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Background: High flow nasal cannula (HFNC) is commonly used as non-invasive

respiratory support in critically ill children. There are limited data to inform consensus on

optimal device parameters, determinants of successful patient response, and indications

for escalation of support. Clinical scores, such as the respiratory rate-oxygenation (ROX)

index, have been described as a means to predict HFNC non-response, but are limited

to evaluating for escalations to invasive mechanical ventilation (MV). In the presence

of apparent HFNC non-response, a clinician may choose to increase the HFNC flow

rate to hypothetically prevent further respiratory deterioration, transition to an alternative

non-invasive interface, or intubation for MV. To date, no models have been assessed to

predict subsequent escalations of HFNC flow rates after HFNC initiation.

Objective: To evaluate the abilities of tree-based machine learning algorithms to predict

HFNC flow rate escalations.

Methods: We performed a retrospective, cohort study assessing children admitted for

acute respiratory failure under 24 months of age placed on HFNC in the Johns Hopkins

Children’s Center pediatric intensive care unit from January 2019 through January 2020.

We excluded encounters with gaps in recorded clinical data, encounters in which MV

treatment occurred prior to HFNC, and cases electively intubated in the operating room.

The primary study outcome was discriminatory capacity of generated machine learning

algorithms to predict HFNC flow rate escalations as compared to each other and ROX

indices using area under the receiver operating characteristic (AUROC) analyses. In an

exploratory fashion, model feature importance rankings were assessed by comparing

Shapley values.

Results: Our gradient boosting model with a time window of 8 h and lead time of 1 h

before HFNC flow rate escalation achieved an AUROC with a 95% confidence interval of

0.810 ± 0.003. In comparison, the ROX index achieved an AUROC of 0.525 ± 0.000.

Conclusion: In this single-center, retrospective cohort study assessing children

under 24 months of age receiving HFNC for acute respiratory failure, tree-based
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machine learning models outperformed the ROX index in predicting subsequent flow

rate escalations. Further validation studies are needed to ensure generalizability for

bedside application.

Keywords: high flow nasal cannula, flow rate escalation, pediatric critical care, non-response, machine learning,

acute respiratory failure

INTRODUCTION

Acute respiratory failure is one of the most common indications
for hospitalization among pediatric patients (1). For children
under 5 years old, it makes up 2% of mortalities in the
United States and 18% worldwide (2). In severe cases where
children experience acute respiratory failure, physicians trial a
variety of non-invasive ventilation (NIV) modalities such as
heated, humidified, high flow nasal cannula (HFNC) to improve
tissue oxygenation, decrease patient work of breathing, and limit
exposure to invasive mechanical ventilation (MV) (3). While at
times necessary, intubation and MV place children at risk for
acquired complications and require higher levels of monitoring,
skilled personnel, and supportive resources located in a pediatric
intensive care unit (PICU) setting (4).

Over the past twenty-five years, HFNC use for acute
respiratory failure has increased in popularity, as evident in
several epidemiologic assessments that also reveal a concurrent
chronologic tapering of MV rates (5–9). Patients that escalate
to a ventilator after a trial of HFNC are thought to have
experienced HFNC non-response. Although multiple clinical
characteristics have been identified as potential risk factors
for HFNC non-response, such as comorbid cardiac disease,
hypercarbia, or persistent tachypnea and tachycardia, the
prediction of HFNC non-response remains challenging due to
study heterogeneity, regional practice variation, lack of clarity in
the indications for device escalation, and subjective definitions
of non-response (10–17). Simple clinical metrics have been
developed using vital sign data, such as the respiratory rate-
oxygenation (ROX) and ROX-heart rate (ROX-HR) indices, to
predict MV after HFNC initiation (18, 19). For adults, Roca
et al. found within 12 h of scoring, the ROX index yields an
area under the receiver operating characteristic (AUROC) of
0.76 (18). A limitation of the ROX, and other indices that
use the ratio of oxygen saturation (SpO2) to inspired oxygen
fraction (FiO2), is that as SpO2 increases, the measurement
progressively loses sensitivity to changes in FiO2. When SpO2

≥ 97%, failure to appropriately wean FiO2 can significantly bias
the ROX score.

At present, there are no guidelines for determining the

level of respiratory support required for patients with acute
respiratory failure. After initiating HFNC, flow rates are adjusted

using clinical judgment with subjective determinations of patient
stability and response to therapy (20, 21). Machine learning
techniques may allow for more robust and precise metrics to not
only predict HFNC non-response but also inform ideal settings
and alert providers prior to impending respiratory failure. We
hypothesize machine learning techniques using a combination
of patient demographics, HFNC settings, medications, vital sign

indices, and medical history can be used to develop a predictive
model for HFNC flow rate escalation.

METHODS

Study Design
We assessed a retrospective cohort of children < 2 years old
admitted to the Johns Hopkins Children’s Center Pediatric
Intensive Care Unit (PICU) between January 2019 through
October 2020 for acute respiratory failure and placed on HFNC.
We excluded patients in which MV occurred prior to HFNC and
those who were electively intubated in the operating room (OR).
This study was reviewed and approved by the Johns Hopkins
Medicine Institutional Review Board (IRB#00211399).

Data Source
We identified patients by automated query of electronic
health record (EHR) demographics and respiratory support
documentation for all PICU admissions during the study period.
Demographics, vital signs, nursing/respiratory care observations,
medication administrations, and medical history were extracted
from the EHR for all included patient encounters. Patient
encounters were split into training and testing sets at a
60/40 ratio. Table 1 shows descriptive analyses for comparing
cohorts with and without escalation using demographic data,
comorbidities, and starting flow rate parameters.

Model Outcome, Time Window, and Lead
Time
Figure 1 shows a simple example that depicts the concepts
of the observation period, time window, and lead time for a
single patient encounter. To incorporate time-series features
like HFNC settings and vitals data, we defined the observation
period for a patient encounter as the interval of time over which
data is collected and aggregated to generate a prediction. The
observation period ends either at the time a patient was escalated
to a ventilator or at date and time of hospital discharge for those
who never received MV. The observation period is segmented
into shorter overlapping time intervals called time windows with
constant duration and start times that occur every 1 h until the
end of an observation period. We varied the length of time
windows to be 2, 4, 8, and 12 h. We evaluated models using lead
times of 1, 2, 6, and 12 h.

Our primary model outcome, flow rate escalation, is defined
as follows. We define n (n = 1, 2, 3, . . . , N) as an index to each
of the N flow rate predictions made for a patient and define tn as
the time of the nth prediction. A prediction of flow rate was made
(and n incremented by 1) every hour of a patient’s observation
period.We predicted a flow rate at a lead time of Y hours ahead of
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TABLE 1 | Descriptive characteristics for the study population, including demographics, anthropometrics, and comorbidities, stratified by the presence of one or more

flow rate escalations.

Variables Total

(N = 433)

Escalation

Encounters (N = 335)

Non-Escalation

Encounters (N = 98)

P -Value

Age [months]

Median (IQR) 6.0 (2.0–14.0) 7.0 (2.0–14.0) 4.5 (2.0–11.8) 0.056

Weight [kg]a

Median (IQR) 7.2 (4.9–9.4) 7.3 (4.9–9.4) 6.5 (4.9–8.7) 0.439

Sex (%) 0.809

Male 241 (55.7) 188 (56.1) 53 (54.1)

Female 192 (44.3) 147 (43.9) 45 (45.9)

Ethnicity (%) 0.733

Hispanic 51 (11.8) 38 (11.3) 13 (13.3)

Non-Hispanic 382 (88.2) 297 (88.7) 85 (86.7)

Race (%)* 0.046

White 190 (43.9) 135 (40.3) 55 (56.1)

Black 155 (35.8) 130 (38.8) 23 (23.5)

Asian 18 (4.2) 13 (3.9) 4 (4.1)

Other 77 (17.9) 56 (16.7) 16 (16.3)

Declined 1 (0.2) 1 (0.3) 0 (0.0)

Bacterial Pneumonia Treatment (%)b* 0.008

No Treatment Present 406 (93.8) 308 (91.9) 98 (100.0)

Treatment Present 27 (6.2) 27 (8.1) 0 (0.0)

Mechanically Ventilated (%)* 20 (4.6) 20 (6.0) 0 (0.0) <0.001

Number of Flow Rate Escalations

Median (IQR)* 0.4 (0.1–0.7) 0.5 (0.3–0.7) — <0.001

Duration of HFNC (hrs.)

Median (IQR)* 36.2 (17.9–61.3) 42.0 (22.4–70.2) 19.5 (10.7–36.2) <0.001

Starting Flow Rate [L/min]

Mean ± SD 5.6 ± 4.0 5.2 ± 4.3 6.8 ± 2.3

Median (IQR)* 6.0 (3.0–8.0) 6.0 (2.0–8.0) 6.0 (5.2–8.0) <0.001

Starting Flow Rate by Weight [L/kg/min]a

Mean ± SD 0.8 ± 0.6 0.8 ± 0.6 1.1 ± 0.5

Median (IQR)* 0.8 (0.4–1.2) 0.8 (0.3–1.1) 1.0 (0.7–1.4) <0.001

Maximum Flow Rate [L/min]

Median (IQR)* 8.0 (6.0–10.0) 8.0 (7.0–10.0) 6.0 (5.2–8.0) <0.001

Maximum Flow Rate by Weight [L/kg/min]a

Median (IQR)* 1.2 (0.9–1.7) 1.3 (1.0–1.8) 1.0 (0.7–1.4) <0.001

Starting FiO2 [%]

Median (IQR) 40.0 (30.0–60.0) 40.0 (21.0–60.0) 40.0 (30.0–50.0) 0.448

Length of Stay [hrs.]

Median (IQR)* 87.7 (61.8–148.5) 102.3 (69.3–180.3) 60.9 (41.9–82.9) <0.001

aFor descriptive purposes only, these values represent analysis on 395/433 (306 escalated, 89 non-escalated) patients that had weights recorded. bBacterial pneumonia diagnoses

were established by usage of antibiotics during hospital stay for > 5 days. *p-value < 0.05.

tn (i.e., at time tn + Y) using data collected across a time window
beginning at X hours in the past (i.e., the time window extending
from tn-X to tn). A prediction of flow rate escalation was defined
to occur when the predicted flow rate at tn+ Y was greater than
that predicted at tn−1+ Y.

Outlier Rejection
Prior to feature extraction, vital sign values outside a plausible
physiologic range were removed. Ranges were established from

multicenter cross-sectional studies on hospitalized pediatric
patients and the consensus of investigators (22–24). The excluded
values represent data entries that were noisy, misinterpreted,
missing, measured at the wrong time, or the result of keystroke
errors (22). Specifically, these ranges were heart rates outside
5–300 beats per min, respiratory rates outside 5–120 breaths
per min, temperatures outside 70–110 degrees Fahrenheit, and
SpO2 outside 60–100 percent. Mean arterial pressure (MAP)
outliers were defined by values higher than the maximum systolic
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FIGURE 1 | Visual representation of the relationship between time window, lead time, and the time escalation is predicted at each hour, tn, of admission (n =

1,2,...,N). The observation period begins at the time of admission and concludes at tN when the patient escalates to MV for ventilated patients or at discharge for

non-ventilated patients.

blood pressure or lower than the minimum diastolic blood
pressure for the entire cohort of patients as MAP is a weighted
average between the systolic and diastolic blood pressures.
Of the 424,343 available recordings from unique encounters,
7,128 (1.7%) were considered outliers and removed from
the dataset.

Feature Extraction and Missing Value
Imputation
At each prediction time, we considered a combination of
static and dynamic features. Static features include patient
demographics and medical history for each encounter.
Demographics data were one-hot encoded from the information
available at the time of admission for a given encounter and
treated as static throughout hospitalization. Medical history
features consisted of whether a patient had any chronic
diagnoses, active problems, or principal diagnosis at the time
of admission.

Dynamic features included validated vital signs (e.g., heart
rate, blood pressure, respiratory rate, and SpO2), FiO2, flow rate,
medication administrations, and synthetic features (described
in the next section). Supplementary Table 1 shows a complete
list of features. If one or more samples were available in
the time window, summary statistics of minimum, maximum,
median, mean, delta (change in value from start to end of
the time window), standard deviation, and the number of
times observed for each feature were computed. If no sample
was available in the window, the last available value was
used, known as forward fill. Forward fill was selected as
an imputation strategy for vitals data because the objective
was to predict a clinical decision. Forward fill simulates
a clinician’s perception regarding the clinical status of a
patient using previously observed but currently unknown
vital signs. If no previous value was available for FiO2 or
flow rate, the average initiation value of the patient cohort
was used, which is also known as mean-value substitution.
Supplementary Table 2 shows the average values for each level
of respiratory support.

Medication administrations were one-hot encoded to indicate
whether the specific medication was administered or not. Once a
medication was given, a value of one was added to the cumulative
total number of administrations for the appropriate antibiotic or
pharmaceutical class. Unlike other observations, the number of
administrations did not reset at the start of each time window
but instead carried over its current count from one window
to the next. Medications synonymous with intubation, such as
neuromuscular blocking agents, were discounted as potential
features, as their administration is determined from a clinician
already deciding the need for future MV and would bias a flow
rate escalation prediction.

Synthetic Features
Synthetic features combining raw features were also used for
prediction. To evaluate the usefulness of the ROX and ROX-
HR indices, we included them as features. The ROX index is
defined as the ratio of SpO2 to FiO2 divided by respiratory rate
(RR). The ROX-HR index is the ROX index divided by HR. We
calculated the ROX and ROX-HR as the average score within
each time window. Because of the sigmoid shape of the oxygen-
hemoglobin dissociation curve, the change in SpO2 relative to a
change in FiO2 decreases as SpO2 increases. Above 97%, SpO2

loses sensitivity to changes in FiO2 (25). Figure 2 shows how this
can bias the ROX score if clinicians are slow to decrease FiO2

when SpO2 is high (26). To account for this, we included a one-
hot oversaturation variable set to 1 if FiO2 ≥ 60% despite SpO2

≥ 97%. Finally, we included the number of times the FiO2 was
adjusted within the time window as a feature.

Binary Classification Models
We trained random forest, logistic regression, and gradient
boosting classifiers using the full feature set from the training
data with five-fold cross-validation for model selection.
Supplementary Figures 3–6 show that gradient boosting
models outperform both random forest and logistic regression
models for all of our time window and lead time combinations.
Therefore, all model results will explore the performance of
gradient boosting.
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Evaluation Metrics
For eachmachine learning algorithm, we evaluated timewindows
of 2, 4, 8, and 12 h and lead times of 1, 2, 6, and 12 h.
Model performance, which was measured with AUROC and
area under the precision-recall curve (AUPRC), was evaluated
only on the withheld testing set which consisted of 40%
of encounters excluded from model training. To compare
performance against the ROX and ROX-HR baselines, we built
models using only ROX and ROX-HR as features. To distinguish
performance difference, we compared the performance of the
logistic regression ROX/ROX-HR models against our best full-
feature model.

We evaluated feature importance using Shapley additive
explanations (27). A Shapley value describes the difference in
model performance given the inclusion and exclusion of a specific
feature. Shapley feature importance values were calculated for
all features in the generated model by using the Python
Shap3 package (28). Any features that were determined to
have a Shapley value of 0, indicating no effect on our model’s
performance, were eliminated.

For the descriptive analysis, categorical comparisons
were established using a chi-squared test, continuous

variables were compared using Welch’s t-test, and
medians of continuous variables were compared
using a Kruskal-Wallis test using the python package
TableOne (29).

Institutional HFNC Practice
After initial treatment with nasopharyngeal suctioning and low-

flow nasal cannula (NC), patients with persistent respiratory
distress were transitioned to HFNC with a flow rate between

4 and 15 L/min, based on clinician assessment of patient

work of breathing, and FiO2 between 40 and 100% (adjusted
to maintain saturations ≥ 90%). The decisions to intubate
a patient, escalate HFNC settings, or switch NIV interfaces
were at the discretion of an attending physician guided by
examination and, at times, available radiographic and laboratory
data. Patients receiving HFNC flow rates > 4 L/min were
monitored in the PICU. After a determination of clinical stability
was made during which a patient was maintained on ≤ 6
L/min, they were considered for transfer to the general pediatric
floor from the PICU. If a patient’s flow rate was weaned
to 4 L/min, they were subsequently transitioned to a regular
nasal cannula.

FIGURE 2 | Comparison of ROX index for a hypothetical patient with SpO2 ≥ 97% given two different clinician approaches. In Scenario 1, the clinician does not

decrease the patient’s FiO2, resulting in a low ROX index. In Scenario 2, the clinician decreases the patient’s FiO2 appropriately, resulting in a higher ROX index than

Scenario 1, despite the patient’s identical health status.

FIGURE 3 | CONSORT diagram depicting study criteria and sampling.
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FIGURE 4 | Effect of time window size on AUROC performance. As we increase the time window size, we see minimal impact on the overall success of the model.

Error bars represent 95% confidence intervals between our five cross-validation folds.

RESULTS

General Sample Characteristics
A total of 433 children were included in the study. Figure 3 shows
a CONSORT diagram depicting study sampling and criteria.
Descriptive characteristics for the study population and for
cohorts defined by the presence of one or more HFNC flow
rate escalations are depicted in Table 1. Of note, children with
escalations were more frequently Black (38.8% vs. 23.5, P =

0.046), had a lower mean initial HFNC flow rate (0.8 ± 0.6
L/kg/min vs. 1.1 ± 0.5 L/kg/min, P < 0.001), and experienced
a longer median hospital length of stay [4.3 (IQR:2.9, 7.5) vs.
2.5 (IQR:1.7, 3.5) days, P < 0.001]. Duration of HFNC was also
longer in patients with flow rate escalation [42.0 (IQR: 22.4–
70.2) vs. 19.5 (IQR: 10.7–36.2) h, P < 0.001]. Children treated
with at least a 7 day course of antibiotics all had at least one
instance of flow rate escalation (8.1% of escalated patients vs. 0%
of non-escalated patients, P < 0.001). The maximum flow rate
given to patients with at least one instance of escalation was 1.3
L/kg/min (IQR: 1.0–1.8 L/kg/min) vs. 1.0 L/kg/min (IQR: 0.7–1.4
L/kg/min) for patients who were never escalated (P < 0.001).

Effect of Time Window on Model
Performance
Figure 4 shows the average AUROC for our best-performing
gradient boosting model at each time window for five cross-
validation folds. Given the evaluation of time window size on
model performance, lead times were constant at 1 h before flow
rate escalation. Overall, time window size had little impact on
model performance as windows of 2, 4, 8, and 12 h had AUROCs
of 0.796 ± 0.007, 0.806 ± 0.007, 0.810 ± 0.003, and 0.797 ±

0.011, respectively. A time window of 8 h was selected because
it outperformed all other windows for each lead time evaluated.

FIGURE 5 | Flow rate escalation ROCs with shaded 95% confidence interval

bounds for gradient boosting algorithms with a time window of 8 h. The model

has its largest AUROC value of 0.810 at a lead time of 1 h and decreases

consistently as lead time increases.

Effect of Lead Time on Model Performance
Using the 8 h time window, model performance was
evaluated across all lead times. The best performing
model had a lead time of 1 h and an AUROC of 0.810
± 0.003 (Figure 5). As lead time increased, AUROC
decreased from 0.778 ± 0.007 to 0.775 ± 0.009 and
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0.758 ± 0.012 for 2, 6, and 12 h, respectively, before flow
rate escalation. Thus, a lead time of 1 h outperformed all
other lead times.

FIGURE 6 | Flow rate escalation precision-recall curves with shaded 95%

confidence interval bounds for gradient boosting algorithms with a time

window of 8 h. The model has its largest AUPRC value of 0.192 at a lead time

of 6 h. There is not a clear trend between AUPRC and lead time. For reference,

the prevalence of flow rate escalations in our model was 0.020, as represented

by the gray no-skill classifier line.

In contrast, AUPRC data did not show any trend across
varying lead times (Figure 6). The largest AUPRC, 0.192± 0.009,
was noted for a lead time of 6 h. For lead times of 1, 12, and 2 h,
the AUPRC values were 0.153 ± 0.003, 0.105 ± 0.012, and 0.081
± 0.007, respectively.

Comparison of Model Performance to ROX
and ROX-HR Indices
The gradient boosting model outperformed the ROX and ROX-
HR logistic regressionmodels (Figure 7). Using a time window of
8 h, the gradient boosting model had AUROC values of 0.810 ±

0.003, 0.778 ± 0.007, 0.775 ± 0.009, and 0.758 ± 0.012 with lead
times of 1, 2, 6, and 12 h, respectively. In comparison, the ROX
yielded AUROC values of 0.525 ± 0.000, 0.506 ± 0.000, 0.537 ±
0.000, and 0.487 ± 0.000. The ROX-HR yielded AUROC values
of 0.525± 0.000, 0.502± 0.000, 0.536± 0.000, and 0.480± 0.000.

Risk Score Trajectories Throughout Patient
Stay
The study model’s prediction probabilities (as percentages)
along with a patient’s set flow rate for each hour of their
hospital stay were plotted to visualize an individual patient’s
predicted escalation status over time. Visualizations for two
example patients, Example Patient A and Example Patient B,
are available in Figure 8. An increase in risk score closely
preceding an escalation in flow rate qualitatively reflects the
model’s performance. In Figure 8, Example Patient A underwent
an attempted wean 10 h after their initiation on HFNC, and
our model’s risk score appropriately rose, predicting their re-
escalation of flow rate. On the other hand, Example Patient B was
managed at too low of a flow rate with a persistently elevated risk

FIGURE 7 | Comparison of gradient boosting model to ROX and ROX-HR with respect to AUROC performance. At a time window of 8 h, our model outperforms the

ROX and ROX-HR logistic regression baselines at lead times of 1, 2, 6, and 12 h. Error bars represent 95% confidence intervals between our five cross-validation

folds. Error bars for ROX and ROX-HR predictions are not visible and are zero up to three decimals.
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FIGURE 8 | Gradient boosting model (time window = 8 h, lead time = 1 h) risk scores [%] (blue) aligned with true flow rate [L/min] (red) for two example patients’

observation periods. A threshold (1.89%) at the model operating point is shown in green.

score before an appropriate flow rate was set, and then the patient
was safely weaned.

Feature Importance Rankings
Shapley values for each feature at five cross-validation folds
were calculated to identify variables that contributed heavily to
the model outcome. Highly ranked features, as shown in both
Tables 2, 3, indicate those that the model deems important to
make a flow rate escalation prediction. Table 2 displays the top
twelve features within our model for each lead time. A majority
of these top features derived from HFNC settings, vital sign data,
the ROX index, the number of times FiO2 was adjusted, and

the newly-established over-saturation label. Table 3 compares
the synthetic features (ROX index, ROX-HR index, number of
times FiO2 was modified, and the over-saturation label) at each
lead time.

DISCUSSION

Major Findings
In this study, we demonstrate the ability of tree-based machine
learningmodels, namely gradient boosting, to predict subsequent
escalation of HFNC flow rate with a specified lead within
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TABLE 2 | Top twelve feature importance rankings based on Shapley values.

Shapley Feature

Importance Rank

1H Lead Time 2H Lead Time 6H Lead Time 12H Lead Time

1 Number of Times

Respiratory Rate Recorded

Number of Times

Respiratory Rate Recorded

Number of Times Pulse

Recorded

Number of Times Pulse

Recorded

2 Mean ROX-HR Index Minimum FiO2 SpO2 Standard Deviation SpO2 Standard Deviation

3 Last Recorded FiO2 Number of Times Pulse

Recorded

Minimum FiO2 Minimum FiO2

4 Number of Times Pulse

Recorded

SpO2 Standard Deviation Oversaturation Label: FiO2

≥ 60 & SpO2 ≥ 97

Number of Times

FiO2Changes

5 Mean ROX Index Oversaturation Label: FiO2

≥ 60 & SpO2 ≥ 97

Mean SpO2 Mean SpO2

6 SpO2 Standard Deviation Number of Times FiO2

Changes

Number of Times FiO2

Changes

Number of Times

Respiratory Rate Recorded

7 Number of Times FiO2

Changes

Mean ROX Index FiO2 Standard Deviation Mean ROX Index

8 Number of Times FiO2

Recorded

Number of Times SpO2

Recorded

Last Recorded FiO2 Oversaturation Label: FiO2

≥ 60 & SpO2 ≥ 97

9 FiO2 Standard Deviation Mean FiO2 Mean ROX-HR Index Mean SBP

10 Mean Respiratory Rate Change in SpO2 Number of Times

Respiratory Rate Recorded

Mean Respiratory Rate

11 Oversaturation Label: FiO2

≥ 60 & SpO2 ≥ 97

FiO2 Standard Deviation Mean ROX Index Median SBP

12 Change in SpO2 Last Recorded FiO2 Minimum DBP Respiratory Rate Standard

Deviation

At a time window of 8 h, we ran the model on five parallel validation folds for each lead time and took the average Shapley value of each feature as a ranking. Synthetic features are

indicated with a colored box.

TABLE 3 | Feature importances of our four synthetic features.

Feature 1H Lead Time 2H Lead time 6H Lead Time 12H Lead Time

Number of FiO2 Changes

Rank (Range) 7 (2–7) 6 (4–6) 6 (3–6) 4 (4–8)

Shapley Value (CI) 0.136 ± 0.027 0.150 ± 0.018 0.116 ± 0.015 0.093 ± 0.009

Oversaturation Label: FiO2 ≥ 60, SpO2 ≥ 97

Rank (Range) 11 (9–14) 5 (4–8) 4 (2–6) 8 (5–41)

Shapley Value (CI) 0.062 ± 0.014 0.155 ± 0.067 0.137 ± 0.019 0.054 ± 0.028

Mean ROX Index

Rank (Range) 5 (1–46) 7 (3–46) 11 (6–20) 7 (3–83)

Shapley Value (CI) 0.156 ± 0.135 0.114 ± 0.118 0.065 ± 0.043 0.064 ± 0.051

Mean ROX-HR Index

Rank (Range) 2 (3-9) 14 (9–28) 9 (4–14) 19 (14–27)

Shapley Value (CI) 0.181 ± 0.087 0.055 ± 0.028 0.085 ± 0.052 0.030 ± 0.013

The rank is based on the average Shapley value of 5 cross-validation folds, while the range spans the synthetic feature’s importance between all five-folds. The average Shapley value

and 95% confidence interval for each of the four synthetic features are listed to describe the spread between folds.

the PICU patient population using time-series vital sign
data and electronic health records. Our work represents the
first attempt to develop models to predict HFNC flow rate
escalation instead of subsequent escalation to MV. Additionally,
we present the first characterization of prediction metrics
previously validated for MV escalation adapted for flow rate
escalation and demonstrate that our methods outperform
these existing metrics. The determination of sufficient or

appropriate HFNC settings for pediatric patients with acute
respiratory failure remains unknown (30, 31). Clinicians in
the PICU must balance providing adequate and timely NIV
support to a patient’s dynamic pathophysiology while avoiding
invasive and potentially harmful interventions. These methods
may offer the potential to optimize, individualize, and even
automize NIV parameters for critically ill children with acute
respiratory failure.
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Comparisons With ROX and Machine
Learning Methods
Previous definitions used for HFNC non-response have hinged
on either identifying patients with an escalation to MV or
transition to non-invasive positive pressure ventilation (NIPPV)
(11, 18, 19). The ROX index was initially established by Roca
et al. as a metric for MV prediction in a prospective cohort
of adults with pneumonia and has been widely explored in
various conditions, including COVID-19 pneumonia and acute
respiratory failure in immunocompromised adults (32, 33). In
their clinical validation study, Roca et al. evaluated ROX index
prediction thresholds at 2, 6, and 12 h after HFNC initiation in
a validation cohort of 191 adult patients in which 36% required
endotracheal intubation, finding AUROCs of 0.68, 0.70, and 0.76,
respectively (18). We made inferences using similar time scales
with time windows of 2, 4, 8, and 12 (AUROCs = 0.80, 0.81,
0.81, and 0.80, respectively) to predict flow rate escalation (34).
However, unlike our model, the ROX index does not explicitly
consider a lead time to escalation but instead predicts any future
instance of mechanical ventilation following a prediction-score
calculation. While time-to-intubation is not directly discussed
in their clinical validation study, in their initial study, Roca et
al. states that the median time-to-intubation for their cohort
was 1 day, aligning with their highest AUROC prediction score
calculated at 24 h from HFNC initiation (18). We chose to
consider lead time when defining flow rate escalation instances
as the physiologic signals, such as increased work of breathing,
are likely to be temporally linked to escalation. Indeed, our
AUROCs decrease as lead time increases, demonstrating that
earlier predictions are more difficult to identify than predictions
closer to the time of escalation and supporting the construct
validity of our model. Furthermore, incorporating lead time into
our model offers greater interpretability for when an escalation is
likely to occur, allowing a provider to determine the urgency and
degree of intervention required.

In order to explore and compare the ROX index for flow
rate escalation prediction, we felt it was unreasonable to utilize
existing ROX cutoff thresholds for flow rate escalation prediction.
Predicting flow rate escalation at a given lead time in a pediatric
population fundamentally differs from the experiments Roca
et al. performed. Instead, we re-fit a logistic regression using
only the ROX index to predict flow rate escalation. This ROX-
based model had the best AUROC of 0.54 considering 8 h
time windows of HFNC data at a lead time of 6 h. Goh et al.
(19) posited that the ROX-HR index had promising utility for
predicting MV in post-extubation patients on HFNC, achieving
an AUROC of 0.72 and 0.74 at 10 h for the ROX and ROX-
HR indices, respectively. We adapted the ROX-HR index in a
similar method as the ROX index and found that the AUROC for
flow rate escalation prediction at a specified lead time was lower
than our machine learning model but equal to the predictions
based on the ROX index alone, with a best AUROC of 0.54
when considering 8 h of HFNC data at lead time of 6 h. These
results demonstrate that the ROX and ROX-HR indexes have
good performance in predicting MV but are less capable of
independently discriminating between patients who require flow
rate escalations at a specified lead time.

Lundberg et al. similarly found that gradient boosting
methods had superior performance in predicting intraoperative
hypoxemia to other machine learning methods, such as SVM
and lasso regression, and employed Shapely feature values when
improving their model’s interpretability for real-time clinical
decision making (35). Previous attempts have explored the
prediction of invasive MV weaning outcomes in adult patients
using deep learning approaches (36, 37). Neural networks have
also been investigated in the pediatric patient population to
predict acute severe asthma exacerbations (38). These works
differ in that some approaches use only time-series data and
others utilize static patient-averaged variables. Comparatively,
our modeling approach benefits from using both time-series
and static variables and achieves good predictive performance;
however, these other works provide an outline for future
modeling directions with high-resolution vitals data and neural
network-based approaches.

Secondary Findings
Descriptive analysis of our patient data found significant
differences in race composition between escalated and non-
escalated encounters. One possible explanation for these findings
is that there are known racial disparities in viral respiratory
hospitalizations in children, and these disparities could also
relate to a higher likelihood for providers to escalate flow
rates in Black children than White children (39). Although our
model had access to racial demographic data, these features
were not ranked highly within our Shapely feature importances,
suggesting that these racial disparities do not heavily inform our
model’s prediction of flow rate escalations at a given lead time.
Additionally, we found the starting flow rate given to patients
who never escalate is greater than the flow rate given to those who
escalate with amean difference between these groups of 1.6 L/min
(0.3 L/kg/min). Patients who never escalate also have a shorter
duration of high flow use. This may be related to the day of illness
at presentation. Symptoms of acute respiratory failure typically
peak during the third to fifth day of illness before improving.
Patients presenting prior to peak symptoms might require less
support initially but must be escalated initially as symptoms
worsen. Patients presenting later at or after peak symptoms
would require higher initial settings, but then de-escalation as
symptoms improve.

When evaluating our model’s feature importance through
Shapley additive explanations, we found that features
representing physiologic vitals data and FiO2 parameters
were considered important. These findings are consistent with
previous reports demonstrating the importance of persistent
vital sign abnormalities and other comorbidities (i.e., concurrent
bacterial pneumonia, persistent hypercarbia, and history
of prematurity) as likely indicators of NIV non-response
(10, 13, 40–42). Despite their poor performance predicting flow
rate escalation in independent models, the ROX and ROX-HR
features within our prediction model were highly valuable. This
suggests the ROX and ROX-HR scores have value as indices for
flow rate escalation when features that infer provider perception
of disease severity and attention to weaning are incorporated
(i.e., FiO2 changes and the oversaturation label).
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Limitations and Future Studies
Our data represent a retrospective assessment with potential
bias from errors in documentation within the EHR. As this
was a single-center experience, observations may be due to
individual provider or regional/institutional variation in acute
respiratory failure and HFNC management. Additionally, it is
impossible for us to know what specific factors affected provider
decision making with regards to escalating HFNC flow rate
for a given patient. Provider knowledge of vital signs and
physiologic monitoring were unknown and may have influenced
such outcomes. Study data were not recorded specifically for the
purpose of applying machine learning methods, which led to
potential error from inclusion of data imputation and filling. This
need could be avoided by setting prospective protocols regarding
minimum synchronized vitals and flow rate parameter recording
intervals for future investigation. Synthesized variables, such as
the number of vitals recorded within a time window or FiO2

settings, are inherently dependent on clinician perception of
disease severity, not measured in this study. These feature’s
inclusion is consistent with previous prediction tools, like the
ROX index, but leaves room for bias from provider or regional
variation. These factors may limit the generalizability of this
model to dissimilar institutions or centers with variation in
HFNC practices such as use of greater standard flow rates
or application of the device in step-down ICUs or general
pediatric wards. Future studies will be needed with prospective
analysis and external validation before any conclusions can be
drawn about future bedside applicability. Lastly, while our model
potentially could be used to predict whether a patient who has
been weaned is likely to remain stable or require re-escalation, we
note that this work is not directed toward prediction of weaning
success. Our focus was on predicting HFNC escalation to best
compare performance to the ROX score. Prediction of weaning
success is a clinically important task and a worthwhile objective
for future models.

Conclusion
In conclusion, our retrospective study demonstrates that
machine learning models can discriminate subsequent HFNC
flow rate escalation among children under 2 years of age admitted
for acute respiratory failure. As a majority of data included in
the study model are readily accessible from electronic health
record data, these models could be replicated at other institutions
and employed prospectively to assist with provider assessment of
clinical trajectory, add to informed decision making, and suggest
suitable HFNC parameters. Ultimately, use of this and similar
models may narrow the gap between identifying the need for
increased support and applying a sufficient degree of it. These
efforts may then impact hospital length of stay and other clinical
outcomes in future investigation.
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Supplementary Figure 1 | Class imbalance in cohort data. Because the ratio

remains stable across all time windows, we determined that our dataset was

balanced enough to not have to use undersampling, oversampling, or generate

synthetic samples.

Supplementary Figure 2 | Receiver operating characteristic curves comparing

prediction models to baseline models for each lead time at a time window of 2 h.

AUROCs for the logistic regression, random forest, and gradient boosting models

are compared to baseline ROX logistic regression, ROX-HR logistic regression,

and random prediction models.

Supplementary Figure 3 | Receiver operating characteristic curves comparing

prediction models to baseline models for each lead time at a time window of 4 h.

AUROCs for the logistic regression, random forest, and gradient boosting models

are compared to baseline ROX logistic regression, ROX-HR logistic regression,

and random prediction models.

Supplementary Figure 4 | Receiver operating characteristic curves comparing

prediction models to baseline models for each lead time at a time window of 8 h.

AUROCs for the logistic regression, random forest, and gradient boosting models

are compared to baseline ROX logistic regression, ROX-HR logistic regression,

and random prediction models.

Supplementary Figure 5 | Receiver operating characteristic curves comparing

prediction models to baseline models for each lead time at a time window of 12 h.

AUROCs for the logistic regression, random forest, and gradient boosting models

are compared to baseline ROX logistic regression, ROX-HR logistic regression,

and random prediction models.

Supplementary Figure 6 | Shapley summary plot for our four synthetic features.

Shapley additive explanations calculate the feature relevance for each individual

prediction independently and depict it as a point in the figure. For each feature,

this plot shows how a higher or lower value of that feature, represented by color,

influences whether the model predicts a flow rate escalation (positive Shapley
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value) or not (negative Shapley value). The magnitude of the Shapley value

indicates how strongly the model agrees with this prediction.

Supplementary Table 1 | Average starting values of oxygen flow rate and

fraction of inspired oxygen for each level of respiratory support.

Supplementary Table 2 | All of the features used in our model.

Supplementary Table 3 | Performance metrics comparing gradient boosting,

ROX, and ROX-HR model performances to a random classifier at a time window

of 8 h. The metrics include sensitivity, specificity, mean AUROC, mean AUPRC,

positive predictive value (PPV), and negative predictive value (NPV). The PPV for

ROX and ROX-HR logistic regression models could not be obtained, because

these models predicted no true positive and false positive values.

REFERENCES

1. Schneider J, Sweberg T. Acute respiratory failure. Crit Care Clin. (2013)

29:167–83. doi: 10.1016/j.ccc.2012.12.004

2. Hammer J. Acute respiratory failure in children. Paediatr Respir Rev. (2013)

14:64–9. doi: 10.1016/j.prrv.2013.02.001

3. Ricard JD, Roca O, Lemiale V, Corley A, Braunlich J, Jones P, et al. Use of nasal

high flow oxygen during acute respiratory failure. Intensive Care Med. (2020)

46:2238–47. doi: 10.1007/s00134-020-06228-7

4. Principi T, Fraser DD, Morrison GC, Farsi SA, Carrelas JF, Maurice EA,

et al. Complications of mechanical ventilation in the pediatric population:

pediatric complications of mechanical ventilation. Pediatr Pulmonol. (2011)

46:452–7. doi: 10.1002/ppul.21389

5. Ricard JD. High flow nasal oxygen in acute respiratory failure. Minerva

Anestesiol. (2012) 78:836–41.

6. Schibler A, Pham T, Dunster K, Foster K, Barlow A, Gibbons K,

et al. Reduced intubation rates for infants after introduction of high-

flow nasal prong oxygen delivery. Intensive Care Med. (2011) 37:847–

52. doi: 10.1007/s00134-011-2177-5

7. Sztrymf B, Messika J, Mayot T, Lenglet H, Dreyfuss D, Ricard JD. Impact of

high-flow nasal cannula oxygen therapy on intensive care unit patients with

acute respiratory failure: a prospective observational study. J Crit Care. (2012)

27:324.e9–13. doi: 10.1016/j.jcrc.2011.07.075

8. Kawaguchi A, Yasui Y, deCaen A, Garros D. The clinical impact of heated

humidified high-flow nasal cannula on pediatric respiratory distress. Pediatr

Crit Care Med. (2017) 18:112–9. doi: 10.1097/PCC.0000000000000985

9. Zhu Y, Yin H, Zhang R, Wei J. High-flow nasal cannula oxygen therapy

versus conventional oxygen therapy in patients with acute respiratory failure:

a systematic review and meta-analysis of randomized controlled trials. BMC

Pulm Med. (2017) 17:201. doi: 10.1186/s12890-017-0525-0

10. Sochet A, Nunez M, Maamari M, McKinley S, Morrison J, Nakagawa

T. Physiometric response to high-flow nasal cannula support in acute

bronchiolitis. Hosp Pediatr. (2020) 11:94–9. doi: 10.1542/hpeds.2020-001602

11. Abboud P, Roth P, Skiles C, Stolfi A, Rowin M. Predictors of failure

in infants with viral bronchiolitis treated with high-flow, high-

humidity nasal cannula therapy. Pediatr Crit Care Med. (2012)

13:e343–9. doi: 10.1097/PCC.0b013e31825b546f

12. Betters K, Gillespie S, Miller J, Kotzbauer D, Hebbar K. High flow nasal

cannula use outside of the ICU; factors associated with failure. Pediatr

Pulmonol. (2016) 52:806–12. doi: 10.1002/ppul.23626

13. Kelly G, Simon H, Sturm J. High-flow nasal cannula use in children with

respiratory distress in the emergency department. Pediatr Emerg Care. (2013)

29:888–92. doi: 10.1097/PEC.0b013e31829e7f2f

14. White DK, Daubney ES, Harvey ME, Kayani R, Pathan N. Predicting use of

high-flow nasal cannula therapy following extubation in paediatrics.Nurs Crit

Care. (2021) 26:42–7. doi: 10.1111/nicc.12509

15. Yildizdas D, Yontem A, Iplik G, Horoz OO, Ekinci F. Predicting nasal

high-flow therapy failure by pediatric respiratory rate-oxygenation index

and pediatric respiratory rate-oxygenation index variation in children. Eur J

Pediatr. (2021) 180:1099–106. doi: 10.1007/s00431-020-03847-6

16. Guillot C, Le Reun C, Behal H, Labreuche J, Recher M, Duhamel A, et al.

First-line treatment using high-flow nasal cannula for children with severe

bronchiolitis: applicability and risk factors for failure. Arch Pédiatr. (2018)

25:213–8. doi: 10.1016/j.arcped.2018.01.003

17. Hansen G, Hochman J, Garner M, Dmytrowich J, Holt T. Pediatric early

warning score and deteriorating ward patients on high-flow therapy. Pediatr

Int. (2019) 61:278–83. doi: 10.1111/ped.13787

18. Roca O, Messika J, Caralt B, García-de-Acilu M, Sztrymf B, Ricard J-D, et

al. Predicting success of high-flow nasal cannula in pneumonia patients with

hypoxemic respiratory failure: the utility of the ROX index. J Crit Care. (2016)

35:200–5. doi: 10.1016/j.jcrc.2016.05.022

19. Goh KJ, Chai HZ, Ong TH, Sewa DW, Phua GC, Tan QL. Early

prediction of high flow nasal cannula therapy outcomes using a

modified ROX index incorporating heart rate. J Intensive Care. (2020)

8:41. doi: 10.1186/s40560-020-00458-z

20. Miller A, Gentile M, Tyler L, Napolitano N. High-flow nasal cannula in

pediatric patients: a survey of clinical practice. Respir Care. (2018) 63:894–

9. doi: 10.4187/respcare.05961

21. Morris J, Kapetanstrataki M, Parslow R, Davis P, Ramnarayan P. Patterns

of use of heated humidified high-flow nasal cannula therapy in picus in

the United Kingdom and republic of Ireland. Pediatr Crit Care Med. (2019)

20:223–32. doi: 10.1097/PCC.0000000000001805

22. Bonafide CP, Brady PW, Keren R, Conway PH, Marsolo K, Daymont C.

Development of heart and respiratory rate percentile curves for hospitalized

children. Pediatrics. (2013) 131:e1150–7. doi: 10.1542/peds.2012-2443

23. Eytan D, Goodwin AJ, Greer R, Guerguerian A-M, Mazwi M,

Laussen PC. Distributions and behavior of vital signs in critically

ill children by admission diagnosis. Pediatr Crit Care Med. (2018)

19:115–24. doi: 10.1097/PCC.0000000000001395

24. Finer N, Leone T. Oxygen saturation monitoring for the preterm infant:

the evidence basis for current practice. Pediatr Res. (2009) 65:375–

80. doi: 10.1203/PDR.0b013e318199386a

25. Khemani R, Rubin S, Belani S, Leung D, Erickson S, Smith L, et al.

Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: Berlin

definition of ARDS and mortality risk. Intensive Care Med. (2014) 41:94–

102. doi: 10.1007/s00134-014-3486-2

26. O’Driscoll BR, Howard LS, Davison AG, on behalf of the British

Thoracic Society. BTS guideline for emergency oxygen use in

adult patients. Thorax. (2008) 63:vi1–vi68. doi: 10.1136/thx.2008.1

02947

27. Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions.

arXiv:170507874. (2017). Available online at: http://arxiv.org/abs/1705.07874

(accessed May 1, 2021).

28. Lundberg S, Erion G, Chen H, DeGrave A, Prutkin J, Nair B, et al. From local

explanations to global understanding with explainable AI for trees. Nat Mach

Intell. (2020) 2:56–67. doi: 10.1038/s42256-019-0138-9

29. Pollard T, Johnson A, Raffa J, Mark R. Tableone: an open source Python

package for producing summary statistics for research papers. JAMIA Open.

(2018) 1:26–31. doi: 10.1093/jamiaopen/ooy012

30. Milési C, Requirand A, Douillard A, Baleine J, Nogué E, Matecki S,

et al. Assessment of peak inspiratory flow in young infants with acute

viral bronchiolitis: physiological basis for initial flow setting in patients

supported with high-flow nasal cannula. J Pediatr. (2021) 231:239–

45. doi: 10.1016/j.jpeds.2020.12.020

31. Milési C, Pierre A, Deho A, Pouyau R, Liet J, Guillot C, et al. A

multicenter randomized controlled trial of a 3-L/kg/min versus 2-L/kg/min

high-flow nasal cannula flow rate in young infants with severe viral

bronchiolitis (TRAMONTANE 2). Intensive Care Med. (2018) 44:1870–

8. doi: 10.1007/s00134-018-5343-1

32. Mellado-Artigas R, Mujica LE, Ruiz ML, Ferreyro BL, Angriman F,

Arruti E, et al. Predictors of failure with high-flow nasal oxygen therapy

in COVID-19 patients with acute respiratory failure: a multicenter

observational study. J Intensive Care. (2021) 9:23. doi: 10.1186/s40560-021-0

0538-8

33. Lemiale V, Dumas G, Demoule A, Pène F, Kouatchet A, Bisbal M, et al.

Performance of the ROX index to predict intubation in immunocompromised

patients receiving high-flow nasal cannula for acute respiratory failure. Ann

Intensive Care. (2021) 11:17. doi: 10.1186/s13613-021-00801-z

Frontiers in Pediatrics | www.frontiersin.org 12 November 2021 | Volume 9 | Article 734753

https://doi.org/10.1016/j.ccc.2012.12.004
https://doi.org/10.1016/j.prrv.2013.02.001
https://doi.org/10.1007/s00134-020-06228-7
https://doi.org/10.1002/ppul.21389
https://doi.org/10.1007/s00134-011-2177-5
https://doi.org/10.1016/j.jcrc.2011.07.075
https://doi.org/10.1097/PCC.0000000000000985
https://doi.org/10.1186/s12890-017-0525-0
https://doi.org/10.1542/hpeds.2020-001602
https://doi.org/10.1097/PCC.0b013e31825b546f
https://doi.org/10.1002/ppul.23626
https://doi.org/10.1097/PEC.0b013e31829e7f2f
https://doi.org/10.1111/nicc.12509
https://doi.org/10.1007/s00431-020-03847-6
https://doi.org/10.1016/j.arcped.2018.01.003
https://doi.org/10.1111/ped.13787
https://doi.org/10.1016/j.jcrc.2016.05.022
https://doi.org/10.1186/s40560-020-00458-z
https://doi.org/10.4187/respcare.05961
https://doi.org/10.1097/PCC.0000000000001805
https://doi.org/10.1542/peds.2012-2443
https://doi.org/10.1097/PCC.0000000000001395
https://doi.org/10.1203/PDR.0b013e318199386a
https://doi.org/10.1007/s00134-014-3486-2
https://doi.org/10.1136/thx.2008.102947
http://arxiv.org/abs/1705.07874
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1093/jamiaopen/ooy012
https://doi.org/10.1016/j.jpeds.2020.12.020
https://doi.org/10.1007/s00134-018-5343-1
https://doi.org/10.1186/s40560-021-00538-8
https://doi.org/10.1186/s13613-021-00801-z
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Krachman et al. Predicting HFNC Flow Rate Escalation

34. Roca O, Caralt B, Messika J, Samper M, Sztrymf B, Hernández G, et al.

An index combining respiratory rate and oxygenation to predict outcome

of nasal high-flow therapy. Am J Respir Crit Care Med. (2019) 199:1368–

76. doi: 10.1164/rccm.201803-0589OC

35. Lundberg S, Nair B, Vavilala M, Horibe M, Eisses M, Adams

T, et al. Explainable machine-learning predictions for the

prevention of hypoxaemia during surgery. Nat Biomed Eng. (2018)

2:749–60. doi: 10.1038/s41551-018-0304-0

36. Sippl P, Ganslandt T, Prokosch H, Muenster T, Toddenroth D. Machine

learning models of post-intubation hypoxia during general anesthesia In:

Röhrig R, Timmer A, BinderU H. Sax, editors. GermanMedical Data Sciences:

Visions and Bridges Vol. 243. Amsterdam: IOS Press BV. p. 212–6.

37. Kuo H, Chiu H, Lee C, Chen T, Chang C, Bien M. Improvement in the

prediction of ventilator weaning outcomes by an artificial neural network in a

medical ICU. Respir Care. (2015) 60:1560–9. doi: 10.4187/respcare.03648

38. Messinger A, Bui N, Wagner B, Szefler S, Vu T, Deterding R. Novel pediatric-

automated respiratory score using physiologic data and machine learning in

asthma. Pediatr Pulmonol. (2019) 54:1149–55. doi: 10.1002/ppul.24342

39. Iwane M, Chaves S, Szilagyi P, Edwards K, Hall C, Staat M, et al. Disparities

between black and white children in hospitalizations associated with

acute respiratory illness and laboratory-confirmed influenza and respiratory

syncytial virus in 3 US counties−2002-2009. Am J Epidemiol. (2013) 177:656–

65. doi: 10.1093/aje/kws299

40. Maamari M, Nino G, Bost J, Cheng Y, Sochet A, Sharron M. Predicting failure

of non-invasive ventilation with RAM cannula in bronchiolitis. J Intensive

Care Med. (2021) 885066620979642. doi: 10.1177/0885066620979642

41. Mayfield S, Bogossian F, O’Malley L, Schibler A. High-flow nasal cannula

oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child

Health. (2014) 50:373–8. doi: 10.1111/jpc.12509

42. Suessman A, Gray L, Cavenaugh S, Camp E, Shi Y, Meskill S. Clinical

factors associated with intubation in the high flow nasal cannula

era. Am J Emerg Med. (2020) 38:2500–5. doi: 10.1016/j.ajem.2019.

12.017

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Krachman, Patricoski, Le, Park, Zhang, Gong, Gangan, Winslow,

Greenstein, Fackler, Sochet and Bergmann. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Pediatrics | www.frontiersin.org 13 November 2021 | Volume 9 | Article 734753

https://doi.org/10.1164/rccm.201803-0589OC
https://doi.org/10.1038/s41551-018-0304-0
https://doi.org/10.4187/respcare.03648
https://doi.org/10.1002/ppul.24342
https://doi.org/10.1093/aje/kws299
https://doi.org/10.1177/0885066620979642
https://doi.org/10.1111/jpc.12509
https://doi.org/10.1016/j.ajem.2019.12.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles

	Predicting Flow Rate Escalation for Pediatric Patients on High Flow Nasal Cannula Using Machine Learning
	Introduction
	Methods
	Study Design
	Data Source
	Model Outcome, Time Window, and Lead Time
	Outlier Rejection
	Feature Extraction and Missing Value Imputation
	Synthetic Features
	Binary Classification Models
	Evaluation Metrics
	Institutional HFNC Practice

	Results
	General Sample Characteristics
	Effect of Time Window on Model Performance
	Effect of Lead Time on Model Performance
	Comparison of Model Performance to ROX and ROX-HR Indices
	Risk Score Trajectories Throughout Patient Stay
	Feature Importance Rankings

	Discussion
	Major Findings
	Comparisons With ROX and Machine Learning Methods
	Secondary Findings
	Limitations and Future Studies
	Conclusion

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


