.
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Figure 1. The ePeak workflow. (A) Five ePeak modules executing specific and interdependent tasks. Stop signs indicate where the analysis ends, depending
on the data provided by the user. Stop 1 if no replicates are available. Stop 2 for datasets with replicates for only one condition. Stop 3 when replicates are
available for two or more conditions. (B) ePeak Snakemake rule graph illustrating the input/output dependencies between steps. Border colour indicates
the module membership of each rule (SPR: self pseudo-replicate, PPR: pooled pseudo-replicate).

RESULTS AND DISCUSSION

The importance of providing multiple differential analysis set-
tings

Unlike RNA-seq reads that measure the transcrip-
tional output of a given locus, ChIP-seq, CUT&RUN
and CUT&Tag reads represent both the probability of
marking/binding and its spatial distribution at a given
genomic region, i.e. the peak. It follows that these sam-
ples have two sources of variability: one related to the
read coverage of the peak, and the other to the position
of the maximum enrichment or summit. Despite this
additional layer of complexity, the differential analysis
of marking/binding is traditionally performed using the
methods developed for RNA-seq like DESeq2 and limma.

To illustrate the above, we used ePeak to re-analyse a pub-
lished dataset of three histone modifications (H3K4me3,
H3K27ac and H3K4me1) and two TFs (Oct4 and Klf4)
profiled using ChIP-seq in two biological conditions
(shControl and shUbc9-treated reprogrammable mouse
embryonic fibroblasts) (14). We explored the interplay be-
tween the above mentioned sources of peak variability and
the discriminative power of various statistical settings com-
monly used for the differential analysis.

For each reproducible peak, we quantified: (i) number of
reads per replicate overlapping the peak coordinates, i.e. the
read coverage; (ii) the distance between the summit position
estimated by pooling the IP replicates and the summit po-

sition of the overlapping peak found when using each IP
replicate separately, i.e. the summit instability illustrated in
(Figure 2). The resulting distribution of read coverage and
summit instability for the five chromatin factors is plotted
in Figure 3A.

We then estimated the variability of read coverage and
summit instability for each chromatin factor, using the
Fquantro statistic (Figure 3B), a ratio of the mean squared
error between-conditions and the mean squared error
within-conditions (16). Distinct patterns of read coverage
and/or summit instability variability between shControl
and shUbc9 conditions can be observed across the five chro-
matin factors (Figure 3A and B). We thus investigated how
such patters can influence the differential analysis results
for each modification/TF. We determined the proportion of
differentially marked/bound peaks identified using the sta-
tistical settings available in ePeak: DESeq2 with linear nor-
malisation (geometric mean); limma with linear (scalar) or
nonlinear normalisation (quantile or cyclic loess) (Figure 3
C).

Depending on the modification/TF, DESeq2 permits
the identification of 3–25% of the total differentially
marked/bound peaks, which are also found by limma inde-
pendently from the normalisation method. The size of this
set of differentially marked/bound peaks diminishes as the
read coverage and summit position variability between con-
ditions increases for the different modifications/TFs (Fig-
ure 3B and C). This result is compatible with the fact that
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Figure 2. ChIP-seq position variability. Summit instability is defined as the
distance between the summit of the peak called in each replicate and the
corresponding reproducible peak. Tracks show the IP coverage, peak and
summit position for the two replicates separately (top) and pooled (bot-
tom) in two genomic regions. Vertical blue lines indicate the position of
the reproducible peak summit and horizontal black lines the distance to
the corresponding summit in each replicate.

those peaks have the lowest read coverage dispersion (i.e.
variability between replicates) as estimated by limma (Fig-
ure 3D). This is also in agreement with the observation that,
for RNA-seq differential analysis, the count based model
used in DESeq2 for dispersion estimation is a more conser-
vative approach than the linear models used in limma for
variance estimation (17,18).

For the results obtained using limma, three main classes
of modifications/TFs can be described (Figure 3B and C):

• Stable modification (H3K4me3) with low variability of
read coverage and summit position between conditions.
Significant marking differences depend on the statistical
setting, in particular on whether a linear or nonlinear
normalisation method is used.

• Modifications (H3K27ac and H3K4me1) with increased
read coverage variability between conditions and TF
(Oct4) with medium variability for both read coverage
and summit position. Differential analysis results are
mostly independent from the statistical setting but an ad-
ditional set of differentially marked/bound peaks (12–
35% of the total) can be obtained by using specifically
a linear or nonlinear normalisation method.

• TF (Klf4) with high summit position variability and no
read coverage variability. More than 75% of the signifi-
cant differences are detected with a single statistical set-
ting, in this case limma with nonlinear normalisation.

Not surprisingly, there is no univocal relationship be-
tween the number of differentially marked/bound peaks
and their quantitative characteristics like the read cover-
age dispersion or fold change between conditions (Fig-
ure 3D and E). The largest population of differentially
marked/bound peaks does not always show the lowest dis-
persion. Moreover, depending on the modification/TF, a
given statistical setting like limma with linear normalisa-
tion can pinpoint significant differences among peak sets
with low (H3K4me1 or Oct4) or high (H3K4me3) disper-
sion (Figure 3D). The sole exception is the peak popula-

tion identified by the DESeq2 approach that, as mentioned
above, always contains peaks with lowest read coverage dis-
persion (Figure 3D).

We finally tested the expression distribution of the genes
associated to the differentially marked/bound peak popula-
tions described above. We selected the genes located within
5K or 30K from those peaks and plotted their absolute
RNA-seq log fold change between shControl and shUbc9
(Figure 3F). Each peak population is linked to genes with
distinct expression changes, thus highlighting the biologi-
cal interest of considering the whole range of differential
marking/binding results when studying epigenomic dynam-
ics.

Even if the trends we describe can vary depending on the
biological system under study, our observations show that
multiple statistical settings for the differential analysis of
marking/bind-ing can provide a quantitative description of
the various changes that a chromatin factor may undergo,
and ultimately inform us about its regulation mode.

ePeak in comparison to available tools

Since the first publication of the ChIP-seq protocol (1,2) a
plethora of methods have been developed and implemented
in order to: (i) identify genomic regions with a significant
enrichment for the profiled chromatin factor, i.e. peak call-
ing and (ii) compare the enrichment between biological con-
ditions, i.e. differential analysis.

There is one broad category of methods dedicated to
the differential analysis step: DiffBind (19), ChIPQC (20),
ChIPComp (21), DBChip (22), MMDiff (23), MAnorm
(24). They mostly differ on the normalisation strategy used
to account for systematic technical variability and the statis-
tical test chosen to evaluate the significance of the difference
in enrichment per region. Another category of methods per-
form peak calling and differential analysis: SICER2 (25),
MACS2 (26), HOMER (27), RSEG (28), but only diffReps
(29), MultiGPS (30) and PePr (31) can take into account
replicates for the differential analysis (Supplementary Table
S1).

More recently, ChIP-seq pipelines that take care of the
intermediate steps from the raw data to the peak calling
have been implemented. The GenePipes pipeline (32) in-
cludes the calculation of quality control metrics like cross-
correlation and sequence bias as well as the functional char-
acterisation of peaks according to their genomic localisa-
tion or enriched sequence motifs. However it does not cover
the differential analysis. The snakePipes ChIP-seq pipeline
(33) does not perform any quality control step but does the
differential analysis with the R package CSAW. The nf-core
(nextflow) pipeline (34) comprises both quality control met-
rics calculation and differential analysis using the R pack-
age DESeq2 and can be applied on narrow and broad peaks.

Regarding CUT&RUN and CUT&Tag, the nf-core
(nextflow) pipeline (8) and the CUT&RUNTools 2.0 (9) are
currently the most complete protocols. None of them, how-
ever, incorporate the differential marking/binding step.

To our knowledge, there is no current pipeline that, like
ePeak, can perform all the following tasks for ChIP-seq,
CUT&RUN and CUT&Tag datasets: (i) peak calling start-
ing from the raw sequencing data for both narrow and
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Figure 3. Comparison of the statistical settings for differential analysis. (A) Kernel density estimation of read coverage and summit instability for all
reproducible peaks across replicates of the two biological conditions under study. (B) Read coverage and summit position variability estimation using
the Fquantro statistic (16). (C) Proportion of total differentially marked/bound peaks obtained using each statistical setting. DESeq2 = DESeq2 with
geometric mean normalisation; NL-L = limma with nonlinear and with linear normalisation; NL = limma with nonlinear normalisation only; L = limma
with linear normalisation only. (D, E) Quantitative characterisation of differentially marked/bound peak populations obtained using each statistical setting.
Distribution of ChIP-seq read counts dispersion as estimated by limma (D). Distribution of ChIP-seq absolute changes in read counts between shUbc9 and
shControl (E). Colours correspond to panel C. (F) Expression dynamics of genes neighbouring differentially marked/bound peak populations. Distribution
absolute changes in RNA-seq read counts between shUbc9 and shControl. Colours correspond to panel (C).

broad peaks (ii) identification of reproducible peaks be-
tween replicates for both narrow and broad peaks, using re-
spectively the Irreproducible Discovery Rate (IDR) and the
intersection approach (iii) differential analysis with multiple
statistical settings.

Last but not least, ePeak produces (i) a customised Mul-
tiQC with quality report of all the pre-processing steps for
all datasets (Supplementary Figure S3), (ii) an XML session
readable by the Integrative Genomic Viewer (IGV) and (iii)
a complete report with the results of the differential analy-
sis.

Beyond an analysis pipeline

On top of being a complete and general ChIP-seq,
CUT&RUN and CUT&Tag analysis pipeline, ePeak is a

flexible tool to systematically explore the epigenomic land-
scape underlying a dynamic biological system. It permits
the exhaustive exploration of the marking/binding changes
that follow or drive the perturbation (e.g. mutation, treat-
ment, pathogen infection) of a steady or control state.

Indeed, the various statistical settings of the differential
analysis module enable a quantitative estimation of the het-
erogeneity of the regulatory response. The distinct popu-
lations of differentially marked/bound peaks can be inter-
preted as groups of genomic regions with differing regula-
tory roles, e.g. related to leaky or not synchronised tran-
scriptional events, or to changes occurring only in a cell sub-
population.

Our results on the statistical settings used for the dif-
ferential analysis of three histone modifications and two
TF exemplify the complex relation between the sources
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of ChIP-seq variation and the ability to identify signifi-
cant marking/binding changes. Assuming that unwanted
technical variation is corrected or accounted for, epige-
nomic profiling techniques are measuring a dynamic be-
haviour resulting from the interplay between the intrinsic
regulatory characteristics of a chromatin factor and the
genomic/nuclear/cellular environment shaped by the bio-
logical process under study. These intrinsic factors may in-
clude, among others, the writing/reading/erasing kinetics
of the histone modifications or the binding affinity of the
TFs and their ability to target compacted chromatin. While
the sole epigenomic profiling is not enough to deconvolute
all those intrinsic and environmental aspects, it can give a
sense of the variety of regulatory possibilities. Considering
all the above, ePeak can be used to measure the richness of
the epigenomic landscape and identify potentially diverse
regulatory regimes.

DATA AVAILABILITY

The pipeline is freely available at https://gitlab.pasteur.fr/
hub/ePeak/ under GNU General Public Licence. All needed
tools are packaged under a singularity container published
on the Cloud Library. All the data used in this study can be
accessed at the Gene Expression Omnibus resource under
the GEO accession GSE99009.
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