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Natural killer (NK) cells belong to the family of innate immune cells with the

capacity to recognize and kill tumor cells. Different phenotypes and functional

properties of NK cells have been described in tumor patients, which could be

shaped by the tumor microenvironment. The discovery of HLA class I-specific

inhibitory receptors controlling NK cell activity paved theway to the fundamental

concept of modulating immune responses that are regulated by an array of

inhibitory receptors, and emphasized the importance to explore the potential of

NK cells in cancer therapy. Although a whole range of NK cell-based approaches

are currently being developed, there are still major challenges that need to be

overcome for improved efficacy of these therapies. These include escape of

tumor cells from NK cell recognition due to their expression of inhibitory

molecules, immune suppressive signals of NK cells, reduced NK cell infiltration

of tumors, an immune suppressive micromilieu and limited in vivo persistence of

NK cells. Therefore, this review provides an overview about the NK cell biology,

alterations of NK cell activities, changes in tumor cells and the tumor

microenvironment contributing to immune escape or immune surveillance by

NK cells and their underlyingmolecular mechanisms as well as the current status

and novel aspects of NK cell-based therapeutic strategies including their genetic

engineering and their combination with conventional treatment options to

overcome tumor-mediated evasion strategies and improve therapy efficacy.
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General features of NK cells

Natural killer (NK) cells are cytotoxic innate immune cells

that were first described in 1973 by E. Klein and colleagues (1).

They originate frommultipotent hematopoietic stem cells (HSC)

in the bone marrow (BM) and undergo different developmental

stages gradually acquiring the expression of distinct surface

markers defining the commitment to the lymphoid/NK cell

lineage. Maturation of human NK cells is characterized by a

loss of CD34 and c-KITC (CD117) expression followed by a

sequential upregulation of CD94, CD16 and killer cell

immunoglobulin-like receptors (KIRs) (2). NK cells comprise

5-10% of peripheral blood mononuclear cells (PBMCs), but they

are also found with a variable frequency in various lymphoid and

non-lymphoid tissues including BM, liver, lung, skin, kidney and

spleen (3). NK cells have the capacity to form cytoplasmic lytic

granules containing perforin and granzymes and produce a large

number of cytokines, in particular interferon (IFN)-g, but also
proinflammatory and immune suppressive cytokines, such as

tumor necrosis factor (TNF)-a, interleukin (IL)-10, chemokines

and various growth factors like granulocyte-macrophage

stimulatory factor (GM-CSF), granulocyte-stimulating factor

(G-CSF) and IL-3. They exert their cytotoxic activity by

distinct mechanisms, including the release of granzymes and

perforin, secretion of IFN-g and TNF-a, the expression of the

FasL/Fas or TNF-related apoptosis-inducing ligand (TRAIL)/

TRAIL receptors and the antibody-dependent cell-mediated

cytotoxicity (ADCC) via Fc receptors (CD16) recognizing

antibodies bound to antigen-coated (tumor) cells (4–6). Based

on their cytolytic function, NK cells play a key role in the first

line of immune defense and are able to directly eliminate tumor

or pathogen-infected cells. In this context it is noteworthy that

NK cells have safety features, rarely elicit autoimmunity and

promote immune homeostasis.

NK cells arise and progressively evolve from a limited

diversity to highly differentiated and heterogeneous

phenotypes, which are dictated by genetic factors and

environmental stimuli, such as pathogen exposure, leading to

distinct functions (7). In PBMCs, NK cells are generally

subdivided into two major subsets based on their differential

expression of CD56: (i) CD56bright, CD94+, CD16- NK cells,

which are less abundant in PBMCs, are poorly cytotoxic, but

produce high amounts of IL-1b, IFN-g, IL-2, IL-12, IL-15, IL-18
and TNF-a upon stimulation, extensively proliferate in response

to DC-derived cytokines and can extravasate from the

circulation into tissues and (ii) CD56dim, CD16+ and KIR+ NK

cells, which have a low proliferative capacity, but high cytotoxic

activity accounting for most of the circulating NK cells (8, 9).

Furthermore, terminally differentiated CD57+ and adaptive

NKG2C+CD57+ NK cells exist (10). Also, the discovery of

memory-like NK cells being able to mount a robust secondary

immune response upon activation has expanded the
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understanding of this innate immune cell population over the

past decade (11, 12).

With the possibility of the in depth characterization of

immune ce l l subpopulat ions by high-dimensional

transcriptional and phenotypic profiling using (single cell)

RNA-sequencing (RNA-seq) and mass cytometry an

unexpected NK cell diversity was identified across different

organs within individual donors regarding their function,

maturation and interaction with stromal cells, which also

provide a new framework for the analyses of NK cell

responses under physiologic and pathophysiologic conditions

(13–17). Interestingly, the diversity of NK cells was found both

in the immune cell infiltrate of tissues and in peripheral blood

(17, 18).
NK cell receptors and NK
cell activity

NK cells are tightly regulated by a dynamic balance of

transduced signals mediated by the physical interaction with

adjacent cells. They express a number of germline-encoded

activating and inhibitory receptors as well as cytokine and

chemokine receptors on the cell surface, which influence the

NK cell function, but knowledge of how these receptors convey

signals and affect NK cell biology is still limited. There is

evidence of a balance between activating and inhibitory

receptors, which control the activity, cell diversity and

function of NK cells (19, 20). These constitutively expressed

NK cell receptors comprise non-HLA-specific receptors, HLA-

specific receptors and homing receptors (20), and recognize their

corresponding ligands expressed on the cell surface of target cells

such as tumor cells or virus-infected cells (21), as summarized

in Table 1.

Next to CD16 (FcgRIIIA), which interacts with Fc fragments

of several IgG subclasses, triggering the ADCC (24), the natural

cytotoxicity receptors (NCR) NKp30 (CD337), NKp44 (CD336),

NKp46 (CD335), NKp80, DNAM-1 (CD226) and NKG2D

(CD314) are the major activating receptors and are able to

recognize induced self-ligands that are downregulated on

healthy cells and highly expressed on tumor cells (25). There

are a number of HLA class I-specific activating NK cell receptors

(NKR) that recognize the non-classical HLA class I antigens

HLA-E and HLA-F or epitopes shared by distinct HLA class I

allotypes. For the activating receptor KIR2DS3, the ligand is still

unknown. Other NK cell activating receptors include SLAMs,

CD18, CD2 and the toll-like receptor (TLR) 3/9 (26, 27).

The primary inhibitory receptors on the cell surface of NK

cells represent members of the killer cell immunoglobulin-like

receptor (KIR) family, which consists of 14 polymorphic

receptors. The different inhibitory KIRs can recognize classical

HLA class I antigens, but for KIR2DL5 no ligand has yet been
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identified. Other inhibitory receptors include NKG2A, a

member of the C-type lectin family, which heterodimerizes

with CD94 and binds to the HLA-E antigen, the

immunoglobulin-like receptor superfamily B member 1

(LILRB1, ILT2, CD85j), the T cell immunoglobulin and mucin

domain containing molecule 3 (TIM-3), T cell immunoreceptor

with Ig and immunoreceptor tyrosine-based inhibition motif

(ITIM) domains (TIGIT) (28–30), CD161, SIGLEC7, SIGLEC9,

programed death receptor 1 (PD-1) and lymphocyte-activation

gene (LAG-3) (31). These inhibitory receptors regulate the

activation status and anti-tumoral immunity of NK cells by

suppressing effector functions and augmenting Treg

activity (32).

MHC class I molecules are ligands of the inhibitory receptors

of NK cells thereby providing signals to self-tolerance resulting
Frontiers in Immunology 03
in NK cell inactivation and the discrimination between healthy,

“self” and “non-self” cells including tumor or virus-infected cells.

However, tumor or pathogen-infected cells often lack or

downregulate MHC class I surface antigens, which results in

an escape from recognition by CD8+ cytotoxic T lymphocytes

(CTL). In contrast, these MHC class I-negative cells could be

recognized and eliminated by NK cells via the missing self-

mechanism (“missing-self recognition”). However, the NK cell

activation requires additional signals to induce self changes, e.g.

by virus-encoded ligands or ligands upregulated by cellular

stress, by DNA damage and alterations of suppressor genes

(33) leading to the so-called “induced self-recognition” (34).

Activated NK cells can eliminate target cells either directly via

NK cell-mediated cytotoxicity or indirectly via proinflammatory

cytokine-mediated killing by TNF-a and IFN-g. In addition to
TABLE 1 Major NK cell receptors and their ligands.

A: Activating NK cell receptors and their ligands

NK cell receptor type Name Ligands

non-HLA NKp30 (CD337) B7-H6, BHG6/BAT3, galectin

NKp44 (CD336) MLL5-Nidogen-1, PDGF-DD, PCNA

NKp46 (CD335) viral HA and HN, properdin

NKG2D (CD314) MICA, MICB, ULBPs

FcyRIII (CD16) IgG

TLR3/9 microbial constituents, CpGs

CD2 CD58

a-integrin vascular endothelial growth factor

DNAM1 (CD226)
2B4

nectin2 (CD112), PVR (CD155)
CD48

HLA I KIR3DS2 HLA-C C1, HLA-A* 11:01

CD94/NKG2C HLA-E

KIR2DS4 HLA-F, HLA-C, HLA-A* 11

KIR2DS5 HLA-C C2?

KIR3DS1 HLA-B* 51, HLA-F

2B4 CD48

KIR3DS1 (CD158b) HLA-C2

KIR2DL4 (CD158d) HLA-G

B: Inhibitory NK cell receptors and their ligands

NK cell receptor type Name Ligands

HLA I NKG2A (CD159a/CD94) HLA-E

KIR2DL1, DL2, DL3 (CD158a,b) HLA-C, HLA-B

KIR3DL1, DL2 (CD158e,k) HLA-A, -B or -F

ILT2/LIR-1 (CD85J) HLA-G, different HLA class I allotypes

LAG-3 MHC class II

non-HLA TIM-3 galectin-9, HMGB1, CEACAM1

PD-1 (CD279) PD-L1, -L2, CD273

TIGIT PVR (CD155, CD274), nectin2 (CD112), nectin4, CD113

Siglec 7 (CD328) ganglioside DSGb5

LAIR-1 collagen
The major NK cell receptors and their ligands are summarized as recently reviewed (21–23).
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the interaction with tumor and pathogen-infected cells, NK cells

could crosstalk with other immune cells, like macrophages, T

lymphocytes and different dendritic cell (DC) subpopulations

(35, 36). Over the last decade, the functional links between NK

cells and myeloid cells have been broadly analyzed. This

cooperative interaction triggers the innate and adaptive

immune responses by stimulating the survival, maturation and

tumor infiltration of DCs leading to “DC editing” (37–39). Vice

versa, macrophages could shape NK cell differentiation and

function (40).
NK cells as critical players for tumor
immune surveillance

The primary role of NK cells is the recognition and

elimination of tumor cells or virus-/pathogen-infected cells as

the first line of defense against initiation of tumor formation and

pathogen invasion without prior sensitization (41). Evidence for

this hypothesis is an increased tumor incidence in human and

experimental models with impaired NK cell function (42). NK

cells are educated and licensed by inhibitory receptors that

recognize classical MHC class I molecules, but could recognize

MHC class I-deficient cells, which are then eliminated (43).

Thus, NK cells are activated by tumor cells due to the decreased

expression of MHC class I on tumor cells through the lack of

inhibitory signals and by the induction of activating NK cell

receptor ligands through their “missing-self” program (44)

leading to productive cytotoxic responses. An additional major

pathway involved in NK cell-mediated cytotoxicity is the FasL/

Fas interaction, which provides a death signal to target cells

leading to apoptosis. The activating receptor NKG2D on NK

cells recognize the MHC class I-related surface proteins MICA

and MICB as well as the UL-16-binding proteins (ULBPs;

ULBP1-6), which are often upregulated in e.g. tumor cells

countermanding any inhibitory signals and inducing NK cell-

mediated cytotoxicity (45, 46).
Composition of the tumor
microenvironment and NK cells

Detailed analysis of the tumor microenvironment (TME) in

different cancer types demonstrated a complex network of

immune effector cells, such as CTL and NK cells, but also

immune suppressive cells, like regulatory T cells (Tregs),

tumor-associated macrophages (TAMs), regulatory gd T cells,

myeloid-derived suppressor cells (MDSCs), soluble factors,

extracellular matrix (ECM) components as well as suppressive

molecules expressed on tumor cells. The interaction between the

different immune cell subpopulations in the TME with tumor

cells is diverse and orchestrated by the presence of specific
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suppressive cells into the TME and modulating immune

effector cells, which is associated with tumor progression (47).

This complex interplay is also shaped by changes in the

metabolic activity of immune, stromal and tumor cells (48).

The distribution of NK cells is highly dynamic. Circulating

NK cells can migrate into tissues via the expression of a broad

number of receptors that control this recruitment (31). In different

tissues, NK cells display specific phenotypic and functional

features, which are altered by the physiologic and

pathophysiologic micro-milieu. To reach the solid tumors, NK

cells extravasate from the blood and traverse the ECM and the

tumor stroma. In the tumor bed, NK cells are able to control

tumor growth and metastasis (49). However, NK cell

responsiveness is often reduced by the immune suppressive TME.

Although NK cells have been demonstrated to infiltrate into

primary solid tumors, metastases and even into tumor-draining

lymph nodes, the frequencies of NK cells in solid tumors were

lower when compared to adjacent tissues and less abundant

regarding the numbers of CD4+ and CD8+ T cells and B

lymphocytes. The degree of NK cell infiltration in tumors is

influenced by several factors (50), such as tumor localization,

nature of cancer cells and expression of chemokine receptors/

chemokines (51). In addition, NK cells recruited to the tumor

core had a reduced cytotoxic potential compared to NK cells

from normal tissues and are often associated with an

unfavorable condition for survival (52, 53). The clinical

relevance of tumor-infiltrating NK cells, e.g. their correlation

with the patients’ survival, depends on the expression of ligands

for their receptors and is accompanied by a high variability of the

different NK cell populations in distinct tumor entities (54). For

example, NK cell frequencies are associated with an altered

patients’ survival in many tumor entities. NK cells highly

infiltrating renal cell carcinoma (RCC) were dysfunctional in

ex vivo cultures (14, 55, 56) (Table 2) and showed an increased

expression of inhibitory receptors and a downregulation of

activating receptors. Furthermore, low numbers of NK cells in

head and neck squamous cell carcinoma (HNSCC) were

associated with insufficient tumor elimination, while higher

numbers of NK cells at the tumor site correlated with an

increased patients’ survival. Comparable results were also

shown for colorectal carcinoma (CRC), gastric and esophageal

cancer. Concerning non-small cell lung cancer (NSCLC), NK

cells are less frequent in tumor tissues compared to normal lung

epithelium, overexpress NK cell inhibitory receptors and show a

CD56bright perforinlow phenotype. The number of NK cells in

NSCLC is of clinical relevance and linked to the tumor size,

smoking history and a bad patients’ prognosis (31, 68).

Bioinformatics of large RNA-seq datasets from The Cancer

Genome Atlas (TCGA) revealed not only a link between NK

cell numbers and patients’ survival (31), but also identified a

NK cell signature of 13 genes, which makes it possible to

determine NK cell abundance across different tumor types and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.910595
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Seliger and Koehl 10.3389/fimmu.2022.910595
offers novel opportunities for NK cell-based treatment in

specific cancer conditions (69, 70). Thus, strategies that

increase the recruitment and activation of NK cells in tumors

would be a suitable approach to enhance anti-tumor

efficacy (71).
Impaired NK cell functions due to
intrinsic mechanisms

Studies of different tumor entities demonstrated that the

function of intra-tumoral NK cells is impaired, which might be

due to aging, genetic defects and chronic infections (72–74), but

also due to continuous exposure to tumor antigens (75–77).

Tumor escape from NK cell-mediated immune surveillance

could be due to impaired anti-tumor NK effector mechanisms,

such as reduced production of proinflammatory cytokines, e.g.

IFN-g and TNF-a, proliferation and cytotoxicity due to a

diminished expression of effector molecules, like perforin and

granzymes. Various solid and hematopoietic cancers

demonstrated a downregulation of the activating receptors

NKp30, NKG2D, NKp46 and CD16 and an increase of soluble

NKG2D ligands sMICA/B shed from the tumor cell surface, but

high expression levels of the inhibitory receptor CD94/NKG2A,

resulting in impaired NK cell cytotoxicity (78). This was

associated with a poor prognosis of patients with breast

cancer, chronic lymphocytic leukemia (CLL), ovarian cancer

and acute myeloid leukemia (AML) (79). The presence of NK

cells in the TME and higher expression levels of CD56, CD57,

NKp30 or NKp46 at the tumor site were associated with a

favorable patients’ prognosis, while low NK cell numbers
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correlated with an increased risk of cancer recurrence after

resection, and a reduced patients’ survival (80). In NSCLC,

overexpression of inhibitory NK cell receptors and a reduced

number of NK cells was associated with a poor patients’ outcome

(64, 81) which was accompanied by a reduced cytotoxicity and

promotion of tumor evasion. Next to the distinct expression

pattern of NK cell receptors, the programmed death receptor

PD1 has been well characterized as an exhaustion marker for T

cells, but also for NK cells (82). The same applies to TIGIT,

which is also associated with NK cell exhaustion (83). It is

noteworthy that actin cytoskeleton remodeling and fragmented

mitochondria in the cytoplasm of tumor-infiltrating NK cells

can also lead to immune suppression (84, 85).
Impaired NK cell function due to
extrinsic mechanisms

It is generally accepted that the TME shapes the innate as

well as the adaptive immune responses, which are variable

between distinct tumor types due to differences in the

composition of infiltrating immune cells and soluble

constituents. It is noteworthy that the critical function of NK

cells to induce an effective anti-tumor immunity is a successful

interaction between NK cells and DCs, and the production of

chemokines. Both processes are negatively influenced by unique

locoregional characteristics, in particular cellular and soluble

components of the TME, which are associated with an immune

escape due to a lack effector responses thereby promoting tumor

cell metastasis (75–77). The chemokine milieu in the TME

consists of reduced expression of CXCL2, CX3CL1, CXCL1
TABLE 2 NK cell infiltration and its prognostic value.

Tumor Method NK cell
identification

Tumor
tissue

Infiltration tumor vs. metastasis/
normal cells

Prognostic factor/
survival

Reference

breast cancer FC CD3- CD56+ primary down OS (57, 58)

colorectal carcinoma IHC/FC NKp46+ primary/
metastasis

down OS, DFS (59)

gastric and colorectal
cancers

FC CD3- CD56+ metastasis down OS (60)

endometrial cancer FC/IHC CD3- CD56+ primary down DFS (54, 61)

esophageal cancer FC CD3- CD56+ primary down (62)

gastric cancer FC CD3- CD56dim

CD57+
primary down OS (62)

melanoma FC CD3- CD56dim lymph node up (63)

non-small-cell lung
carcinoma

FC CD3- CD56+ primary down tumor size, OS (50, 64, 65)

renal cell carcinoma FC/IHC CD3- CD56+

NKp46
primary up metastasis different, OS (66)

several FC CD3- CD56+ primary diverse (50)

lung adenocarcinoma IHC CD57+ primary down OS (67)
fro
DFS, disease free survival; FC, flow cytometry; IHC, immunohistochemistry; OS, overall survival.
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and CXCL8 thereby attracting CD56dim NK cells and an

increased CXCL9/10, CCL5 and CXCL19/21 expression

driving the homing of CD56bright NK cells toward the stromal

compartment (86).

Solid tumors often showed a high oxygen consumption, a low

pH in the TME due to higher concentrations of lactate and a

disorganized vascularization leading to hypoxia as well as an altered

expression of genes involved in the regulation of metabolic

processes. An acidic microenvironment (87) and a permanent or

transient hypoxia leading to an upregulation of the transcription

factor HIF-1a (88) due to the restricted access to nutrients and

oxygen mediated by changes in the vascularization have been

demonstrated to downregulate the expression of activating NCRs,

reduce NK cell cytotoxicity and survival, which downregulates NK

cell anti-tumor responses (89). This could be reverted by e.g. the

treatment with an inhibitor of HIF-1a (89). In addition, NK cells

may not penetrate into solid tumors including in low MHC class I-

expressing tumors or once within the tumors become anergic or

exhausted. Increased H2O2 levels lead to a decrease in the

infiltration of CD56dim NK cells and impaired ADCC.

Furthermore, NK cells in tumors can also acquire proangiogenic

functions by secretion of vascular endothelial growth factor

(VEGF), angiogenin and matrix metalloproteinases (MMPs) (90,

91). Although a proangiogenic NK cell phenotype has been

identified, the potential of proangiogenic NK cell-driving tumor

progression has not yet been analyzed in detail. However, tumor

endothelium might improve NK cell recruitment to the tumor site

as an indirect mechanism of targetingmyeloid cells affecting NK cell

recruitment and function (92).

Several immune suppressive cells, like MDSC, TAMs and

Tregs negatively interfere with NK cell activation. This has been

attributed to immune modulatory molecules present in the

TME, such as indolamine 2, 3-deoxygenase (IDO) activity and

transforming growth factor (TGF)-b, which can be secreted by

MDSC, Tregs and anti- inflammatory macrophages .

Additionally, IL-1b secreted by 6-sulfo LacNAc DCs induces

cell apoptosis (93), while Tregs could also suppress NK cells by

deprivation of IL-2 (94). Several other factors produced by

tumor or tumor-associated cells, like prostaglandin E2,

extracellular adenosine, IL-10 and IL-6, further directly or

indirectly prevent NK cell activation (95). During infection

and tumorigenesis, macrophages can modulate NK cell

function by direct cell-to-cell contact or due to secretion of the

cytokines IL-18, IL-12 and TGF-b (96). TGF-b modulates NK

cell function via a decrease of NKG2D levels and CD16-

mediated ADCC in tumors by impairing the cytotoxic

potential as demonstrated in in vivo and in vitro co-culture

experiments. In addition, TGF-b affects the expression of

chemokine receptors thereby preventing NK cell recruitment

as well as the NK cell metabolism by inducing a reduced

glycolysis and oxidative phosphorylation that inhibits NK cell

effector function. NK cell dysfunction has been associated with

the inactivation of the glycogen synthase kinase-3 (GSK3). In
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contrast, IL-15 is chemotactic for NK cells and maintains NK

cell activation by suppressing tumor escape mechanisms (97).

However, sustained persistence of IL-15 in the TME could

induce the expression of the cytokine-inducible SH2-

containing protein, an IL-15 inducible IL-15 signaling

inhibitor, leading to the degradation of IL-15R. This is

associated with a diminished responsiveness of NK cells to IL-

15 (98).
Strategies of tumor cells evading NK
cell recognition

As described above, NK cells preferably recognize and kill

malignant cells. But there exist many different strategies of

tumors to directly evade NK cell recognition. On the one

hand, these include the prevention of NK cell recruitment into

tumors by physical barriers (laminin and collagen) of tumors or

by preferential recruitment of immature NK cells via a

chemokine gradient. On the other hand, tumors dampen the

NK cell activation and effector function by a decreased

expression of ligands for the activating NKRs or by generation

of soluble activating receptor ligands, which block recognition.

In contrast, inhibitory molecules, like the non-classical HLA

class I molecules HLA-G and -E, Nectin-4 or PVR and inhibitory

immune checkpoint (ICP) ligands, are often overexpressed in

tumors thereby impairing not only T cell, but also NK cell

responses (20, 21). High levels of HLA-E were found in many

solid tumors and its overexpression correlated with a poor

prognosis and NK cell exhaustion (99, 100), while the innate

immunity is regulated by the engagement of HLA-G with the

NK cell receptor KIR2DL4 or ILT2 (101, 102) leading to a

reduced cytotoxicity. Many tumors express the MHC class I

chain-regulated polypeptide A (MICA) and MICB, known as

ligands for the activating receptor NKG2D on NK cells.

However, tumors frequently shed MICA and -B thereby

removing an activation signal and creating a soluble ligand,

which can block the NK cell cognate receptors (103, 104). Thus,

classical, non-classical as well as HLA class I-related molecules

play a key role in NK cell functionality by either leading to

immune escape or immune recognition. Characterization of

these immune escape mechanisms represent the rational for

the development of NK cell-based immunotherapies.
Different strategies to revert
immune surveillance by NK cells-
antibody-based approaches

Since NK cell anti-tumor function is frequently impaired in

tumor patients, restoring their function is an obvious therapeutic

option. Indeed, there exist different approaches to restore the
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anti-tumor surveillance of NK cells (105). Agents that enhance

NK cell function, like immune modulatory drugs, various

stimulatory cytokines, STING agonists and TGF-b inhibitors

have been recently summarized (106). In addition, a number of

mAbs directed against key ICP ligands and their receptors have

been designed, which prevent NK cell inactivation by e.g.

decreasing inhibitory factors or increasing factors, which boost

NK cell function. Recently, a humanized anti-NKGA mAb

(monalizumab) has been developed, which exerts in vitro and

in vivo anti-tumor efficacy as a single agent or with other

therapeutics (107). The inhibition of NKG2A restores the

cytotoxic activity against HLA-E-expressing target cells as well

as the NK cell-dependent maturation of monocyte-derived DC

and reduces the secretion of immune suppressive cytokines.

Major ICP-targeted therapies that affect NK cell-mediated

anti-tumor immune responses are the immune checkpoint

inhibitors (ICPis) PD1/PD-L1 and CTLA4. PD1 has been

shown to be mainly expressed on T, B and myeloid cells, but

also on about 25% of NK cells in healthy donors, but the

molecular mechanisms leading to PD1 expression have not yet

been identified (108). PD1 can also be expressed on tumor

infiltrating NK cells of patients with different solid tumors (109).

Blockade of PD1/PD-L1 interaction can enhance NK cell activity

both in vitro as well as in animal models due to an enhanced

ADCC-induced anti-tumor function leading to an increased

tumor control. Moreover, NK cells play also a role in response

to treatment with agonistic anti-CD137/4-1BB antibodies (Abs)

(110). CD137 is expressed on primed NK cells, which upon

ligation provides a powerful costimulatory signal (111). The

addition of agonistic Abs increased NK cell proliferation and a

synergistic effect was found between IL-15 and IL-21 upon

CD137 engagement and the presence of APCs. Thus, CD137

triggering contributes to NK cell activation (112). These data

suggest that restoring of the NK cell function by co-targeting

immune modulatory pathways might be an important

therapeutic strategy to prevent tumor immune escape.

Since intra-tumoral activated NK cells are often

characterized by overexpression of TIGIT, which competes

with the activating NK cell receptor DNAM1, TIGIT blockade

might also be a promising approach (113) and has been

described to increase patients’ response (114). However, TIGIT

and the activating receptor DNAM1 have CD155 as ligand

suggesting a complex of CD155-mediated immune regulation

via these receptors. Human tumor cells could express both

membranous and soluble CD155. The latter binds

preferentially and with a higher affinity to DNAM1 thereby

inhibiting the DNAM1-mediated anti-tumor activity of NK cells

(115). Recent studies also focused on increasing the infiltration

and recruitment of NK cells by inhibiting soluble factors secreted

by tumor cells, e.g. TGF-b (116). Furthermore, antibodies

targeting the proteolytic site of MICA shedding can promote

NK cell-driven tumor immunity (117).
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In addition, Abs directed against inhibitory KIRs are

potential therapeutic candidates, which might have fewer side

effects compared to other therapeutic approaches. Recently, a

humanized anti-NKG2A mAb monalizumab has been

developed, which is explored in clinical trials (NCT02643550,

NCT02921685). Other trials are addressing IPH4102 as an anti-

KIR3DL2 (NCT02593045), lirilumab as an anti-KIR2DL1-3

(NCT01687387) antibody as well as different Abs directed

against the PD1/PD-L1 axis.
Benefit and limitation in clinical NK
cell-based immunotherapies –
Adoptive cell transfer-based
approaches

The translation of in vitro and in situ results of modulating

NK cell activity and function into clinical concepts has been

challenging and was investigated in a number of clinical trials.

Over the past decades, considerable progress has been made in

NK cell-based immunotherapies in haploidentical stem cell

transplantation (haploSCT) or in the non-transplant setting,

since allogeneic NK cells contribute to the graft versus leukemia/

tumor effect (GvL/GvT) with generally no or only marginal graft

versus host disease (GvHD) compared to allogeneic T cells

(118–120). There are several sources for NK cells. They can be

obtained from (i) healthy donors via leukapheresis followed by

immunomagnetic purification (CD3-depleted, CD56-enriched),

(ii) cord blood or (iii) induced pluripotent stem cell (iPSC) and

administered unstimulated or cytokine-activated and expanded,

respectively. After the first clinical trials in 2004 and 2005 using

IL-2 activated donor NK cells, performed in parallel in Europe

and the USA (121, 122), multiple clinical trials over the last 1.5

decades showed safety and feasibility of adoptive NK cell

transfer for various hematological and oncological diseases,

respectively (123). Despite the overall clinical benefit regarding

GvL/GvT effect without GvHD, adoptive NK cell therapies are

hampered by tumor immune escape mechanism, such as

blocking of NKG2D by soluble MICA (124), exhaustion of

NK cells in the immune-suppressive tumor microenvironment

(125) and limited persistence of NK cells. In addition to the

historical use of IL-2 for both ex vivo expansion of the NK cells

during manufacturing and in vivo therapy, stimulation of NK

cells with IL-12, IL-15, IL-18 and IL-21 enhanced cytotoxicity,

successfully generated donor memory-like NK cells with

enhanced persistence and improved anti-leukemia response.

This could be demonstrated impressively in 4/8 pediatric

patients with AML in a current clinical trial (126). Cytokine

combinat ions are increas ingly used for opt imized

manufacturing protocols (127). Nevertheless, the optimal

cytokine cocktail after adoptive NK cell transfer to improve
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cell expansion remains still unclear. Very recently, it has been

shown in clinical trials that systemic IL-15 resulted in reduced

clinical activity (128). The authors hypothesized that IL-15

promotes recipients CD8+ T cell activation that finally leads to

donor NK cell rejection.

Other trials are using NK cell subpopulations. Especially,

cytomegalovirus (CMV) infection is one powerful stimulus

promoting the functionality and phenotype of NK cells

expressing the HLA-specific activating receptor CD94/NKG2C

(129). Therefore, clinical protocols are currently developed based

on the mechanisms underlying the generation of adoptive NK

cells that involve NKG2C triggering to efficiently expandNKG2C+

NK cells for therapy. Interestingly, adoptive NK cells appear to be

resistant to MDSC and Treg suppression thereby providing them

with a further advantage compared to CAR T cells for their use as

therapeutics. Another benefit is the availability of NK cells for

therapy from distinct sources. Multiple other approaches are

ongoing to restore NK cell activity and reach long-lasting

effects. These include the blockade of inhibitory receptors,

blocking soluble activating receptors, combinational therapies

with immune checkpoint inhibitors (130) and genetic

engineering of the NK cells (131). In addition, cytokine-

activated NK cells with upregulated NCRs and NKG2D are

partly able to overcome tumor immune escape by restoring

NKG2D-mediated NK cell cytotoxicity via scavenging of plasma

MICA as demonstrated for neuroblastoma and head and neck

cancer, respectively (124, 132).
Engineered NK cell-based
immunotherapies

Genetic modification of immune effector cells has been

demonstrated to be a promising strategy for the treatment of

advanced cancers refractory to conventional therapies. In

particular, chimeric antigen receptor (CAR) targeting cell surface

antigens provide a suitable tool to increase the efficacy of effector

cells. CARs are genetically engineered proteins composed of an

extracellular domain specific for the respective/selected target

antigen, a transmembrane domain and an intracellular signaling

domain responsible for the transduction of the activating signal.

During the last two decades, the CAR technology has been

developed as next generation immunotherapeutic approach

reaching impressive clinical results in two hematological

disorders, the acute lymphoblastic leukemia and diffuse large B

cell lymphoma. This led to more than 800 clinical trials worldwide

(clinicaltrials.gov) (133) as well as to five approved CAR T cell

products, the first four targeting CD19 and the last one directed

against BCMA, respectively (134). In a similar way, engineered

CAR NK cells redirected against several cancer epitopes including

hematological and tumor targets resulted in improved NK cell

cytotoxicity (135–138). Moreover, in addition to use the
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intracellular CAR T cell signaling, DAP10 and DAP12 give rise

for more improvement for CAR NK cell cytotoxicity (139). There is

a clear advantage of CAR NK cells over CAR T cells, since NK cells

can be obtained from allogeneic donors, do not induce a cytokine

storm, persist for more than one year and can be applied to the

patients without development of GvHD and thus represent an “off

the shelf” product for the treatment of patients (105, 137, 140).

Another challenge is to overcome the high manufacturing costs of

personalized autologous CAR T cell products by using one

allogeneic CAR NK cell product for multiple applications in

various patients. To date, more than 35 clinical trials using CAR

NK cells are conducted (clinicaltrials.gov) against several cancer

epitopes, such as CD19, CD19/22, CD33, CD7, HER2, MUC1,

PDL1, NKG2D ligand, BCMA, ROBO1, PSMA, mesothelin and

others using CAR NK cells from different sources, primary human

NK cells, cord-blood derived and iPSC-derived NK cells as well as

CARs from the cell line NK92 (141, 142).

While most of the trials are performed in China and USA,

currently a phase I trial, CAR2BRAIN using lentiviral transduced

CAR NK92 cells redirected against the human epidermal growth

factor 2 (HER2, ErbB2) for treatment of recurrent patients with

glioblastoma is conducted in Europe, in Frankfurt, Germany. The

very well recognized study of Katy Rezvani, USA, employed cord-

blood derived CAR NK cells redirected against CD19 for B cell

malignancies. The promising results showed clinical responses in

8 out of 11 patients with no sign of cytokine release syndrome or

neurotoxicity (143). Next to conventional CARs, additional

genetic modifications are currently explored to enhance NK cell

activity and homing into the tumor. Preclinical studies

demonstrated an improvement of tumor cell infiltration

through transgene expression of chemokine or adhesion

receptors (144). Furthermore, the integration of the autocrine

growth factor IL-15 as a down-stream cassette has been used,

which led to an improved life span and persistence of those CAR

NK cells in all patients (145). The overall cytokine and chemokine

profile clearly differ between CAR T and CAR NK cells and

supports the observation that allogeneic CAR NK cells do not

contribute to any severe side effects, like cytokine release

syndrome and toxicity. Nevertheless, NK cells are considered

hard-to-engineer and hard-to expand compared to T cells.

Recently, a novel viral envelope derived from the baboon

endogenous virus (BaEV) showed superior efficacy as compared

to other lentiviral envelope proteins to successfully genetically

manipulate human NK cells (146, 147).

Finally, the question arises how to further improve both

anti-tumoral activity, cytotoxicity and homing of CAR NK cells

in the TME, which led to combinational therapies with ICPis. In

the end of 2021, two clinical trials were started: (i) a phase II

s tudy using irradiated PD-L1 CAR-NK cel l s p lus

pembrolizumab for recurrent/metastatic gastric or head and

neck cancer (NCT04847466) and (ii) FT576 (iPSC derived

CAR NK cells) as monotherapy and in combination with
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daratumumab in subjects with relapsed/refractory multiple

myeloma (NCT05182073), respectively.
Conclusions

The enhancement of NK cell activity represents an important

approach to control cancer growth. The increased understanding

of the NK cell biology has led to the development of NK cell-based

strategies to control tumors. New ways to enhance the NK cell

targeting, their activation and cytolytic function are required,

since the NK cells are becoming dysfunctional in the immune

suppressive TME. Despite the potential of NK cell-based therapies

it has become obvious that for the design of effective strategies

using NK cells in the clinics, a detailed knowledge of NK cell

receptors, NK cell subpopulations, tissue-specific NK cells and

memory-like NK cells is required. Furthermore, the NK cell

heterogeneity might influence the efficacy of NK cell-based

therapies. Some preclinical and clinical studies suggest

multifaceted opportunities of the implementation of NK cells

for the treatment of cancer patients using combination therapies,

which will lead to further clinical advances.
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Ab antibody

ADCC antibody-dependent cell-mediated cytotoxicity

ALL acute lymphoblastic leukemia

BM bone marrow

CAR chimeric antigen receptor

CLL chronic lymphocytic leukemia

CMV cytomegalovirus

CR complete revision

DC dendritic cell

DFS disease free survival

ECM extracellular matrix

EGF-R epidermal growth factor receptor

EV extracellular vesicle

FC flow cytometry

FDA Food and Drug Administration

G-CSF granulocyte-stimulating factor

GM-
CSF

granulocyte-macrophage stimulating factor

GMP good medical practice

Had graft-versus-host disease

HLA human leukocyte antigen

HSC hematopoietic stem cells

HSCT hematopoietic stem cell transplantation

ICPi immune checkpoint inhibitor

IDO indolamine 2, 3-deoxygenase

IFN interferon

(Continued)
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IL interleukin

iPSC induced pluripotent stem cell

KIR killer cell immunoglobulin-like receptors

LAG lymphocyte-activation gene

mAb monoclonal antibody

MDSC myeloid-derived suppressor cell

MHC major histocompatibility complex

MIC MHC class I-related

MMP matrix metalloproteinase

NCR natural killer receptor

NK natural killer

OS overall survival

PBMNC peripheral blood mononuclear cell

PD1 programmed death

PD-L1 programmed death ligand 1

RNA-
seq

RNA-sequencing

TAM tumor-associated macrophages

TCR T cell receptor

TGF-b transforming growth factor b

TIGIT T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory
motif

TMB tumor mutational burden

TME tumor microenvironment

TNF tumor necrosis factor

TRAIL TNF-related apoptosis inducing ligand

Treg regulatory T cell

ULBP UL-16 binding protein

VEGF vascular endothelial growth factor
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