
RESEARCH ARTICLE

Passive acoustic monitoring for detecting the

Yellow-bellied Glider, a highly vocal arboreal

marsupial

Desley A. WhissonID
☯*, Freya McKinnon, Matthew LefoeID, Anthony R. RendallID

☯

Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood,

Victoria, Australia

☯ These authors contributed equally to this work.

* dwhisson@deakin.edu.au

Abstract

Passive acoustic monitoring (PAM) is increasingly being used for the survey of vocalising

wildlife species that are otherwise cryptic and difficult to survey. Our study aimed to develop

PAM guidelines for detecting the Yellow-bellied Glider, a highly vocal arboreal marsupial

that occurs in native Eucalyptus forests in eastern and south-eastern Australia. To achieve

this, we considered the influence of background noise, weather conditions, lunar illumina-

tion, time since sunset and season on the probability of detecting vocalisations. We

deployed Autonomous Recording Units (ARUs) at 43 sites in the Central Highlands of Victo-

ria during two periods: spring/summer (October 2018 to January 2019), and autumn/winter

(May to August 2019). ARUs were programmed to record for 11 hours from sunset for 14

consecutive days during each period. Background noise resulted from inclement weather

(wind and rain) and masked vocalisations in spectrograms of the recordings, thus having

the greatest influence on detection probability. Vocalisations were most common in the four

hours after sunset. Rainfall negatively influenced detection probability, especially during the

autumn/winter sampling period. Detection of Yellow-bellied Gliders with PAM requires

deploying ARUs programmed to record for four hours after sunset, for a minimum of six

nights with minimal inclement weather (light or no wind or rain). The survey period should be

extended to 12 nights when rain or wind are forecast. Because PAM is less labour intensive

than active surveys (i.e., spotlighting and call playbacks with multiple observers and several

nights’ survey per site), its use will facilitate broad-scale surveys for Yellow-bellied Gliders.

Introduction

The imperfect detection of wildlife remains a challenge for surveying most species, particularly

those species that are cryptic, have large home ranges, and occur at low densities or in inacces-

sible areas [1]. Recording a ‘false absence’ is a key issue associated with many survey methods,

occurring by random chance, or due to survey design, observer experience or weather condi-

tions [2, 3]. False absences can have significant consequences for species-habitat analyses
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resulting in ineffective impact assessments and poor implementation of conservation measures

[4, 5]. The selection of a survey method is therefore a critical decision that not only influences

the accuracy of the data collected, but also research and management outcomes [6].

In recent years, remote sensing methods such as camera trapping (see [7] for a review), and

thermal infrared surveys with Unmanned Aerial Vehicles (e.g. [8]) have become more popular

for wildlife survey. Passive acoustic monitoring (PAM) is a remote sensing method that is

being applied more frequently for the survey of species that conspicuously advertise their pres-

ence, identity, and behavioural traits through vocalisations [9, 10]. With this method, autono-

mous recording units (ARUs) programmed to record when the species of interest is likely to

be vocalising, are deployed at a site for an extended survey period [11, 12]. Recordings are then

searched (either manually or with an automated detection and classification algorithm) for

vocalisations of the species. PAM is effective for use in difficult terrain and vegetation, can be

applied across large spatial and temporal scales, is non-invasive, and may improve detection

probability of species that are small, nocturnal, elusive or uncommon [1, 12–14].

PAM has long been used for a wide range of taxa including birds [13, 14], bats [15],

amphibians [16, 17], whales [18] and dolphins [19]. However, its application to determining

presence or abundance of vocalising terrestrial mammals is relatively recent. Terrestrial mam-

mals for which PAM has been applied include chimpanzees (Pan troglodytes; [20]), Golden

Jackals (Canis aureus; [21]), Sika Deer (Cervus nippon; [22]) and koalas [23, 24]. There is con-

siderable potential to develop PAM for other terrestrial mammals for which traditional survey

methods are logistically challenging or result in high rates of false absences. In Australia, PAM

may be effective for detecting highly vocal arboreal possum and glider species including the

Yellow-bellied Glider (Petaurus australis), a species that is listed as ‘Near Threatened’ by the

IUCN [25], and that lives in areas subject to increasing anthropogenic activity.

The Yellow-bellied Glider is a medium-sized (400–750 g) arboreal, gliding marsupial that

has a widespread but patchy distribution in eastern and south-eastern mainland Australia [26].

It inhabits mature Eucalyptus forests and woodlands that provide tree hollows for denning,

and food resources (eucalypt sap, nectar, pollen, manna, honeydew, and invertebrates). Yel-

low-bellied Gliders live in small family groups of two to six individuals which have large ranges

of between 25 and 85 hectares encompassing dispersed and seasonally varying food resources,

and with little overlap between family groups [27–30]. Consequently, they may occur at low

population densities (0.06/hectare) even in suitable habitat [29–31].

The Yellow-bellied Glider is one of Australia’s most vocal marsupials, with vocalisations

thought to play a role in territory defence [32]. Gliders call as they travel in pairs or groups

between food trees, resulting in a positive correlation between gliding activity and calling rate

[32, 33]. A typical full call lasts for up to four seconds and comprises two shrieks and a long

gurgle. These calls are loud, distinctive, and can be heard by human observers at distances of

up to 400 m [33–35]. Shorter calls of 0.75 seconds and comprising moans and gurgles also

occur [33]. Calling activity is usually most frequent during the first three hours after dusk, cor-

responding to the period when gliders are emerging from their dens [32, 33, 36]. It may vary

between nights due to rainfall [34], temperature [4], moon brightness [4], and the type of food

resources being utilised [34]. On nights of heavy rain, Yellow-bellied Gliders often remain in

their dens and therefore do not call [34]. When feeding on highly clumped food resources (i.e.,

sap, honeydew, manna, or nectar), Yellow-bellied Gliders spend little time gliding, thus result-

ing in less calling [34].

‘Active’ but not passive listening for Yellow-bellied Glider vocalisations or calls has long

been used as a method for determining Yellow-bellied Glider presence or abundance at a site

[4, 32, 33, 37, 38]. Two nocturnal survey methods are commonly used: (1) broadcasting Yel-

low-bellied Glider calls or Powerful Owl calls and listening for a response, and (2) listening for
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calls while searching with spotlights for Yellow-bellied Gliders (either a timed search or search-

ing in a fixed area or along a transect). Multiple surveys per site have been recommended due

to the potential influence of weather conditions and moonlight on Yellow-bellied Glider call-

ing activity [37]. Consequently, these survey methods have high labour costs, and nocturnal

surveys carry risks for observers. Developing a cost-effective survey method to determine pres-

ence of Yellow-bellied Gliders at a site is important for understanding the impacts of anthro-

pogenic disturbance on the species, and for identifying population declines [38].

The aim of our study was to develop guidelines for using PAM for presence/absence surveys

of Yellow-bellied Gliders, based on an understanding of the factors influencing Yellow-bellied

Glider calling behaviour, and factors influencing the probability of detecting calls in record-

ings. Based on previous Yellow-bellied Glider research, we considered that detection probabil-

ity would be influenced by time of night, weather conditions (wind, rain, and temperature),

moonlight, and season (due to its influence on food supply and Yellow-bellied Glider behav-

iour). We also considered the effect of ambient noise due to inclement weather, on our ability

to detect vocalisations in recordings.

Materials and methods

Study area

We conducted our study in the Toolangi State Forest in the Central Highlands of Victoria

(37.5377˚ S 145.5189˚ E). The area comprises tall wet or damp Eucalyptus forest that is heavily

logged (clearfell and salvage logging methods), resulting in a mosaic of different forest ages

[39, 40]. The mean annual rainfall for the area is 1352.1 mm, with mean minimum and maxi-

mum temperatures of 7.4 and 15.8˚ C respectively [41].

Bioacoustic surveys

We selected 43 sites with a minimum of 800 m between them to ensure that a Yellow-bellied

Glider calling at one site would not be detected at a neighbouring site. This distance was cho-

sen based on reports of Yellow-bellied Glider calls carrying up to 400 m [32]. All sites were sur-

veyed from October 2018 to January 2019 (spring/summer) and from May to August 2019

(autumn/winter).

At each site, one ARU (Songmeter: SM4, Wildlife Acoustics, Maynard, Massachusetts,

USA) was strapped to a tree, at 1.5 m above the ground, and left in place for one sampling

period of 14 consecutive days in each season. This deployment period was chosen as feasible

for a standard survey method and long enough to detect Yellow-bellied Gliders if present.

ARUs comprised two built-in omnidirectional, low-noise stereo microphones, were powered

with four internal batteries (1.5 V, D-Cell, alkaline), and fitted with Secure Digital (SD) cards

(two 32 GB cards or one 64 GB card). Sample rate was set to 24 kHz, gain to 16 dB, and no

high-pass filters were specified. ARUs were programmed to record continuously from 19:00 h

to 07:00 h in spring/summer 2018, and from 17:00 h to 04:00 h in autumn/winter 2019. We

reduced the period of recording per night during autumn/winter by one hour to ensure that

we had enough battery power for a 14-day sampling period. The literature on Yellow-bellied

Glider calling activity and our preliminary analysis of the spring/summer recordings suggested

that we would most likely detect vocalisations in the earlier hours of the evening. Recordings

were saved as one-hour files.

For each night of ARU deployment, we recorded lunar illumination (%), minimum and

maximum nightly temperature (˚C), and rainfall (mm). These variables are known to influ-

ence the activity of Yellow-bellied Gliders [4, 32, 33, 36, 42]. Lunar illumination was calculated

through the ’lunar’ package in R [43] and represents the proportion of lunar illumination for
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any specific date and time. We calculated the lunar illumination at midnight of each sampling

occasion. Data for minimum and maximum nightly temperatures and rainfall in 30-min inter-

vals for the three closest weather stations (Scoresby Research Institute, Ferny Creek and Cold-

stream) were purchased from the Bureau of Meteorology. We averaged nightly data for each

variable across all three stations and determined mean minimum and maximum temperatures

and maximum rainfall for each sampling night.

Audio data processing

We manually searched spectrograms of our recordings to find Yellow-bellied Glider vocalisations

(Fig 1; Audacity, Version 2.1.1, http://audacity.sourceforge.net/). We used a Hanning window

with a 1024 Hz window size. We used the ‘Frequency’ algorithm with a linear scale of 0 to 8000

Hz, gain set to 20 dB and frequency gain set to 0 dB/dec. We viewed spectrograms in a 5-minute

window and listened to any noise that might be Yellow-bellied Glider vocalisations. We chose

these settings based on previous research with koalas [23] and after viewing a sample of recordings

that contained Yellow-bellied Glider vocalisations. We recorded presence/absence of vocalisations

per hour. We scored inclement weather for each hour from 0 to 3 (0 = calm conditions with 0%

spectrogram containing ambient noise, 1 = wind and rain causing ambient noise in 1–20% of

spectrogram, 2 = wind and rain causing high levels of ambient noise in 21–50% of spectrogram;

and 3 = wind and rain causing high levels of ambient noise in>50% of spectrogram; Fig 2). We

averaged the hourly scores for each night to provide a nightly inclement weather score.

Data analysis

We used a Generalised Additive Mixed Model (GAMM) with a binomial distribution to exam-

ine the influence of time of night, season, and the interaction of time and season on the pres-

ence of vocalisations in each recorded hour per site. A mixed model was used to account for

repeat sampling at sites. Time of sunset varied from 19:37 h to 20:40 h in spring/summer and

from 17:06 h to 17:30 h in autumn/winter. We therefore standardised time as the hour since

sunset with the hour that included sunset coded as ‘0’ and subsequent hours coded from 1 to

11. A cubic regression spline with shrinkage was applied to hour since sunset to account for

non-linear patterns. Models were validated through visual inspection of residuals plotted

against the fitted values and against each parameter within the model. Akaike Information Cri-

terion backward selection was used to determine the most parsimonious model; where the

least influential variable is dropped sequentially until the model no longer improves [44]. All

models having a delta AIC<2 were considered to have support.

Prior to occupancy modelling, we checked for correlations between variables collected dur-

ing each sampling period. Maximum nightly temperature was highly correlated with mini-

mum nightly temperature (rp = 0.92) and therefore was not included in our models. All other

variables had correlation coefficients <0.6. All variables were scaled for inclusion within mod-

els. We used dynamic occupancy models and nightly presence/absence of vocalisations per site

to determine the influence of season, lunar illumination (proxy for moonlight), nightly mini-

mum temperature, nightly rainfall, inclement weather score and the interactions of season

with each of rainfall, nightly minimum temperature, and inclement weather score, on the

detection probability of Yellow-bellied Glider vocalisations (Table 1). Dynamic occupancy

models were preferred over single season models due to the time interval (up to four months)

between repeated sampling of the same site. Site occupancy, colonisation probability and

extinction probability were held constant in all models. AIC backward selection was used as

for our GAMMs to determine the most parsimonious model. We validated our models using

the Mackenzie-Bailey fit statistic [45]. Model validation suggested that our data was slightly
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over-dispersed (χ2 = 60583.46, p = 0.081, ĉ = 0.168). We therefore included an over-dispersion

parameter in our models and used Quasi Akaike Information Criterion corrected for small

sample sizes [46]. To inform appropriate survey periods for Yellow-bellied Gliders we used

our best supported models to predict the cumulative number of survey nights required to be

95% confident of a site-specific absence.

Fig 1. Spectrograms showing the variation in Yellow-bellied Glider vocalisations, including (A) full vocalisations comprising two shrieks and

a long gurgle, given when not gliding, (B) non-gliding shrieks only, and (C) several moans, usually given just after gliding out of a tree,

followed by a partial shriek [33].

https://doi.org/10.1371/journal.pone.0252092.g001
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We further considered the influence of reducing the number of sampling hours per night to

the first 3 or 4 hours from sunset (period of high calling activity of Yellow-bellied Gliders;

[32]) on nightly detection probability.

Fig 2. Spectrograms of recordings (one-hour duration) showing the influence of weather conditions on spectrogram clarity: (A) calm

conditions with 0% spectrogram containing ambient noise, inclement weather score (IWS) = 0; (B) wind and rain causing ambient

noise in 1–20% of spectrogram, IWS = 1; (C) wind and rain causing high levels of ambient noise in 21–50% of spectrogram, IWS = 2;

and (D) wind and rain causing high levels of ambient noise in>50% of spectrogram, IWS = 3.

https://doi.org/10.1371/journal.pone.0252092.g002

Table 1. The nightly mean, minimum and maximum values for inclement weather score, and climatic variables for the spring/summer and autumn/winter sam-

pling periods, that were included in the dynamic occupancy models for Yellow-bellied Glider vocalisations.

Season Parameter Inclement Weather Score Rainfall (mm) Minimum nightly temperature (˚C) Lunar illumination (%)

Spring/summer Mean 1.5 3.9 10.1 0.5

Minimum 0.1 0 3.0 0

Maximum 3 26.3 16.4 1

Autumn/winter Mean 1.4 2.1 5.7 0.5

Minimum 0 0 2 0

Maximum 3 12.2 9.5 1

https://doi.org/10.1371/journal.pone.0252092.t001
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Cumulative detection probability for a sampling period was calculated as:

Cumulative detection probability ¼ 1 � 1 � p1ð Þ � 1 � p2ð Þ . . . ð1 � pnÞ

where p1 is the nightly detection probability and n is the total number of survey nights.

All analyses were conducted in R [47] with GAMMs run in ’gamm4’ [48], dynamic occu-

pancy models in ’unmarked’ [49] and model selection and validation performed with ’AICc-

modavg’ [50].

Ethics statement

This study was conducted with the approval of the Deakin University Animal Ethics Commit-

tee (B24-2018) and under permits issued by the Department of Environment, Land, Water

and Planning (Wildlife Act permit 10008841; Forests Act permit HUME-2018-01).

Results

Yellow-bellied Glider vocalisations were present in 5.3% (284 of 5390) of survey hours. Naïve

occupancy was 22 (51%) sites across both seasons; with 8 (19%) sites in both seasons, 19

(44.2%) sites in spring/summer and 11 (25.6%) sites in autumn/winter. At sites where gliders

were detected, vocalisations were recorded during a mean 3.7 ± 0.7 SE (range 1 to 9) of survey

nights in spring/summer, and 5.6 ± 1.00 SE (range 1 to 10) of survey nights in autumn/winter.

Nightly and seasonal pattern of vocalisations

The presence of vocalisations in a recording was influenced by hour since sunset and the inter-

action of hour since sunset with season (AIC ω = 0.92; S1 Table). In both seasons, the number

of sites with vocalisations present increased to reach a peak two to three hours after sunset. In

spring/summer, the number of sites with vocalisations declined after this peak, whereas in

autumn/winter, there was no discernible change (Fig 3). Count-based metrics suggest that the

trend in vocalisations was similar between seasons (S1 Fig); however, this may have been biased

by sites with numerous vocalisations. We were unable to account for this by using proportional

metrics due to limited sample size. This model explained 18.1% of the variation in these data.

Detection probability

Our best supported model included the inclement weather score, and the interaction of season

with rainfall (S2 Table). The inclement weather score had a negative influence on detection prob-

ability (β = -0.678, 95% CI: -0.392 to -0.964). Nightly detection probability declined from approx-

imately 60% when the inclement weather score was zero to almost zero when there was a high

inclement weather score (score = 3; Fig 4). There was no support for an influence of minimum

nightly temperature (Δ QAIC = 2.89) or lunar illumination (Δ QAIC = 20.46, S2 Table) on detec-

tion probability. The interaction of season with rainfall had an influence on detection probability

(β = 1.933, 95% CI: 0.706 to 3.160); rainfall reduced detection probability in autumn/winter

more than in spring/summer (Fig 5 and Table 2). When considered as a main effect, increasing

rainfall reduced detection probability (β = -2.193, 95% CI: -3.37 to -1.02). Season alone had no

discernible influence on detection probability (β = 0.184, 95% CI: -0.51 to 0.87).

Influence of inclement weather and rainfall on surveys effectiveness

When the mean nightly score for inclement weather was zero, five survey nights were required

to be 95% confident of a site-specific absence (Fig 6 and Table 2). The number of survey nights

doubled when the mean inclement weather score increased from 0 to 1, and then increased
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to� 47 nights when the mean inclement weather score was 3. Rainfall also increased the num-

ber of sampling nights required to 13 nights in spring/summer, and to 15 nights in autumn/

winter (Table 2).

Optimising sampling efficiency

Recording for the first four hours (including the hour in which sunset occurred) per night had

only a slightly lower nightly detection probability than sampling for 12 h per night, but the

greatest cost-effectiveness for processing of recordings in both seasons (Table 3). When

recording for four hours per night, an estimated total of 48 h of recording is required in

spring/summer (i.e., 12 nights with four hours per night), and 24 h is required in autumn/win-

ter (i.e., six nights with four hours per night) to be 95% confident of a site-specific absence of

Yellow-bellied Gliders.

Discussion

We demonstrate that Passive Acoustic Monitoring (PAM) is an effective survey method for

detecting the presence of Yellow-bellied Gliders, a highly vocal species that commonly occurs

at low population densities [29–31]. PAM allows for multiple sites to be surveyed at the same

time, and only requires one person to deploy and retrieve the ARUs, thereby being more cost-

effective than traditional methods that rely on site visits over multiple nights. We found that

Fig 3. The number of sites (with 95% confidence intervals in grey) with Yellow-bellied Glider (Petaurus australis) vocalisations present per hour throughout the

night in spring/summer and autumn/winter.

https://doi.org/10.1371/journal.pone.0252092.g003
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Fig 4. Influence of the inclement weather score on detection probability of Yellow-bellied Gliders (Petaurus
australis). The score ranged from 0 (inclement weather score = 0) to 3 (inclement weather score = 3). 95% confidence

intervals are shaded grey.

https://doi.org/10.1371/journal.pone.0252092.g004

Fig 5. The influence of rainfall on detection probability of Yellow-bellied Gliders (Petaurus australis) during (a) spring/summer and (b) autumn/winter. 95%

confidence intervals are shaded grey.

https://doi.org/10.1371/journal.pone.0252092.g005
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Yellow-bellied Glider calls are easily detected in spectrograms of recordings when there is min-

imal ambient noise caused by rain and wind. Although manually searching spectrograms of

recordings for vocalisations is an additional survey cost, it only takes a trained observer around

one minute to process a one-hour recording. Automating call detection by developing an auto-

mated detection and classification algorithm would reduce the processing time but may be

challenging for this species because of the wide variation in its calls [51].

Table 2. The number of survey nights required to be 95% confident of a site-specific absence of Yellow-bellied Gliders, under varying conditions of season, inclem-

ent weather score and rainfall.

Variable Value Nightly detection probability (p) Nights required to be 95% confident of a site-

specific absence

Mean Minimum Maximum

Mean nightly inclement weather score 0 0.48 5 3.2 6.9

1 0.28 10 7.0 12.2

2 0.14 21 13.4 31.0

3 0.06 47 22.6 98.8

Rainfall: spring/summer Minimum (0 mm) 0.24 11 8.2 14.7

Mean (3.9 mm) 0.22 13 9.2 16.5

Maximum (26.3 mm) 0.06 51 7.2 416.1

Rainfall: autumn/winter Minimum (0 mm) 0.42 6 4.0 7.9

Mean (2.1 mm) 0.19 15 8.2 25

Maximum (12.2 mm) <0.001 >1000 - -

https://doi.org/10.1371/journal.pone.0252092.t002

Fig 6. The relationship between the probability of detecting Yellow-bellied Glider vocalisations and the number

of sampling nights with no inclement weather (mean score of 0; solid line) and frequent inclement weather (mean

score of 3; dashed line). 95% confidence intervals are shaded grey.

https://doi.org/10.1371/journal.pone.0252092.g006
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Site occupancy in our study (26% in autumn/winter, and 44% in spring/summer) was simi-

lar to that recorded previously for Mountain Ash forest in the Central Highlands (33% occu-

pancy reported in [52]). Absence of Yellow-bellied Gliders from many sites may be due to the

area’s long history of timber harvest that has fragmented and reduced the total area and patch

size of old-growth forest. Hollow-bearing trees and foods preferred by Yellow-bellied Gliders

may be more abundant in old-growth forest than younger stands [52]. Large patches also are

important in aiding dispersal [52]. Research to better understand the factors influencing site

occupancy by Yellow-bellied Gliders in our study region is a topic for further research, and

may be facilitated through the application of PAM, as developed in this study.

In both sampling seasons, we found that Yellow-bellied Glider calls were most common in

the first four hours after sunset [28, 32, 53]. Yellow-bellied Gliders call as they emerge from

their dens [32], and when gliding between trees. A second peak in calling also has been

observed at sunrise when gliders are returning to their dens [32]. We recorded until after sun-

rise in the spring/summer sampling period but for unknown reasons, did not observe a second

peak. We therefore recommend only recording during the first four hours after sunset, which

both saves power and digital storage, and results in fewer recordings that must be processed.

Although Yellow-bellied Gliders are known to vocalise year-round, we observed higher

abundance of vocalisations in autumn/winter than in spring/summer. This may have been due

to seasonal variation in gliding behaviour due to the distribution and quality of food resources

[28, 34, 35, 53]. Yellow-bellied Gliders prefer to feed on sap and nectar, but they supplement

their diets with arthropods which provide an important source of protein [28]. Because

resources such as sap and nectar tend to be clumped, Yellow-bellied Gliders spend less time

gliding (and therefore calling) when feeding on this resource [4, 34]. We did not assess food

resource availability in our study area, but it is possible that season influenced the type and dis-

tribution of food resources used (e.g. [53, 54]) and hence calling behaviour.

Of the other variables we tested (i.e., rainfall, minimum nightly temperature, lunar illumi-

nation), only rainfall had an influence on calling activity, negatively influencing detection

probability. Rainfall previously has been identified as a factor influencing detection probability

[4], and surveying when it is raining is usually avoided [37, 38]. In our study, the negative

influence of rainfall was more pronounced during autumn/winter than spring/summer. This

may have been a thermoregulatory response to the combination of rain and lower tempera-

tures. Yellow-bellied Gliders may have a limited energy budget due to their diet; it is therefore

not surprising that its activity (and hence calling activity and detection probability) is lower

under wet and cold weather conditions when the energetic cost of thermoregulation may be

higher. We did not record any influence of temperature on calling activity; however, our

Table 3. Nightly detection probability, with the number of sample nights and total hours of recording required to be 95% confident of a site-specific absence of Yel-

low-bellied Gliders associated with recording for 3 h, 4 h and 12 h per night in spring/summer and autumn/winter.

Season Hours recorded per night (h) Nightly detection probability Nights required to be 95% confident

of a site-specific absence

Number of sample hours required

Mean Minimum Maximum

Spring/summer 3 0.10 27.2 15.7 48.1 84

4 0.22 12 8.8 16.6 48

12 0.23 9.6 7.6 12.3 120

Autumn/winter 3 0.32 7.8 5.6 10.9 24

4 0.42 5.5 4.2 7.4 24

12 0.40 5.8 4.6 7.5 72

Estimates assume that recording starts at the beginning of the hour that includes sunset.

https://doi.org/10.1371/journal.pone.0252092.t003
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temperature data was obtained from nearby weather stations which may not accurately reflect

local temperatures. Similarly, our estimate of lunar illumination may not have accurately rep-

resented the amount of moonlight at each site, which may have influenced our results. Future

studies should consider recording these variables at the site level.

Inclement weather resulting in high levels of ambient noise is a factor that must be consid-

ered in the use of PAM for survey of any terrestrial species (e.g. [23]). Ambient noise limits an

observer’s ability to see calls in spectrograms, and the effectiveness of automated call recogni-

tion [55]. In our study, inclement weather score had a considerable influence on Yellow-bellied

Glider detection probability. For PAM to be effective as a survey method for Yellow-bellied

Gliders, conducting surveys during periods of inclement weather should be avoided.

At many of the sites where we detected Yellow-bellied Gliders, calling activity was low with

vocalisations detected in fewer than half of the survey nights, and sometimes in just a few one-

hour recordings. Despite this, we found that an ARU programmed to record continuously for

four hours from sunset and deployed at a site for six nights in autumn/winter and 12 nights in

spring/summer provides 95% confidence of a site-specific absence of Yellow-bellied Gliders.

Conclusions

Despite concerns that populations of Yellow-bellied Gliders are declining, there remains a pau-

city of knowledge on the population dynamics and status of individual populations. Imple-

mentation of PAM for Yellow-bellied Gliders will allow for more efficient and robust

assessment of habitat use and the influence of threatening processes on populations. For PAM

to be effective for determining the presence or absence of Yellow-bellied Gliders in a site and

at any time of year, we recommend deploying ARUs for six nights of good weather conditions

(calm or light wind, and no rain). If the weather forecast includes some nights of windy or wet

conditions, this survey period should be increased accordingly. Extended periods of poor

weather conditions should be avoided. ARUs should be programmed to record for four hours

beginning from the hour of sunset. Based on Yellow-bellied Glider calls being audible to

approximately 400 m, each ARU will have a detection area of around 50 hectares. Further

research is necessary to determine if PAM can be modified to estimate abundance of Yellow-

bellied Gliders, either by determining the relationship between calling rate and abundance

(e.g. elephants, [56]; some bird species, [57], or using arrays of ARUs to determine the location

of calls for distance-based abundance estimates [58].
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group ranging and territory use: a case study of wild chimpanzees (Pan troglodytes). Front Zool. 2016;

13: 34. https://doi.org/10.1186/s12983-016-0167-8 PMID: 27507999

21. Comazzi C, Mattiello S, Friard O, Filacorda S, Gamba M. Acoustic monitoring of golden jackals in

Europe: setting the frame for future analyses. Bioacoustics. 2016; 25: 267–278. https://doi.org/10.1080/

09524622.2016.1152564

22. Enari H, Enari HS, Okuda K, Maruyama T, Okuda KN. An evaluation of the efficiency of passive acous-

tic monitoring in detecting deer and primates in comparison with camera traps. Ecol Indic. 2019; 98:

753–762. https://doi.org/10.1016/j.ecolind.2018.11.062

23. Hagens SV, Rendall AR, Whisson DA. Passive acoustic surveys for predicting species’ distributions:

Optimising detection probability. PLoS One. 2018;13. https://doi.org/10.1371/journal.pone.0199396

PMID: 30020938

24. Law BS, Brassil T, Gonsalves L, Roe P, Truskinger A, McConville A. Passive acoustics and sound rec-

ognition provide new insights on status and resilience of an iconic endangered marsupial (koala Phas-

colarctos cinereus) to timber harvesting. PLoS One. 2018;13. https://doi.org/10.1371/journal.pone.

0205075 PMID: 30379836

25. Woinarski J, Burbidge AA, Johnson CN. Petaurus australis. IUCN Red List of Threatened Species.

IUCN; 2014. https://doi.org/10.2305/iucn.uk.2016-1.rlts.t16730a21959641.en

26. Lindenmayer DB. Gliders of Australia: a natural history. Sydney: University of New South Wales

Press; 2002.

27. Henry SR, Craig SA. Diet, ranging behaviour and social organisation of the Yellow-bellied Glider

(Petaurus australis) in Victoria. In: Smith AP, Hume ID, editors. Possums and Gliders. Chipping Norton,

NSW: Surrey Beatty & Sons in association with the Australian Mammal Society; 1984. pp. 331–341.

PLOS ONE Passive acoustic survey of Yellow-bellied Gliders

PLOS ONE | https://doi.org/10.1371/journal.pone.0252092 May 25, 2021 14 / 16

https://doi.org/10.1111/1365-2664.12432
https://doi.org/10.3390/s16010097
http://www.ncbi.nlm.nih.gov/pubmed/26784196
https://doi.org/10.1111/j.1365-2664.2011.01993.x
https://doi.org/10.1371/journal.pone.0052542
https://doi.org/10.1371/journal.pone.0052542
http://www.ncbi.nlm.nih.gov/pubmed/23326339
https://doi.org/10.1111/brv.12001
http://www.ncbi.nlm.nih.gov/pubmed/23190144
https://doi.org/10.1111/2041-210x.12384
https://doi.org/10.1890/12-2088.1
http://www.ncbi.nlm.nih.gov/pubmed/24147413
https://doi.org/10.1111/aec.12143
https://doi.org/10.1111/j.2041-210x.2011.00177.x
https://doi.org/10.1111/j.2041-210x.2011.00177.x
https://doi.org/10.1080/00222938100770491
https://doi.org/10.1577/t04-134.1
https://doi.org/10.1121/1.3089590
http://www.ncbi.nlm.nih.gov/pubmed/19354374
https://doi.org/10.1017/s0025315400031477
https://doi.org/10.1017/s0025315400031477
https://doi.org/10.1186/s12983-016-0167-8
http://www.ncbi.nlm.nih.gov/pubmed/27507999
https://doi.org/10.1080/09524622.2016.1152564
https://doi.org/10.1080/09524622.2016.1152564
https://doi.org/10.1016/j.ecolind.2018.11.062
https://doi.org/10.1371/journal.pone.0199396
http://www.ncbi.nlm.nih.gov/pubmed/30020938
https://doi.org/10.1371/journal.pone.0205075
https://doi.org/10.1371/journal.pone.0205075
http://www.ncbi.nlm.nih.gov/pubmed/30379836
https://doi.org/10.2305/iucn.uk.2016-1.rlts.t16730a21959641.en
https://doi.org/10.1371/journal.pone.0252092


28. Craig SA. Social organization, reproduction and feeding behaviour of a population of Yellow-bellied

Gliders, Petaurus australis (Marsupialia: Petauridae). Wildl Res. 1985; 12: 1. https://doi.org/10.1071/

wr9850001

29. Goldingay RL, Kavanagh RP. Home-range estimates and habitat of the Yellow-bellied Glider (Petaurus aus-

tralis) at Waratah Creek, New South Wales. Wildl Res. 1993; 20: 387. https://doi.org/10.1071/wr9930387

30. Goldingay RL. Socioecology of the Yellow-bellied Glider (Petaurus australis) in a coastal forest. Aust J

Zool. 1992; 40: 267. https://doi.org/10.1071/zo9920267

31. Goldingay RL, Quin DG. Components of the habitat of the yellow-bellied glider in North Queensland. In:

Goldingay RL, Jackson SM, editors. The biology of Australian possums and gliders. Sydney: Surrey

Beatty; 2004. pp. 369–375.

32. Goldingay RL. Loud calls of the Yellow-bellied Glider, Petaurus australis—Territorial behavior by an

arboreal marsupial. Aust J Zool. 1994; 42: 279. https://doi.org/10.1071/zo9940279

33. Kavanagh R, Rohan-Jones WG. Calling behaviour of the Yellow-bellied Glider, Petaurus australis

Shaw (Marsupialia: Petauridae). Aust Mammal. 1982; 5: 95–112.

34. Goldingay RL. Time budget and related aspects of the foraging behavior of the Yellow-bellied Glider,

Petaurus australis. Wildl Res. 1989; 16: 105. https://doi.org/10.1071/wr9890105

35. Goldingay RL. The behavioural ecology of the gliding marsupial, Petaurus australis. PhD Thesis. Uni-

versity of Wollongong. 1989. Available: https://ro.uow.edu.au/theses/1077/

36. Kaiwi A, Russell RAW, Winter JW, Franklin DC. Dusk emergence from den trees by the Wet Tropics

Yellow-bellied Glider. North Queensl Nat. 2020; 50: 65–72.

37. Department of Sustainability and Environment. Survey Standards: Yellow-bellied Glider, Petaurus aus-

tralis. 2011. Available: https://www.forestsandreserves.vic.gov.au/__data/assets/pdf_file/0026/29258/

6-Yellow-bellied-Glider-Survey-Standards-FINALv1.0_2MAY11.pdf

38. Goldingay RL, McHugh D, Parkyn JL. Population monitoring of a threatened gliding mammal in subtrop-

ical Australia. Aust J Zool. 2016;64. https://doi.org/10.1071/ZO17002

39. Murphy A, Ough K. Regenerative strategies of understorey flora following clearfell logging in the Central

Highlands, Victoria. Aust For. 1997; 60: 90–98. https://doi.org/10.1080/00049158.1997.10674703

40. Lindenmayer DB, Ough K. Salvage logging in the montane ash eucalypt forests of the Central High-

lands of Victoria and its potential impacts on biodiversity. Conserv Biol. 2006; 20: 1005–1015. https://

doi.org/10.1111/j.1523-1739.2006.00501.x PMID: 16922217

41. Bureau of Meteorology. Climate statistics for Australian locations: Summary statistics Toolangi (Mount

St Leonard DPI). 2020. Available: www.bom.gov.au/climate/averages/tables/cw_086142.shtml

42. Goldingay RL. Population monitoring of an urban gliding mammal in eastern Australia. Aust Mammal.

2018;40. https://doi.org/10.1071/AM17029

43. Lazaridis E. lunar: Lunar Phase & distance, seasons and other environmental factors. (Version 0.1–04).

2014. Available: http://statistics.lazaridis.eu

44. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology

with R. Springer New York; 2009. https://doi.org/10.1007/978-0-387-87458-6

45. MacKenzie DI, Bailey LL. Assessing the fit of site-occupancy models. J Agric Biol Environ Stat. 2004; 9:

300–318. https://doi.org/10.1198/108571104X3361

46. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE, editors. Occupancy estimation

and modeling. Second edi. Academic Press; 2017. https://doi.org/10.1016/C2012-0-01164-7

47. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing; 2019.

48. Wood S, Scheipl F. gamm4: Generalized additive mixed models using mgcv and lme4. R package ver-

sion 0.2–3. 2014. Available: https://cran.r-project.org/package=gamm4

49. Fiske I, Chandler R. unmarked: An R Package for fitting hierarchical models of wildlife occurrence and

abundance. J Stat Softw. 2011;43. https://doi.org/10.18637/jss.v043.i10

50. Mazerolle MJ. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package

version 2.3–1. 2020. Available: https://cran.r-project.org/package=AICcmodavg

51. Towsey M, Planitz B, Nantes A, Wimmer J, Roe P. A toolbox for animal call recognition. Bioacoustics.

2012; 21: 107–125. https://doi.org/10.1080/09524622.2011.648753

52. Incoll RD, Loyn RH, Ward SJ, Cunningham RB, Donnelly CF. The occurrence of gliding possums in old-

growth forest patches of mountain ash (Eucalyptus regnans) in the Central Highlands of Victoria. Biol

Conserv. 2001; 98: 77–88. https://doi.org/10.1016/S0006-3207(00)00144-0

53. Goldingay RL. The foraging behaviour of a nectar feeding marsupial, Petaurus australis. Oecologia.

1990; 85: 191–199. https://doi.org/10.1007/BF00319401 PMID: 28312555

PLOS ONE Passive acoustic survey of Yellow-bellied Gliders

PLOS ONE | https://doi.org/10.1371/journal.pone.0252092 May 25, 2021 15 / 16

https://doi.org/10.1071/wr9850001
https://doi.org/10.1071/wr9850001
https://doi.org/10.1071/wr9930387
https://doi.org/10.1071/zo9920267
https://doi.org/10.1071/zo9940279
https://doi.org/10.1071/wr9890105
https://ro.uow.edu.au/theses/1077/
https://www.forestsandreserves.vic.gov.au/__data/assets/pdf_file/0026/29258/6-Yellow-bellied-Glider-Survey-Standards-FINALv1.0_2MAY11.pdf
https://www.forestsandreserves.vic.gov.au/__data/assets/pdf_file/0026/29258/6-Yellow-bellied-Glider-Survey-Standards-FINALv1.0_2MAY11.pdf
https://doi.org/10.1071/ZO17002
https://doi.org/10.1080/00049158.1997.10674703
https://doi.org/10.1111/j.1523-1739.2006.00501.x
https://doi.org/10.1111/j.1523-1739.2006.00501.x
http://www.ncbi.nlm.nih.gov/pubmed/16922217
http://www.bom.gov.au/climate/averages/tables/cw_086142.shtml
https://doi.org/10.1071/AM17029
http://statistics.lazaridis.eu
https://doi.org/10.1007/978-0-387-87458-6
https://doi.org/10.1198/108571104X3361
https://doi.org/10.1016/C2012-0-01164-7
https://cran.r-project.org/package=gamm4
https://doi.org/10.18637/jss.v043.i10
https://cran.r-project.org/package=AICcmodavg
https://doi.org/10.1080/09524622.2011.648753
https://doi.org/10.1016/S0006-3207(00)00144-0
https://doi.org/10.1007/BF00319401
http://www.ncbi.nlm.nih.gov/pubmed/28312555
https://doi.org/10.1371/journal.pone.0252092


54. Eyre TJ, Goldingay RL. Use of sap trees by the yellow-bellied glider near Maryborough in south-east

Queensland. Wildl Res. 2003; 30: 229–236. Available: https://doi.org/10.1071/WR02020

55. Gibb R, Browning E, Glover-Kapfer P, Jones KE. Emerging opportunities and challenges for passive

acoustics in ecological assessment and monitoring. Methods Ecol Evol. 2019; 10: 169–185. https://doi.

org/10.1111/2041-210X.13101

56. Thompson ME, Schwager SJ, Payne KB, Turkalo AK. Acoustic estimation of wildlife abundance: meth-

odology for vocal mammals in forested habitats. Afr J Ecol. 2009. https://doi.org/10.1111/j.1365-2028.

2009.01161.x
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