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Abstract

Objective—A causal obesity risk variant in the FTO locus was recently shown to inhibit 

adipocyte thermogenesis via increased adipose expression of the homeobox transcription factors 

IRX3 and IRX5. However, causal effects of IRX5 on fat storage remain to be shown in vivo, and 

discovery of downstream mediators may open new therapeutic avenues.

Methods—17 WT and 13 Irx5 knockout (KO) mice were fed low-fat control (Ctr) or high-fat 

(HF) diet for 10 weeks. Body weight, energy intake and fat mass were measured. Irx5-dependent 

gene expression was explored by transcriptome analysis of epididymal white adipose tissue 

(eWAT), confirmatory obesity-dependent expression in human adipocytes in vivo, and in vitro 
knock-down, overexpression and transcriptional activation assays.

Results—Irx5 knock-out mice weighed less, had diminished fat mass, and were protected from 

diet-induced fat accumulation. Key adipose mitochondrial genes Pparγ coactivator 1-alpha 
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(Pgc-1α) and uncoupling protein 1 (Ucp1) were upregulated, and a gene network centered on 

amyloid precursor protein (App) was downregulated in adipose tissue of knock-out mice and in 

isolated mouse adipocytes with stable Irx5 knock-down. An APP-centered network was also 

enriched in isolated adipocytes from obese compared to lean humans. IRX5 overexpression 

increased APP promoter activity and both IRX5 and APP inhibited transactivation of PGC-1α and 

UCP1. Knock-down of Irx5 or App increased mitochondrial respiration in adipocytes.

Conclusion—Irx5-KO mice were protected from obesity and this can partially be attributed to 

reduced adipose App and improved mitochondrial respiration. This novel Irx5-App pathway in 

adipose tissue is a possible therapeutic entry point against obesity.
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Introduction

Obesity results from excess energy storage relative to expenditure through an interplay 

between environmental and genetic factors. Twin studies have estimated that heritability 

explains 40-80 percent of individual variability in body weight [1] and genome-wide 

association studies (GWAS) have pointed to several obesity-linked single-nucleotide variants 

(SNVs). Among these, the FTO locus has the strongest known GWAS association with 

body-mass index (BMI, kg/m2) in humans [2] with independent associations also with type 

2 diabetes [3]. We recently reported that a causal cis-regulatory variant in intron 1 of the 

FTO gene, rs1421085, affects a molecular switch that controls the bioenergetic fate of 

individual adipocytes in a cell-autonomous manner [4]. Specifically, a risk allele-dependent 

increase in expression of two developmental homeoproteins, IRX3 and IRX5, promoted fat 

storage by inhibiting adipocyte browning and inducible thermogenesis [4]. We had 

previously reported differential expression of these and other homeoproteins in adipose 

tissue after profound fat loss in morbidly obese bariatric patients [5].

Homeoproteins, of which IRX5 is a family member, are key transcription factors in 

embryonic and adult development that share a common conserved DNA-binding domain, the 

homeodomain (HD) [6]. Despite their importance, knowledge of homeoprotein target genes 

and mechanistic action is limited [7], although bi-allelic mutations in IRX5 have been shown 

to impair craniofacial morphogenesis and heart, blood, bone and germ cell development in 

humans [8]. In mice, Irx5 has been found to be important for retinal [9] and cardiac [10,11] 

development and function through correct temporal and spatial suppression of respective 

target genes. Our recent demonstration of the fat storing role of IRX5 in vitro raises the 

question of whether negatively targeting this factor in a metabolic context can be of 

therapeutic benefit. Of note, no obesity-related phenotypes have yet been reported after 

genetic manipulation of Irx5 in vivo. Furthermore, due to the pleiotropic impact of Irx5, 

unraveling downstream mediators of Irx5 action in adipose tissue is important to identify 

potentially more suitable therapeutic targets against obesity than Irx5 itself. We here report a 

severe loss of body weight and adipose tissue mass in Irx5 knock-out mice, linked to adipose 
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gene networks centered around amyloid precursor protein (App) and improved 

mitochondrial respiration.

Experimental Procedures

Animals and diets

The animal study was approved by the Norwegian State Board of Biological Experiments 

with Living Animals, and carried out in accordance with their guidelines. Generation of the 

CD1 Irx5-deficient mice is descried elsewhere [9]. Male heterozygote Irx5-KO mice were 

bred to acquire homozygote KO and WT mice and housed together with up to three 

littermates at 20 ± 3°C. From the age of 8 – 10 weeks, the mice were subjected to a 10 week 

feeding experiment in which both WT and KO mice were randomized to ad libitum control 

(n = 7 for WT and n = 5 for KO) or high-fat (n = 10 for WT and n = 8 for KO) diet. Based 

on the strong anti-obesity phenotype of Irx3 whole-body knockout mice [12] and adipose-

specific Irx3 dominant negative mice [4], we anticipated that 5-7 mice per group on control 

feed and 8-10 mice per group on high-fat diet would suffice to yield statistically significant 

obesity phenotypes. A lab technician randomly selected genotyped WT and KO mice, 

respectively, for distribution in new cages for control or high-fat feeding. The investigators 

were not blinded during the experiment or when assessing the outcome.

The control diet (D12450B, Brogaarden ApS, Hørsholm, Denmark, 3.85 kcal/g) consisted of 

10 kcal% fat and 70 kcal% carbohydrate, whereas the HF diet (D12451, Brogaarden ApS, 

4.72 kcal/g) comprised of 45 kcal% fat and 35 kcal% carbohydrate, with both diets 

containing 20 kcal% protein. Body weight and feed intake was measured and renal white 

adipose tissue (rWAT) was quantified by Magnetic Resonance (MR) in live animals as 

previously described [13]. The mice were euthanized after the 10th week of the feeding 

experiment and epididymal white adipose tissue (eWAT) was dissected out and weighed 

before RNA extraction.

Patient samples and adipocyte isolation

The human study was approved by the Western Norway Regional Committee for Medical 

Research Ethics (REK) (Norway), and each of the subjects gave written informed consent. 

Subcutaneous adipose tissue was collected from severely obese patients undergoing bariatric 

surgery (average BMI of 45.5 kg/h2, n = 12, thereof 4 men) and healthy lean patients 

undergoing hernia repairs (average BMI of 24.2 kg/h2, n = 12, thereof 7 men) between 27 

and 56 years of age. Adipocytes were liberated from the adipose tissue by collagenase 

treatment and filtering before RNA isolation.

Cell cultures

Primary white preadipocyte cells were obtained by collagenase digestion of WAT from 

C57BL/6 mice and immortalization by the SV40 virus. The cells were grown in DMEM 

containing L-glutamine and 4.5 g/L glucose (Lonza, Basel, Switzerland), supplemented with 

10% calf serum (CS) (GE healthcare, Little Chalfont, Great Britain) and 1% penicillin-

streptomycin (Sigma, St. Louis, MO, USA). Stable knock-down (KD) of Irx5 in the WAT 

cells was performed by CRISPR-Cas9 in line with [14]. Briefly, cells were transfected with a 
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single plasmid containing both guide RNA (TTATGGGGACCCCGCGTACCGG) and Cas9 

fused to GFP (Sigma), using the TransIT-LT1 transfection reagent (Mirus Bio LLC, 

Madison, WI, USA). A Crispr construct without guide RNA (Sigma) was used as negative 

control. The day after transfection, cells were trypsinated, sorted by fluorescent activated 

cell sorting (FACS) on the Sony SH800 flow cytometer (Sony, Minato, Tokyo, Japan) and 

single live cells positive for GFP were automatedly seeded in each well of 96-well plates. 

Cells were incubated in proliferation medium supplemented with 0,01 μg/μL FGF (Sigma) 

and 0,001 μg/μL EGF (Sigma) for one week. During this period, growing colonies were 

trypsinated and re-seeded in 96-well plates to keep cells sub-confluent. After one week, the 

medium was changed to regular proliferation medium without supplemented growth factors 

and colonies were expanded and DNA-sequenced. Heterozygous knock-out of Irx5 was 

confirmed by Sanger Sequencing using the BigDye 3.1 protocol (Thermo Fisher Scientific) 

according to manufacturer’s instructions. The CRISPR-edited WAT cells were employed for 

gene expression and oxygen consumption rate analyses. COS-1 monkey kidney cells 

(ATCC, Manassas, Virginia, USA) were grown in DMEM containing 1 g/L glucose (Lonza) 

supplemented with 10% FBS, 1% penicillin-streptomycin and 2 mM L-glutamine. These 

cells were used for transactivation assays. Mouse embryonic fibroblast Rb-/- Line 3 (ME3) 

cells, a model of beige pre-adipocytes [15–17], were grown in AmnioMAX -C100 (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA) supplemented with 7.5% FBS, 7.5% C100 

(Thermo Fisher Scientific), 1% penicillin-streptomycin and 2 mM L-glutamine. These cells 

were used for transactivation assays. Cells were tested for mycoplasma.

Transactivation assays

COS-1 and ME3 cells were grown for 24 hours prior to transient co-transfection of indicated 

overexpression plasmids (40 ng each) with the firefly luciferase reporter (50 ng) under 

control of the relevant promoter sequences. The total amount of DNA per well was adjusted 

to 130 ng with empty plasmid. The reporter constructs employed were pGL4-phAPP-luc 

(RIKEN cat.no RDB07692, -1447/+110 of APP_1 promoter), pGL3-hUCP1-3.1kb-luc [18] 

and pGL3-mPgc-1α-luc (Addgene plasmid #8887) [19]. The following overexpression 

plasmids were utilized: pCMV6-hIRX5 (Origene, Rockville, MD, USA), pCDNA-mPgc-1a 

(Origene), pCMV6-mApp-myk-ddk (Origene) and pCDNA-empty. ME3 and COS-1 cells 

were transfected using the TransIT-LT1 (Mirus Bio LLC) and Superfect (Qiagen) reagents, 

respectively, according to manufacturers’ instructions. Cells were lysed 48 hours after 

transfection with 25 mM Tris-Acetate-EDTA (pH 7.8), 2 mM dithiothreitol (DTT), 1 mM 

EDTA, 10% glycerol and 1% Triton X-100 and analyzed with the BioThema luciferase 

assay (BioThema, Handen, Sweden) on a FLUOStar Optima (BMG Labtech, Ortenberg, 

Germany) luminescence plate reader.

RNA isolation, cDNA synthesis and Real-time qPCR analysis

RNA isolation of tissue and isolated adipocytes was performed by lysis in Qiazol (Qiagen, 

Hilden, Germany) and homogenization in the TissueLyser (Qiagen) followed by chloroform 

extraction according to manufacturer’s instructions. RNA isolation from cell cultures was 

performed using the RNeasy Mini kit (Qiagen) on the QIAcube instrument (Qiagen) 

according to manufacturer’s instructions. RNA integrity was verified using the Agilent RNA 

6000 Nano kit on the Agilent 2100 BioAnalyzer instrument (Agilent, Santa Clara, USA). 
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cDNA was synthesized using 500 ng RNA input with the High-Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, Waltham, MA, USA) and diluted 1:10 in PCR-grade 

water (Roche, Basel, Switzerland) before quantification. Real-time qPCR was performed in 

the LightCycler 480 system (Roche) using 4 pmol of each primer and 1.25 μL cDNA 

template with 5 μL SYBR I Green in a total volume of 10 μL. Quantification of target genes 

was calculated using the delta-delta Ct method relative to reference gene Rps13. Primers 

were designed using either the Universal ProbeLibrary Assay Design Center (Roche) or the 

Primer-BLAST [20] softwares. Irx5, forward 5’-CGAGGAGGAGGAGGAGAACAT-3’ and 

reverse 5’-CCTTAAAATCCGAGTCGCTGAG-3’; Pgc-1a, forward 5’-

AATTTTTCAAGTCTAACTATGCAGACC-3’ and reverse 5’-

AAAATCCAGAGAGTCATACTTGCTC-3’; App, forward 5’-

AGGACTGACCACTCGACCAG-3’ and reverse 5’-CTTCCGAGATCTCTTCCGTCT-3’; 

Ucp1, forward 5’-GGGCATTCAGAGGCAAATCAG-3’ and reverse 5’-

TTTCCGAGAGAGGCAGGTGTTT-3’.

Microarray gene expression analyses

Epididymal white adipose tissue (eWAT) from the mice was analyzed with Illumina iScan 

and MouseWG-6 v2.0 Expression BeadChips (6 WT and 6 Irx5-KO mice), and the isolated 

human adipocytes were analyzed with the Illumina iScan and HumanHT-12 v.3 BeadChip. 

Raw data files were imported into J-Express. Before further analysis, missing values were 

replaced by the LSimpute_adaptive method [21] and signal intensity values were quantile 

normalized [22] and log transformed (base 2). The mouse and human datasets were 

combined based on ENSEMBL gene IDs. The genes identified in both datasets were then 

sorted based on similar or divergent expression in obesity. Ingenuity Pathway Analysis (IPA) 

was used to identify globally predominant gene networks (accessed on March 21, 2016).

Oxygen consumption rate

Cellular oxygen consumption rate (OCR) was measured using the Seahorse XF Cell Mito 

Stress Test kit (Agilent, Santa Clara, USA) and the Seahorse XFe96 Analyzer (Agilent) with 

12 replicates. ME3 cells were transfected the day after seeding and left to grow for 48 hours 

in 1 μM isoproterenol before measurement of OCR. Wild-type WAT and Crispr-WAT cells 

were induced to differentiate two days post confluence (day 0) by addition of fresh culture 

media containing CS instead of FBS, and supplemented with 172 nM insulin, 0.5 mM 

IBMX, 1μM dexamethasone and 1μM rosiglitazone (all components from Sigma). Cells 

were transfected on day 0 with either 25 nM siRNA (Dharmacon, Lafayette, USA) using 

Hiperfect (Qiagen), or 40 ng expression plasmid encoding either Irx5 or App as indicated. 

Cells were either assayed on day 2, or further cultured to day 7 by addition of fresh medium 

supplemented with insulin only for two more days and culture medium only for the last three 

days before assaying. 1 μM isoproterenol was added 48 hours before measuring OCR.

On the day of assay, culture media was replaced with DMEM D5030 (Agilent) 

supplemented with 2 mM L-glut (Sigma), 2mM sodium pyruvate (Sigma) and 10 mM 

glucose (Sigma) and cells were incubated at 37°C in an incubator without CO2 infusion for 

1-2 hours before running the OCR assay. After establishing baseline OCR, the following 

inhibitors of mitochondrial respiration were added in successive order: oligomycin (3 μM) to 
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block ATP production, carbonyl cyanide m-chlorophenylhydrazone (CCCP, 1.5 μM) to 

uncouple oxygen consumption from ATP production and rotenone (1 μM) with antimycin (1 

μM) to inhibit complexes I and III (all inhibitors from Sigma). Three measurement cycles 

were performed between the addition of each inhibitor.

Statistical analyses

Analysis of significance was performed by unpaired Student’s t-test, one-way ANOVA, two-

way ANOVA and repeated measures two-way ANOVA with Tukey or Sidak’s post hoc test 

as indicated. Data are shown as either mean ± standard deviation or boxplots with Tukey 

whiskers (1.5 times interquartile range) with outliers shown as filled circles, as indicated. 

Data were tested for normality using Shapiro-Wilk test and for homogeneity of variances 

using Lavene’s test. Outliers, as detected by the ROUT test (Q = 1%) were plotted, but 

omitted from calculations of statistical significance.

Data deposition

Microarray data have been deposited in the ArrayExpress database at EMBL-EBI 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-6726 (Irx5-KO mice) and 

E-MTAB-6728 (Human adipocytes).

Results

Diminished fat mass in Irx5-/- mice

To determine the effect of Irx5-KO on body weight and fat mass, we performed a 10-week 

feeding experiment in adult mice, where wild-type (WT) and KO mice were randomized to 

either a low-fat control (Ctr) or a high-fat (HF) diet (Figure 1A). One week before 

intervention, the Irx5-KO mice weighed on average 42% less (p < 0.001) than WT 

littermates (Figure S1A). The significant genotype-dependent difference in body weight 

persisted throughout the experiment regardless of feed (Figure 1A). Furthermore, whereas 

the WT mice weighed significantly (p < 0.05) more after 10 weeks on HF compared to the 

control diet, the Irx5-KO mice were completely protected from weight gain induced by the 

HF diet. Despite the great differences in body weight between WT and KO mice, no 

significant difference in absolute or relative energy intake was observed (Figure S1B). 

Quantification of the renal and epididymal white adipose tissue depots (rWAT and eWAT, 

respectively) revealed that Irx5-KO mice on HF diet possessed on average 47% less rWAT (p 
< 0.001) and 79% less eWAT (p < 0.001) compared to WT littermates (Figure 1B-D). 

Moreover, whereas the eWAT from WT mice fed a HF diet weighed roughly 2-fold that of 

mice given the control diet (p < 0.01), no difference in eWAT mass was observed in the Irx5 
KO on the two diets. Taken together, mice devoid of Irx5 have a profound anti-obesity 

phenotype.

Adipose gene networks suppressed via Irx5 center around App

To elucidate mechanisms underlying the diminished lipid accumulation of the Irx5-KO 

mice, we systematically searched for the most affected genes and gene networks in eWAT of 

Irx5-KO compared to WT mice fed a HF diet. Through genome-wide expression analysis we 

identified 438 down-regulated and 238 up-regulated genes in the Irx5-KO mice compared to 
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the WT mice (fold change > 1.5 and q-value < 0.25) (Figure 2A). When interrogating the 

differentially expressed genes with Ingenuity Pathway Analysis, the top-scoring network for 

the 238 up-regulated genes in the Irx5-KO mice centered around the down-regulated gene 

amyloid precursor protein (App) and included genes important for mitochondrial biogenesis 

and function, i.e., Pgc-1α and Ucp1 (Figure 2B). These microarray results were validated by 

qPCR (Figure 2C). To investigate whether Pgc-1α and Ucp1 levels could be altered by Irx5 

manipulation in a cell-autonomous manner in adipose tissue, we generated heterozygous 

Irx5-KO (overall 50% knock-down) mouse primary white adipocytes by CRISPR-Cas9, and 

measured the respective mRNA levels by qPCR (Figure 2D). Cells were treated with and 

without 1 μM isoproterenol (iso), a β-adrenergic agonist that enhances transcription of Ucp1 
and stimulates lipolysis which activates Ucp1-mediated thermogenesis. The Pgc-1α 
expression was approximately 12-fold higher (p < 0.001) in Irx5 knock-down (KD) cells 

compared to controls, regardless of iso treatment. Ucp1 could not be detected in the 

unstimulated control cells, but was expressed in the Irx5 KD-cells (p = 0.0131), as well as in 

both cell lines stimulated with iso. In the stimulated state, however, no significant difference 

in Ucp1 expression between control and KD cell lines was observed (Figure 2D). Taken 

together, these data suggest a suppressive role of Irx5 on transcription of Pgc-1α and Ucp1.

To further investigate whether Irx5 inhibits the Pgc-1α and Ucp1 expression, we 

overexpressed Irx5 in COS-1 kidney and ME3 preadipocyte cells together with respective 

luciferase reporter constructs under control of either the mouse Pgc-1α promoter (Figure 

2E) or the human UCP1 promoter (Figure 2F). Since Pgc-1α can coactivate the expression 

of itself as well as Ucp1, we performed the luciferase assays with and without 

overexpression of Pgc-1α. In both cell lines, Irx5 significantly suppressed basal Pgc-1α 
reporter activity and in COS-1 cells abolished any stimulatory effect of Pgc-1α on activating 

its own promoter (Figure 2E). Of note, Irx5 did not affect the basal activity of the UCP1 
reporter, but strongly suppressed Pgc-1α-mediated activation of UCP1 (Figure 2F).

Adipose gene networks dependent on Irx5 also center around App

Amyloid precursor protein (App) was also the center of the top scoring network of the 438 

down-regulated genes in eWAT of the Irx5-KO mice (Figure 3A). qPCR confirmed absence 

of Irx5 in the KO mice (Figure 3B) and significantly lower App expression levels (p = 

0.0012) in Irx5-KO mice compared to WT littermates after overfeeding (Figure 3B). 

Furthermore, App levels were significantly (p = 0.0466) higher in WT mice fed HF diet 

compared to control diet, and this effect was blunted in KO mice. To investigate whether 

Irx5 manipulation could alter App levels in a cell-autonomous manner in adipose tissue, we 

analyzed the primary adipocytes with stable Irx5 knock-down. Indeed, knock-down cells 

showed 60% reduction (p < 0.001) in App levels and this effect was independent of iso 

treatment (Figure 3C). Conversely, overexpression of Irx5 increased App expression in ME3 

preadipocytes (Figure 3D), and in transactivation assays we moreover found that Irx5 

overexpression strongly induced the App promoter activity in COS-1 and ME3 cells (p = 
0.0016 and p = 0.0006 respectively) (Figure 3E). Taken together, these experiments 

demonstrate that Irx5 promotes expression of App.
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Validation of obesity-linked genes in human adipocytes

To test the relevance of the identified Irx5-dependent genes for human obesity, we searched 

for consistently regulated genes in mature adipocytes isolated from subcutaneous white 

adipose tissue of lean and obese patients. Consistent with conserved obesity-related gene 

networks, we found a highly significant enrichment of Irx5-dependent mouse eWAT genes 

among the most differentially expressed genes in human adipocytes (Figure 4A), thereof 18 

consistently up-regulated and 84 down-regulated genes in both the lean Irx5-KD mice and 

lean human patients (Figure 4B) (q-value < 0.05 in both datasets, genes with fold difference 

> 1.5 are shown in Table S1). Submitting the 84 genes with consistently reduced expression 

in lean mice and people (i.e., up-regulation in obesity) to Ingenuity Pathway Analysis, again 

the top-scoring network centered on APP (Figure 4C).

Repression of App increases mitochondrial respiration

Given the inhibitory effect of Irx5 on key mitochondrial genes and the central position of 

App in the network of these genes, we sought to investigate the functional outcome of 

reduced Irx5 and App expression levels on adipocyte mitochondrial function. In primary 

white adipocytes, transient knock-down of App early in differentiation significantly 

increased OCR (p < 0.001) in fully differentiated white adipocytes in response to CCCP 

(Figure 5A), with significant increases (p < 0.001) in maximal respiration and spare capacity 

(Figure 5B). In the beige-like ME3 cells, the effect of siRNA against App on maximal 

respiration and spare capacity was borderline significant (Figure S2) whereas transient 

knock-down of Irx5 resulted in significant increase in maximal respiration (p = 0.0011) and 

spare capacity p < 0.001) (Figure S2).

We next measured OCR in the primary adipocytes with stable CRISPR-Cas9-mediated Irx5 
knock-down, and assessed whether overexpression of App could counteract the phenotype of 

the knock-down cells. As hypothesized, stable knock-down of Irx5 significantly elevated 

OCR in response to CCCP (p < 0.001), and this effect was partially reversed by 

overexpression of App (p < 0.001) (Figure 5C). Both basal and maximal respiration as well 

as spare capacity, ATP production and proton leak were significantly elevated in the Irx5-KD 

cells compared to controls, and overexpression of App partially reversed the effect of Irx5-

knock down on all measures except proton leak (Figure 5D).

App inhibits transactivation of Pgc-1α and Ucp1

To determine whether App could affect the transactivation of Pgc-1α or Ucp1, we 

overexpressed App together with the same luciferase constructs as before, containing the 

promoter of either Pgc-1α or Ucp1 (Figure 6). Consistent with the effects of overexpressed 

Irx5, App strongly suppressed both promoters (p < 0.001).

Discussion

We and others previously showed that a risk-variant in the FTO obesity locus increases 

mRNA expression of both IRX3 and IRX5 through a common enhancer in adipocytes, and 

that adipose-selective Irx3-KO in mice prevents diet-induced obesity [4]. The present study 
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reports effects of global Irx5-KO on body weight, fat storage and adipose gene expression in 

mice.

The Irx5 knock-out mice exhibit a profound anti-obesity phenotype with a dramatic loss of 

fat mass. Genes vital to mitochondrial biogenesis and thermogenesis (e.g., Pgc-1α, Ucp1) 

were upregulated in the eWAT of KO mice in vivo and in isolated adipocytes with transient 

or stable knock-down of Irx5 in vitro. Moreover, our transactivation data demonstrated that 

Irx5 suppresses these genes by inhibiting transcription of Pgc-1α as well as by impairing the 

coactivator function of the Pgc-1α protein on the Ucp1 promoter. Stable knock-down of Irx5 
in isolated white adipocytes elevated oxygen consumption rate and proton uncoupling, in 

agreement with our previous study [4]. Taken together, these data point to a potential for 

increased thermogenic capacity in the Irx5-KO mice. However, because thermogenesis was 

not measured in vivo in this study, the overall contribution of thermogenesis to the observed 

anti-obesity phenotype in the Irx5-KO mice was not determined.

In search of other factors that could further contribute to the lean Irx5-KO phenotype, our 

attention turned to the downregulated amyloid precursor protein (App) gene that centered 

the top-scoring networks of both the down- and upregulated genes in eWAT of the KO mice 

and also in the differentially expressed genes between obese and lean human adipocytes. 

Intriguingly, App-KO mice were recently shown to be resistant to diet-induced obesity, 

displaying reduced body weight, adipocyte size and visceral fat content [23] comparable to 

our Irx5-KO mice with reduced App-levels. Moreover, multiple studies have associated APP 

or its cleavage products with obesity or adipose tissue function [24–30]. These data point to 

a central role for adipose App in obesity development. Because insulin has anti-

inflammatory effects [31] and has been reported to suppress APP and other Alzheimer’s 

disease related genes in peripheral mononuclear blood cells [32], it is conceivable that 

insulin resistance in obese individuals may lead to elevated App expression in adipocytes. 

However, our in vitro data clearly show a causal dependency of App expression on Irx5 in 

adipocytes. The reduced adipose App levels in Irx5-KO versus WT mice therefore likely 

primarily result from reduced Irx5 levels rather than higher insulin sensitivity. Taken 

together, these data support the anti-obesity effect observed in Irx5-KO mice to be at least 

partially mediated through reduced App levels.

Exactly how App may contribute to obesity is not clear, although it is well established that 

App or its cleavage products impair mitochondrial function in neurons through a number of 

different mechanisms [33–36]. Our data show that App has negative effects on mitochondria 

also in adipocytes, i.e. a strong repression of Pgc-1α by App in luciferase assays and the 

improved oxygen consumption rate and respiratory capacity of adipocytes following siRNA-

mediated knock-down of App. Of note, several different mouse models have revealed 

reduced respiratory capacity in white adipose tissue as a characteristic of obesity [37].

Based on the whole-body knock-out model we cannot completely rule out the possibility 

that loss of Irx5 exerted anti-obesity effects via organs other than adipose tissue, such as the 

brain which shows a notable expression of Irx5. IRX5 expression may also partly depend on 

additional regulatory elements and mechanisms unrelated to the identified causal FTO 
obesity variant rs1421085 [4], and it remains to be determined if altered IRX5 expression 
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can influence fat storage via additional cell types. However, the profound protection against 

obesity we have observed in Irx5 knock-out mice, as in adipose-selective aP2-Irx3 dominant 

negative mice [4], may likely in large part be ascribed to Irx5 action in the adipose tissue 

itself. Firstly, the highly conserved cis-regulatory module (CRM) found to regulate IRX5 
expression in the FTO obesity locus showed potential for gene regulation particularly in the 

adipocyte lineage [4]. Secondly, eQTL analysis has suggested that variants in the FTO locus 

explain only around 1% of individual differences in IRX5 in the human brain tissue, while 

they explain around 200% in isolated primary human adipose cells [4]. Thirdly, the present 

study confirms a causal effect of Irx5 on expression of App, Pgc-1α and Ucp1 as well as 

mitochondrial respiration in isolated primary adipocytes with Irx5-KD.

In conclusion, our study is the first to reveal how Irx5 impacts energy metabolism and fat 

mass in vivo. We identified a profound loss of body weight and fat mass in Irx5-KO mice 

with increased adipose expression of thermogenic regulators Pgc-1a and Ucp1 and reduced 

expression of App. Our in vitro data demonstrate an Irx5-dependent transcriptional 

regulation of these genes, and an Irx5- and App-mediated repression of adipocyte 

mitochondrial respiration. Collectively, these findings unravel an Irx5-App pathway in 

adipose tissue as a possible therapeutic avenue to mitigate obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Irx5 knock-out mice are protected against diet-induced obesity.
(A) WT and Irx5-KO mice on Ctr diet (n = 7 for WT and n = 5 for KO) or HF (n = 10 for 

WT and n = 8 for KO) diet for 10 weeks. Mean body weight ± SD shown. Statistical 

analysis by two-way repeated measures ANOVA with Sidak’s post hoc test. *p < 0.05 

between Ctr and HF diet at week 10; n.s, not significant; †p < 0.05, ††p < 0.01, †††p <0.001 

between WT and KO group on control diet; §§§p < 0.001 between WT and KO group on HF 

diet.

(B) Magnetic Resonance Imaging (MRI)-quantification of renal white adipose tissue (rWAT) 

depots (n = 22). Percent rWAT of the quantified area of the mice shown. Data displayed as 

Boxplots with Tukey whiskers. Statistical analysis by regular two-way ANOVA with Sidak’s 

post hoc test. *p < 0.05, ***p < 0.001.

(C) Weight of epididymal white adipose tissue (eWAT) as % of total body weight. Statistical 

analysis by regular two-way ANOVA with Sidak’s post hoc test. **p < 0.01, ***p < 0.001.

(D) Representative MRI images of rWAT in WT and Irx5-KO mice fed a control or HF-diet, 

transverse (top) and coronal view (bottom).

See also Figure S1.
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Figure 2. Irx5 knock-out mice show increased adipose expression of genes involved in energy 
metabolism.
(A) WT (n = 6) and Irx5-KO (n = 6) mice fed HF diet for 10 weeks and global gene 

expression in epididymal white adipose tissue (eWAT) measured by microarrays. Fold 

change > 1.5 and q-value cut-off < 0.25.

(B) Up-regulated genes centered around the down-regulated amyloid precursor protein 

(App) gene. The color scale indicates fold change in Irx5-KO mice gene expression 

compared to WT, with reduction shown in red and increase in green. Dotted lines, gene co-

expression in previous studies; solid lines, gene-protein or protein-protein interactions.
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(C) Pgc-1α and Ucp1 expression relative to Rps13 in the same eWAT dissected from the 

mice, measured by RT-qPCR. Boxplots with Tukey shown, black dote denote outliers and 

these were omitted from calculations of statistical significance. Statistical analysis by two-

way ANOVA with Sidak’s post hoc test. *p < 0,05.

(D) Pgc-1α and Ucp1 expression relative to Rps13 in response to stable Irx5 knock-down in 

primary white adipocyte cells isolated from WT C57BL/6 mice. Iso: 1 μM isoproterenol for 

24h. Statistical analyses by two-way ANOVA with Sidak’s post hoc test. *p < 0,05, **p < 

0.01,***p < 0.001.

(E-F) Luciferase reporter under control of the mouse Pgc-1α (E) or the human UCP1 
promoter (F), with and without overexpression of Irx5 and/or Pgc-1α. Data are presented as 

mean ± SD. Statistical analyses by one-way ANOVA with Tukey’s post hoc test. **p < 0.01; 

***p < 0.001. Representative of three independent experiments.
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Figure 3. Downregulation of an APP-related gene network in adipocytes from Irx5-KO mice.
WT (n = 6) and Irx5-KO (n = 6) mice fed HF diet for 10 weeks and global gene expression 

in eWAT measured by microarrays. Fold change > 1.5 and q-value cut-off < 0.25.

(A) Down-regulated genes centered around the amyloid precursor protein (App) gene. 

Dotted lines: gene co-expression in previous studies; solid lines: gene-protein or protein-

protein interactions.
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(B) Irx5 and App expression relative to the housekeeping gene Rps13 in eWAT measured by 

RT-qPCR. Boxplots with Tukey shown. n.d: not detectable. Statistical analyses by two-way 

ANOVA with Sidak’s post hoc test. *p < 0,05, **p < 0.01,***p < 0.001.

(C) App expression relative to Rps13 in response to stable Irx5 knock-down in primary 

white adipocyte cells isolated from WT C57BL/6 mice. Iso: 1 μM isoproterenol.

Statistical analyses by two-way ANOVA with Sidak’s post hoc test. ***p < 0.001.

(D) App expression relative to Rps13 in response to over-expression of Irx5 in ME3 

preadipocytes. Statistical analysis by student’s t-test. *p < 0,05.

(E) Luciferase reporter under control of human amyloid precursor protein (APP) promoter 

with and without overexpression of Irx5. Data are presented as mean ± SD. Statistical 

analyses by Student’s t-test. **p < 0.01,***p < 0.001. Representative of three independent 

experiments.

Bjune et al. Page 17

Int J Obes (Lond). Author manuscript; available in PMC 2019 June 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Validation of Irx5 knockout-dependent obesity genes in human adipocytes.
(A) Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (based on 

Significance Analysis of Microarrays), showing a significant enrichment of Irx5-dependent 

genes identified in mice adipose tissue among the most differentially expressed genes in 

adipocytes from obese compared to lean humans. Only genes showing the same direction of 

regulation in the mouse and human datasets were included, leaving 84 down-regulated and 

18 up-regulated genes in lean subjects within the q-value < 0.05 significance cut-off used for 

both datasets.
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(B) Heatmap showing relative gene expression (Illumina microarray signal intensities) of 

these genes, eWAT from wild-type and Irx5 knock-out mice fed obesogenic diet for 10 

weeks (left) and mature adipocytes isolated from subcutaneous adipose tissue of obese and 

lean humans (average body-mass index (BMI) of 45.5 and 24.2 kg/h2, respectively) (right). 

eWAT, epididymal white adipose tissue; FDR, false discovery rate

(C) Top-scoring networks for Irx5-dependent genes with consistent up-regulation in human 

obesity. Ingenuity Pathway Analysis was performed for 84 genes with a consistent increase 

in adipose expression in obesity in mouse adipose tissue and human adipocytes 

(Significance Analysis of Microarrays q-value < 0.05, shown in Figure 4). The color scale 

indicates the fold differential expression in mature human adipocytes from lean and obese 

people (n=10 per group). Dotted lines indicate gene co-expression in previous studies, and 

solid lines indicate gene-protein or protein-protein interactions.
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Figure 5. Irx5 and App repress mitochondrial respiration.
Real-time whole-cell oxygen consumption rate (OCR). Data represented as mean ± SD of 12 

wells per treatment, adjusted for cell number. Representative of two independent 

experiments.

(A) White preadipocytes were treated with 25 nM siRNA against App on day 0 of 

differentiation and OCR was measured on day 7. Statistical analysis by two-way repeated 

measures ANOVA with Sidak’s post hoc test. ***p < 0.001.

(B) Calculated basal- and maximal respiration, spare capacity, ATP production and proton 

leak. Statistical analysis by multiple t-tests with FDR correction, Q = 1%. ***p < 0.001.

(C) Over-expression of mouse App in white preadipocytes with or without stable knock-

down of Irx5 on day 0 of differentiation, with OCR measured on day 2. Statistical analysis 

by two-way repeated measures ANOVA with Tukey’s post hoc test. ***p < 0.001, Ctr vs 

Irx5-KD; ††p < 0.01, †††p < 0.001, empty vs over-expression (oex) of App in control cells; 
‡‡‡p < 0.001, empty vs oex of App in KD-Irx5 cells;; §§p < 0.001, §§§p < 0.001, Ctr oex-App 
vs KD-Irx5 empty.
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(D) Calculated basal- and maximal respiration, spare capacity, ATP production and proton 

leak. Statistical analysis by one-way ANOVA with Tukey’s post hoc test. *p < 0.05, **p < 

0.01, ***p < 0.001.

Oligo: oligomycin; am+rot: antimycin and rotenone.
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Figure 6. App represses transactivation of Pgc-1α and Ucp1
Luciferase reporter under control of the mouse Pgc-1α (A) or the human UCP1 promoter 

(B), with and without overexpression of App. Representative of three independent 

experiments in each of the two cell lines COS-1 and ME3. Data are presented as mean ± SD. 

Statistical analyses by Student’s t-test. *p < 0.05, ***p < 0.001.
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