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Abstract

Hippeastrum is a genus of ornamental plants with large, brightly colored flowers. Due to the

very high seed-setting rate of the hybridization of Hippeastrum, the large population of

hybrid progeny and the existence of superparent inheritance, it is difficult to trace the origin

of the varieties collected from the market during breeding. In this study, we analyzed the

chloroplast genomes of Hippeastrum ‘Milady’, H. alberti, and H. reticulatum using the Illu-

mina NovaSeq sequencing platform and generated full-length sequences of 158,067,

158,067, and 158,522 bp, respectively. All three genomes had the typical tetrad structure.

The large single copy, small single copy, and inverted repeat regions of H. reticulatum were

observed to be respectively 277, 138, and 20 bp longer than the corresponding regions of H.

‘Milady’ and H. alberti. The results of comparative analysis of simple sequence repeats

(SSRs), Ka/Ks ratios, codon preferences, and complete sequences of chloroplasts of these

three taxa and 14 other plant species were as follows. First, the chloroplast genomes of H.

‘Milady’, H. alberti, and H. reticulatum contain 209, 209, and 211 SSR sites, respectively,

most of which (123, 123, and 122, respectively) are single nucleotide repeats. Second, leu-

cine, arginine, and serine are the most frequently used amino acids in the three chloroplast

genomes. Third, H. ‘Milady’, H. alberti, and H. reticulatum are more closely related to Lycoris

and Narcissus than to Allium and Agapanthus. Our results will provide information on the

study of origins or relatedness of native species, and the identification of cultivars.

Introduction

Hippeastrum Herb. (Amaryllidaceae) is a genus of flowering perennials native to South Amer-

ica. The large, brightly colored flowers, which are borne on 50–70-cm long peduncles, can

appear at the same time as the leaves. Hippeastrum is of high ornamental value, and more than

300 varieties have been developed [1]. In addition, the plants are rich in alkaloids and have

thus been investigated for potential anti-anxiety, anti-convulsant, anti-depressive, and anti-
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toxic properties and for the development of related products [2–4]. Ploidy levels in Hippeas-
trum range from diploid to octoploid [5], and the seed set rate of hybrids is high. Researchers

in the Netherlands, the United States, South Africa, and other countries have therefore carried

out hybrid breeding work and selected many varieties for use as cut flowers, potted plants, and

garden ornamentals [5, 6]. The large number of selected varieties is increasingly hindering the

ability to identify and distinguish the original species, hybrid progeny, and cultivars of Hip-
peastrum, which must be performed on the basis of morphology given the lack of genomic

data, and therefore it is increasing the difficulty of parental selection in future breeding.

Research on the phylogenetic relationships, genetic diversity, and genetic background of Hip-
peastrum and the development of more identification methods and better breeding protocols

are thus urgently needed.

Apart from a genetic structural analysis of germplasm resources based on microsatellite

markers developed from transcriptome data [5], few studies have been carried out on the

genetic structure and phylogeny of Hippeastrum. Nuclear, chloroplast, and mitochondrial

genomes are widely exploited in phylogenetic analyses. Because of its simple structure, strong

conservation, and amenability to sequencing, the chloroplast genome has been used in genetic

structural and phylogenetic analyses of a wide range of plant taxa, including Chlorophytum
comosum [7], Monsteroideae [8], Hosta [9], Aloidendron [10], Allium [11], Astelia pumila [12],

Agavoideae [13], Fritillaria ussuriensis [14], Amomum kravanh [15], Talinum paniculatum
[16], and buckwheat [17]. The chloroplast genomes of various species of Amaryllidaceae have

also been published [11, 18–22]. Thus far, however, no research reports have appeared on Hip-
peastrum chloroplast genomes.

In this study, we carried out Illumina sequencing of the chloroplast genomes of H. ‘Milady’,

H. alberti, and H. reticulatum and compared their structural features. Using the sequenced

genomes, we also analyzed the phylogenetic relationships of these three taxa with Amaryllida-

ceae and other monocots. The results of our comparative analysis should lay a foundation for

future resource evaluation and phylogenetic analysis of the genus.

Materials and methods

Plant materials and extraction of genomic DNA

Genomic DNA was extracted from young leaves (100 mg) of H. ‘Milady’, H. alberti, and H.

reticulatum plants using a plant genomic DNA extraction kit (DP305; Tiangen Biotech, Bei-

jing, China). After mechanical (ultrasound) fragmentation, the extracted DNA was subjected

to purification, end repair, poly(A) tail addition, and ligation of sequencing adapters and then

analyzed by agarose gel electrophoresis for fragment size selection. PCR amplification was per-

formed to generate a sequencing library, and the qualified library was sequenced on the Illu-

mina NovaSeq platform with a sequencing read length of PE150.

Genome sequencing, assembly, and annotation

The paired-end Illumina raw reads were filtered using Trimmomatic [23] and then mapped to

the chloroplast genome of the reference species Xanthorrhoea preissi (GenBank accession no.

NC_035996.1), with Bowtie2 v2.2.4 [24] used to exclude reads of nuclear or mitochondrial ori-

gin. SPAdes 3.6.1 [25] and Sequencher 5.3.2 (Gene Codes Inc., Ann Arbor, MI, USA) were

used for de novo assembly to reconstruct the chloroplast genomes. A “genome walking” tech-

nique was adopted to remove gaps [26]. Jellyfish v.2.2.3 [27] was used to correct misassembled

contigs. CpGAVAS [28] was used for annotation of the chloroplast genomes, and a circular

representation was generated with OGDRAW [29].
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Ka/Ks analysis

Base variations resulting in amino acid changes are called non-synonymous mutations,

whereas those that do not are termed synonymous mutations. Non-synonymous mutations

are generally affected by natural selection. The ratio of the non-synonymous mutation rate

(Ka) to the synonymous mutation rate (Ks) indicates the selection effect; a value greater than 1

indicates that a gene is subject to positive selection, while a value less than 1 corresponds to the

existence of purifying selection. We aligned gene sequences in mafft v7.310 [30] and then cal-

culated gene Ka/Ks values using KaKs_Calculator v2.0 [31].

Repeat sequence analysis

The Perl script MISA [32] was used to detect microsatellites (mono-, di-, tri-, tetra-, penta-,

and hexanucleotide repeats) with the following unit size and minimum repeat thresholds: 10

repeat units for mononucleotide SSRs, 5 for dinucleotide SSRs, 4 for trinucleotide SSRs, and 3

each for tetra-, penta-, and hexanucleotide SSRs.

Codon usage and nucleotide diversity

For the identification of codon usage patterns, we used all CDSs present in the three Hippeas-
trum chloroplast genomes to estimate codon usage in CodonW with translational table = 11

[33].

The complete chloroplast genomes of five related species were downloaded from the NCBI

database: Lycoris radiata (MN158120.1), Narcissus poeticus (NC_039825.1), Agapanthus coddii
(NC_035971.1), Agave sp. Pires 2011 (KX931464.1), and Agave attenuata (NC_032696.1). The

chloroplast genome sequences of these five species and H. ‘Milady’, H. alberti, and H. reticula-
tum were first aligned in MAFFT v7 and then manually adjusted using BioEdit software. A

sliding window analysis was then conducted to evaluate the nucleotide variability (Pi) of the

chloroplast genome using DnaSP v5.1 [34]. The step size was set to 200 bp, and the window

length was set to 600 bp.

IR contraction and expansion

The chloroplast genome is a circular structure, and IR has four boundaries with LSC and SSC,

namely LSC-IRb, IRb-SSC, SSC-IRa and IRa-LSC. During genome evolution, IR boundaries

expand and contract, allowing certain genes to enter IR regions or single-copy regions.

IRscope (https://irscope.shinyapps.io/irapp/) was used for visualizing the genes’ differences

on the boundaries of the junction sites of the eight chloroplast genomes: Hippeastrum ‘Milady’

(MT162609), H. alberti (MT701522), H. reticulatum (MT701523), Lycoris radiata
(MN158120.1), Narcissus poeticus (NC_039825.1), Agapanthus coddii (NC_035971.1), Agave
sp. Pires 2011 (KX931464.1) and Agave attenuata (NC_032696.1).

Phylogenetic analysis

A phylogenetic tree were constructed by the maximum likelihood method using entire chloro-

plast genomes. The maximum likelihood analysis was performed using RAxML-HPC

BlackBox v.8.1.24 [35] at the CIPRES Science Gateway website based on the best-fit model of

evolution (GTR + G) with 1,000 bootstrap replicates. The GenBank accession numbers of the

analyzed plant genomes are as follows: Hippeastrum ‘Milady’ (MT162609), H. alberti
(MT701522), H. reticulatum (MT701523), H. vittatum (NC_052724.1), H. rutilum
(MT937175.1), Lycoris radiata (MN158120.1), Narcissus poeticus (NC_039825.1), Agapanthus
coddii (NC_035971.1), Agave sp. Pires 2011 (KX931464.1), Agave attenuata (NC_032696.1),
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Allium cepa (KF728080.1), Asparagus officinalis (KY364194.1), Cordyline indivisa
(KX822776.1), Milla biflora (KX822778.1), Aphyllanthes monspeliensis (KX790360.1), Aloe
vera (KX377524.1), Iris sanguinea (KT626943.1), Dendrobium bellatulum (MG595965.1),

Lilium lankongense (MK757466.1), Nomocharis pardanthina (NC_038193.1), Tulipa altaica
(NC_044780.1), Arabidopsis thaliana (NC_000932.1), and Celosia cristata (MK470118.1). The

latter two species were used as outgroups.

Results

Characteristics of Hippeastrum chloroplast sequences

The assembled chloroplast genome sequences of H. ‘Milady’ (GenBank accession no.

MT162609) and H. alberti (MT701522) were both 158,067 bp, which was 455 bp smaller than

that of H. reticulatum (MT701523; 158,522 bp). All three sequences had the same GC content

(37.93%) and the classical quadripartite structure, namely, a large single copy (LSC) region, a

small single copy (SSC) region, and a pair of inverted repeat (IR) regions (Table 1 and Fig 1).

The shared sequence structure and GC content of these three taxa suggest that the chloroplast

genome is highly conserved in the genus Hippeastrum. The three Hippeastrum chloroplast

genomes were all predicted to encode 133 genes: 86 protein-coding genes (PCGs), 38 transfer

RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 1 pseudogene (Table 1).

Ka/Ks ratios of species pairs

We compared the Ka/Ks values of 86 PCGs in the chloroplast genomes of H. ‘Milady’ or H.

alberti with those of H. reticulatum. The Ka/Ks ratios of ndhF and ndhD in the first two taxa

were greater than 1, namely, 1.78 and 1.87, respectively (S1 Table), which suggests the occur-

rence of positive selection along these lineages. In contrast, the Ka/Ks ratios of 15 PCGs were

less than 1 (S1 Table), indicative of purifying selection. Six of these genes (rpoC1, psbD, ycf3,

rps4, petD, and rpoA) had Ka/Ks ratios ranging from 0.1 to 0.3, which implies strong purifying

selection (S1 Table).

Analysis of sequence repeats

Numerous microsatellites (simple sequence repeats; SSRs) were detected in the three Hippeas-
trum chloroplast genomes, ranging from 209 in H. ‘Milady’ and H. alberti (S2 and S3 Tables)

to 211 in H. reticulatum (S4 Table). The most abundant SSRs were mono-nucleotide repeats,

whose proportions relative to the total number of chloroplast genome SSRs were similar

among H. ‘Milady’, H. alberti, and H. reticulatum: 58.9% (123), 58.9% (123), and 57.8% (122),

respectively (Fig 2a and 2b). Relative to the total number of SSRs, the proportion of mono-

nucleotides repeated 11 to 15 times was quite different among taxa, namely, 8.6%, 8.6%, and

4.7% in H. alberti, H. ‘Milady’, and H. reticulatum, respectively (Fig 2a and 2b). We also ana-

lyzed the distribution of SSRs in different regions of the chloroplast genomes of the three

Table 1. Feature of complete chloroplast genomes of Hippeastrum ‘Milady’, H. albertii and H. reticulatum.

Taxon Full LSC SSC IR Gene number PCGs tRNAs rRNAs pseudo

Length (bp) GC (%) length (bp) GC (%) length (bp) GC (%) length (bp) GC (%)

H. ‘Milady’ 158,067 37.93 86,166 35.96 18,271 32.2 26,815 43.05 133 86 38 8 1

H. albertii 158,067 37.93 86,166 35.96 18,271 32.2 26,815 43.05 133 86 38 8 1

H. reticulatum 158,522 37.93 86,443 35.98 18,409 32.16 26,835 43.05 133 86 38 8 1

https://doi.org/10.1371/journal.pone.0271335.t001
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Fig 1. Gene maps of Hippeastrum ‘Milady’, H. alberti, and H. reticulatum. Genes lying outside the circle are transcribed in a clockwise direction, whereas genes on the

inside are transcribed in a counterclockwise direction. Different colors denote known functional groups. The relative GC and AT contents of genomic regions are

respectively represented in the inner circle by dark and light gray. LSC, SSC, and IR indicate large single copy, small single copy, and inverted repeat regions, respectively.

https://doi.org/10.1371/journal.pone.0271335.g001
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Hippeastrum taxa. We found that the number and overall distribution of SSRs in IR regions

were the same in the three taxa. In the LSC and SSC regions, the number of SSRs in the chloro-

plast genomes of the three Hippeastrum taxa was slightly different, but their distribution trends

were similar (Fig 2c and 2d).

Fig 2. Simple sequence repeats (SSRs) in chloroplast genomes of three Hippeastrum taxa. (a–b) SSR types and

distributions in H. alberti (a), H. ‘Milady’ (a), and H. reticulatum (b). (c–d) Distribution of SSRs according to genomic

region in H. alberti (c), H. ‘Milady’ (c), and H. reticulatum (d). LSC, SSC, and IR are large single copy, small single copy, and

inverted repeat regions, respectively.

https://doi.org/10.1371/journal.pone.0271335.g002
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Codon usage and nucleotide diversity

Codon usage rates vary substantially in the genomes of different species and different organ-

isms. The nonrandom usage of synonymous codons, termed relative synonymous codon

usage (RSCU), is considered to be the comprehensive result of natural selection, species muta-

tion, and genetic drift. The three Hippeastrum chloroplast genomes all contained 66 codons

and a total of 26,390 codons, and their codon usage patterns were also the same. Leucine, argi-

nine, and serine, the most prevalent amino acids, were encoded by the most codons (six),

whereas tryptophan was encoded by the fewest. We identified 32 preferred (RSCU > 1.00) and

33 non-preferred (RSCU < 1.00) codons in the three Hippeastrum taxa (S5 Table).

Nucleotide diversity values ranged from 0.00000 to 0.04567, with a mean value of 0.01355.

Nucleotide diversity ranged from 0.00000 to 0.01837, with an average of 0.0095, in the IR

regions, and from 0.0000 to 0.04642, with an average of 0.01372, in the SSC region (S6 Table).

Six genes (ycf1, rpl22, rps15, matK, ndhF, and ndhD) had nucleotide diversity values higher

than 0.03550, and all except the last two had values above 0.04200. More than 100 mutations

were detected in nine genes: ycf1, rpoC2, ndhF, matK, ycf2, rpoB, ndhD, rpoC1, and accD (S6

Table and S1 Fig).

Global genome alignment and analysis

Analysis of SNPs and insertions/deletions (indels) in the chloroplast genome of H. ‘Milady’ or

H. alberti relative to that of H. reticulatum revealed 328 SNPs in H. ‘Milady’ and H. alberti,
including 131 located in protein-coding regions (S7 Table). We detected 87 indels, consisting

of 43 insertions and 41 deletions, in the chloroplast genome of H. ‘Milady’ or H. alberti relative

to that of H. reticulatum (S8 Table). Of these 87 indels, 36 (36.08%) were single-base indels,

corresponding to 19 insertions and 17 deletions (S8 Table). We used the SNP sites with Id

numbers 14/15, 20, and 21 in the S7 Table to design primers as follows by primer3: No 14/
15F-TAAGTTCCCATTCACGACCC, No 14/15R-CCCTACCTTATTGACCGCAA, No 20F-
CGACCGAATCGATCAAGAAT, No 20R- TTGGTCTCAACCGTACAGGA, and No 21F-
TCCTGTACGGTTGAGACCAA, No 21R- TAGGGCCTTCTGGTTCTTCA. After PCR amplifica-

tion, shanger sequencing was performed, and the sequences of the three species were com-

pared. The results found that the sequences of H. ‘Milady’ and H. alberti are identical, and

both of them are different from H. reticulatum at the SNP site (S2–S4 Figs.).

IR contraction and expansion

Detailed comparisons of the four junctions LSC-IRb (JLB), IRb-SSC (JSB), SSC-Ira (JSA), IRa-

LSC (JLA), and among six Amaryllidaceae chloroplast genomes (Hippeastrum ‘Milady’, H.

alberti, H. reticulatum, Lycoris radiata, Narcissus poeticus, and Agapanthus coddii) and two

Asparagaceae chloroplast genomes (Agave sp. Pires 2011 and Agave attenuata) are presented

in Fig 3. IR region of three Hippeastrum species chloroplast genomes was highly conserved,

and slightly structure variation were found in the JLB and JSB regions (Fig 3). The rpl22-rps19
gene were located at the junctions of the JLB regions in H. ‘Milady’, H. alberti, H. reticulatum,

L. radiata, N. poeticus, A. coddii, and A. sp. Pires 2011, and A. attenuate, and the rps19 gene is

located in the IRb region 52, 49, and 52 bp away from the JLB border in three Hippeastrum
chloroplast genomes, respectively (Fig 3). The trnN-ndhF genes were located in the junctions

of the JSB regions. The trnN gene is located in the IRb region ~1300 bp away from the JSB bor-

der in eight species except N. poeticus (3086 bp) (Fig 3). The ycf1 gene was located in the junc-

tions of the JSA regions in the eight species (Fig 3). However, the distance (2609 bp) from the

JSA boundary in the part of the ycf1 gene located in the SSC region in the chloroplast genome

of N. poeticus as significantly different (about 4400 bp) from the other seven species (Fig 3).
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The rps19-psbA genes were located in the junctions of JLA regions, and the rps19 gene was

located in the IRa region 3 bp away from the JLB border in L. radiate different from the other

7 species (Fig 3).

Phylogenetic analysis

To analyze phylogenetic relationships of Hippeastrum, we generated a multiple alignment of

full-length sequences of chloroplast genomes of H. ‘Milady’, H. alberti, H. reticulatum, and 18

other monocots plus two outgroups (Arabidopsis thaliana and Celosia cristata) and carried out

a maximum likelihood analysis. In the resulting tree shown in Fig 4, H. alberti and H. ‘Milady’,

which have identical chloroplast genome sequences, are clustered together, and the five

genomes of Hippeastrum form a distinct clade (Fig 4). All nine analyzed species in Amaryllida-

ceae group together, and H. ‘Milady’, H. alberti, and H. reticulatum are more closely related to

Fig 3. Comparison of the LSC, SSC, and IR regions among eight chloroplast genomes. Boxes above the main line indicate the adjacent border genes. The figure is not

to scale with respect to sequence length, and shows only relative changes at or near the IR/SC borders.

https://doi.org/10.1371/journal.pone.0271335.g003
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H. vittatum than to H. rutilum. According to the tree, H. ‘Milady’, H. alberti, and H. reticula-
tum are more closely related to Lycoris radiata and Narcissus poeticus than to Allium cepa and

Agapanthus coddii (Fig 4). The phylogenetic relationships of Amaryllidaceae to Asparagaceae,

Asphodelaceae, Iridaceae, and Orchidaceae revealed in the tree should provide a theoretical

basis for future evolutionary analyses of Amaryllidaceae species.

Discussion

In this study, the complete chloroplast genomes of H. ‘Milady’, H. alberti, and H. reticulatum
obtained by Illumina sequencing ranged from 158.1 to 158.5 kb in length. Comparative analy-

sis revealed that the number of PCGs and tRNAS in the three sequenced genomes is similar to

that of other species in Amaryllidaceae, including Lycoris (87 PCGs) [22] and Allium (81–87

PCGs) [36], but exceeds that of Celosia cristata (73 PCGs) [37]. The number of rRNAs in the

chloroplast genomes, eight, is conserved in Amaryllidaceae.

Our analysis of Ka/Ks ratios uncovered two genes undergoing positive selection in H.

‘Milady’/H. alberti relative to H. reticulatum: ndhD and ndhF, both of which are single-copy

genes located in the SSC region (Fig 1). We also selected Lycoris radiata, Narcissus poeticus,
and Agapanthus coddii from Amaryllidaceae as well as Agave sp. Pires 2011 and Agave attenu-
ata from Asparagaceae for a Ka/Ks ratio pairwise analysis. The results of this analysis suggest

Fig 4. Phylogenetic tree based on maximum likelihood analysis of sequences from whole chloroplast genomes of 18 plant species. Arabidopsis
thaliana and Celosia cristata were used as outgroups. Numbers at nodes are bootstrap support percentages.

https://doi.org/10.1371/journal.pone.0271335.g004
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that the number of positively selected genes between species in different families was greater

than that between species in the same family (S9–S18 Tables). These findings are in agreement

with the results of previous research on Chrysosplenium showing lower Ka/Ks ratios at the

chloroplast genome level within Chrysosplenium compared with non-Chrysosplenium species

[38], but they differ from the outcome of a study in Allium in which higher pairwise Ka/Ks

ratios were observed in Allium (Allioideae) species pairs than in non-Allioideae species pairs

[11]. Purifying selection constantly sweeps away deleterious mutations in a population. The

lower number of positively selected chloroplast genes in Amaryllidaceae compared with

Asparagaceae may be the evolutionary result of the preservation of the adaptive characteristics

of Amaryllidaceae species.

The GC content of plant species ranged from 19.5% to 42.1% [39]. In this study, we

observed a lower GC content in the chloroplast genomes of H. ‘Milady’, H. alberti, and H. reti-
culatum, which is similar to Lycoris [22] and Allium [36]. AT-mutation pressure or AT-biased

gene conversion translational efficiency may lead to the paucity of G and C nucleotides

observed in plastid genomes [40, 41]. Because they have three hydrogen bonds, GC pairs are

more stable than AT pairs, which have only two hydrogen bonds [42].

Expansion and contraction at the junction regions of IRs are the main explanations for the

size variation and are common evolutionary events among chloroplast genomes in different

species [43–45]. In this study, we compared three Hippeastrum species with two species of

other genus of Amaryllidaceae and two species of Asparagaceae using chloroplast genomes. It

was found that the expansion of IR regions resulted in the IR regions of Narcissus poeticus
being more than a kilo base longer than the other seven species sequences selected. At the

same time, we also found that the distance between rps19 gene and JLA was shortened in JLA

regions. These various regions in the chloroplast genome may provide us with more informa-

tion in genetic structural analysis. Our phylogenetic analysis clearly revealed that 6 species of

Amaryllidaceae clustered well into one clade and 5 Hippeastrum species clustered well into

one clade.
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