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As part of its remit to provide computational support to the cryo-EM

community, the Collaborative Computational Project for Electron cryo-

Microscopy (CCP-EM) has produced a software framework which enables easy

access to a range of programs and utilities. The resulting software suite

incorporates contributions from different collaborators by encapsulating them

in Python task wrappers, which are then made accessible via a user-friendly

graphical user interface as well as a command-line interface suitable for

scripting. The framework includes tools for project and data management. An

overview of the design of the framework is given, together with a survey of the

functionality at different levels. The current CCP-EM suite has particular

strength in the building and refinement of atomic models into cryo-EM

reconstructions, which is described in detail.

1. Introduction

The Collaborative Computational Project for Electron cryo-

Microscopy (CCP-EM) was initiated in 2012 to support the

computational needs of the macromolecular electron cryo-

microscopy (cryo-EM) community. To this end, it aims to

support both software developers and users in a manner

analogous to the way in which the long-running Collaborative

Computational Project, Number 4 (CCP4; Winn et al., 2011)

has supported the macromolecular crystallography (MX)

community. CCP-EM is mandated to provide user training and

developer support and to establish a coherent community for

the exchange of best practices and novel ideas.

The creation of the CCP-EM project has been described

previously (Wood et al., 2015). In this contribution, we speci-

fically address the CCP-EM software suite: a multi-platform

suite of tools that, in time, aims to cover all aspects of cryo-EM

data processing from image manipulation to the building of

atomic models, and to cover multiple techniques such as

single-particle reconstruction (SPR), tomography and

diffraction. Packaging tools together allows better manage-

ment of structural biology projects, as well as better distribu-

tion and testing of software, to the benefit of both users

and developers. Here, we describe the development of the

CCP-EM software suite and its initial functionality.

The CCP-EM software suite was conceived as a generic

framework that could support a wide variety of functionalities,

whether written by ourselves or provided by external

programs. As a collaborative project, the ability to incorporate

programs from external partners is a high priority. There are

clear conceptual similarities to other frameworks such as

Appion (Lander et al., 2009), Scipion (de la Rosa-Trevı́n et al.,

2016) and Focus (Biyani et al., 2017). One unique feature of

the CCP-EM framework is its close connection to the highly

successful CCP4 suite for macromolecular crystallography,

which arises out of historic links. This connection allows
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the reuse of software-engineering technologies deployed

previously for CCP4, and the easy incorporation of crystallo-

graphic programs for the interpretation of high-resolution

reconstructions. Nevertheless, the CCP-EM suite is distinct

from CCP4 and is firmly directed towards the cryo-EM

community.

A public beta release of the CCP-EM suite was made in

2016, and has been used since then in several CCP-EM

training courses. The initial focus has been on fitting, building

and refining of atomic models into high- or medium-resolution

single-particle reconstructions. This focus partly reflects our

historical links to the macromolecular crystallography

community, but is also timely given the recent ‘resolution

revolution’ (Kühlbrandt, 2014). The CCP-EM suite aims to

assist microscopists who are perhaps obtaining high-resolution

structures for the first time, and may be unfamiliar with topics

such as reciprocal-space refinement or the use of structural

restraints. Equally, for the many crystallographers who are

moving into the cryo-EM field, the suite aims to help them

adapt familiar tools to new data sets. In all cases, the CCP-EM

suite provides convenient pipelining and data-management

tools, which are becoming essential as cryo-EM moves to

become a high-throughput and widespread technique (Stuart

et al., 2016).

In the following section, we describe the generic software

framework and the design decisions that have been made. We

cover the underlying software libraries which support appli-

cations visible to the general user, as well as facilitating further

development. We then go on to give an overview of the

current functionality, including small utilities and major

programs. We finish with a quick discussion of future plans.

2. Software framework

The CCP-EM software framework is primarily written in

Python. Python is an interpreted language that is widely used

in the scientific community; examples in structural biology

include CCP4 (Winn et al., 2011), PHENIX (Adams et al.,

2010), PyMOL (Schrödinger), Scipion (de la Rosa-Trevı́n et

al., 2016) and DIALS (Waterman et al., 2016). Its convenience

and shallow learning curve have aided its popularity, and

furthermore it is cross-platform as it does not require

compilation.

2.1. Libraries and utilities

The CCP-EM software framework has a modular organi-

zation which can be roughly divided into three layers (Fig. 1).

The top-level GUI (graphical user interface) layer is written

using the PyQt toolkit. This provides a simple graphical

interface to the associated programs. Distinct from this is the

mid-level management layer, which is written in pure Python.

This provides a bridge between the GUI layer and the third

layer: the set of functional programs. These programs origi-

nate from collaborating developers and are written in a wide

variety of languages (including C, C++, Fortran and Python)

with distinct control methods and input conventions.

The second, management layer provides Python task

wrappers for each of the functional programs and gives a

common interface style accessible via the GUI or the CLI

(command-line interface). Command arguments are in the

JSON (JavaScript Object Notation) format. This is a light-

weight metadata format which is commonly used as it is more

human-readable than other markup formats (for example

XML) and is fully supported in the

Python standard library (Fig. 2 shows an

example JSON input file). Each specific

task is derived from from two principal

base classes. A CCPEMTask class

provides the pure Python wrapper to

the application, defining in a generic

way the parameters appropriate to the

task, which are then translated as

inputs to the various APIs of the

underlying applications. Workflows can

be constructed using these wrappers,

allowing tasks to be linked together

and/or run in parallel. The second base

class, CCPEMWindow, contains the

PyQt4 functionality that provides the

GUI window. Each CCPEMWindow

holds an instance of the relevant

CCPEMTask to allow access to the

defined input arguments and trigger the

activation of a job. A simple PyQt image

viewer has been developed to visualize

the contents of MRC-format image

stacks.

The software framework has a suite

of unit tests to ensure the reliability and
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Figure 1
Architecture of the CCP-EM software suite. The task wrappers and core libraries shown in green
are written in pure Python, whereas the GUI layer is written in PyQt4. The GUI thread is
independent of the job processes; task progress is monitored by a job-launch module and is
recorded in an SQLite database. JSON files serve as intermediaries allowing the task to be
controlled ‘headless’ without the GUI layer.



reusability of the codebase, and the support programs also

have a series of implementation tests to allow autonomous

testing of the suite before distribution. It should be noted that

the suite has a number of third-party dependencies. These

have been selected with care, and are mainstream and well

maintained. Every effort has been made to ensure the

modularity of the framework such that in the event of a

dependency becoming unavailable or unsuitable it could be

substituted with an equivalent, either sourced from another

third party or developed in-house.

2.2. Python MRC file library

The MRC file format is one of the principal formats for

cryo-EM data, and is used in common programs such as

RELION (Scheres et al., 2008) and for the deposition of

experimental volumes in the EMDB (Tagari et al., 2002;

Lawson et al., 2016). Closely related to the CCP4 map format,

it can be used to store individual micrographs, stacks of two-

dimensional images, three-dimensional volumes and stacks

of three-dimensional volumes. Several variants of the MRC

format had emerged, but recently the developers of several

major EM software packages agreed a standardized definition,

known as the MRC2014 format (Cheng et al., 2015), together

with a process for agreeing future revisions. In order to allow

developers to use MRC files as easily and flexibly as possible,

we have written mrcfile.py, which is an open-source, stand-

alone Python library for the reading, writing and validation of

MRC2014 files. It is available in the ccpem-python environ-

ment (see x2.3), but can also be obtained separately from

PyPI (https://pypi.python.org/pypi/mrcfile) or GitHub (https://

github.com/ccpem/mrcfile).

The main design goals of the mrcfile Python library are to

make data from an MRC file available as a NumPy array (van

der Walt et al., 2011) via a clear and simple interface, and to

allow easy validation of MRC files against the MRC2014

standard. Python’s standard file-handling semantics are used

as far as possible; for example, MRC files are opened by

calling the mrcfile.open() function and closed after use by

calling close(). The file header and data arrays are simply

accessed via header and data fields on the open MRC file

object. Files can be validated for compliance with the

MRC2014 standard using the mrcfile.validate() function.

Other features include seamless support of gzip-compressed

files (as used for maps downloaded from the EMDB) and a

memory-mapped file option for fast random access to small

chunks of very large files. To make it as simple as possible to

install and use, mrcfile is written in pure Python (fully

compatible with Python versions 2 and 3) and its only

dependency is NumPy. A brief example of its usage is shown

in Fig. 3. A full usage guide and a description of the underlying

design are available in the online documentation (http://

mrcfile.readthedocs.org/).

2.3. Python toolkit for EM

A number of other Python modules are available within the

CCP-EM software framework. These are used internally in

the suite, but may also act as a useful toolkit for programmers

wishing to write their own scripts. Currently, Python 2.7.11 is

packaged with the suite along with specific libraries developed

by CCP-EM and collaborators and additional open-source

dependencies. The latter include common scientific modules

such as NumPy (van der Walt et al., 2011), SciPy (Jones et al.,

2001), Biopython (Cock et al., 2009) and the Python imaging

library Pillow (https://python-pillow.org). This Python

‘ecosystem’ can be accessed by invoking ccpem-python from

the command line.

Led by the University of York, clipper-python has been

developed to provide Python bindings to the established C++

Clipper library (Cowtan, 2003), which underpins a number of

CCP4 programs such as Buccaneer (Cowtan, 2006) and which

is also used in Coot (Emsley et al., 2010). The Clipper library

was originally developed to aid the organization of crystallo-

graphic data and enhance the performance of crystallographic

computation, and as such has many features that are applic-

able to EM data processing, in particular for high-resolution

model building. Of particular relevance is the NXmap class,

which is a noncrystallographic map class that stores a map of

an arbitrary data type. In contrast to the Xmap crystallo-

graphic map class, it is finite in extent and has no symmetry,

and is therefore appropriate for EM volumes derived from

SPR or tomography (Cowtan, 2003). clipper-python exposes
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Figure 3
Basic usage of the mrcfile Python library. In this example, a compressed
map downloaded from the EMDB is opened and a 2 � 3 slice of data is
taken from it. A new MRC file is then created, the data are copied into it
and checked, and the file is closed. Finally, the file is validated to confirm
that it complies with the MRC2014 standard.

Figure 2
JSON files are used as a convenient, human-readable store of parameters
and provide a consistent input for CCP-EM-supported applications. In
this example, input parameters for a MOLREP job are shown, including
the use of a spherically averaged phase translation function and searching
for two copies of the search model in the EM volume.



many of the C++ arrays as pythonic NumPy arrays; this in turn

conveniently links the specific objects found in MX and EM

(such as map volumes) to the NumPy library for the rapid

development and deployment of new algorithms.

ConKit (Simkovic et al., 2017),

developed at the University of Liver-

pool, is a Python interface for the

analysis, manipulation and visualization

of evolutionary contact predictions

from several alternative algorithms:

HHblits (Remmert et al., 2012),

JackHMMER (Johnson et al., 2010),

HHfilter (Remmert et al., 2012),

CCMpred (Seemayer et al., 2014),

PSICOV (Jones et al., 2012) and

bbcontacts (Andreani & Söding, 2015).

This library facilitates the inclusion of

additional structure restraints inferred

from deep-sequencing data, based on

contact predictions made by external

programs and provided in one of a

number of data formats. Initial efforts

using this approach for guiding models

into cryo-EM density have proved

successful (Schep et al., 2016).

3. Graphical user interface and job
management

Initial interfaces have been provided for

a series of model-building tools applic-

able to high-to-medium-resolution

(<10 Å) volumes. These tasks can be

accessed via the control GUI, as stand-

alone task GUIs or via the CLI. The

control GUI (Fig. 4) contains simple

project-management utilities allowing

users to create new projects, record a

chronological list of jobs and monitor

the status of ongoing processes. Details

of projects and jobs are stored in an

SQLite database that is integrated via

PyQt4/Qt4 bindings. The GUI is

designed such that jobs are launched as

detached, separate processes, so that the

main GUI thread can be launched and

terminated without interfering with

long-running subtasks that are launched

from it.

Each new project created by a user is

stored in a separate directory, and child

tasks of that project are stored in indi-

vidual subdirectories. The top project

directory stores the SQLite database file

used to record the following informa-

tion for each task: incremental job

number, date and time of job initiation

and completion, task type, task name,

job location and current status. Clicking
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Figure 4
CCP-EM project and task window. Top: CCP-EM project window showing the taskbar which is used
to launch applications on the left and the project job history on the right. Bottom: example of the
CCP-EM DockEM task. The toolbar at the top gives rapid access to molecular-graphics programs,
job files, documentation and job launch. The input parameter setup tab is shown below, with
required inputs highlighted in red. Additional launcher and results tabs appear as the job is
launched and completed, respectively.



on the task entry launches its task window. The left-hand

toolbar launches a new instance of the selected task. If Test

mode is selected, new tasks will be preloaded with parameters

and data from that task’s unit test to allow new users to trial an

application and examine the expected output.

Each task window has a similar basic layout (Fig. 4), with a

toolbar and four main tabs: Setup, Pipeline, Launcher and

Results. The toolbar provides a Run button for launching the

task, a New button for cloning the current task (i.e. preserving

any defined inputs) and a Load button for opening previous

runs. The Coot, CCP4mg and Chimera buttons provide quick

links to commonly used molecular-graphics programs. The

Terminal and Output buttons launch a terminal or file-browser

instance in the task’s subdirectory to allow rapid file naviga-

tion, whilst the Info button displays a brief description of the

task and provides clickable hyperlinks to the task’s online

documentation. Finally, there is a Kill button for terminating

the task and a green hexagon status indicator. The status

indicator is grey when ready, spins when running and is

coloured green on successful completion of the task or red

upon failure.

The Setup tab allows input parameters to be entered by the

user. Appropriate defaults are used wherever possible and

required user input is highlighted in red. Each input has a

tooltip, which is visible upon mouse hover and gives a brief

description to aid new users. Programs originally developed

for the CCP4 suite have keyworded input for specifying

extended functionality where appropriate.

The Pipeline tab shows the individual jobs that make up the

task. For example, in the MOLREP task three processes are

launched in series. Initially SFCHECK (Vaguine et al., 1999)

analyzes the input .mrc file, followed by the main MOLREP

(Vagin & Teplyakov, 2010) process and finally a third

SFCHECK process comparing the fitted structure with the

input map. The status of each subprocess is colour-coded: grey

for ready, blue for running and green for finished. Clicking

on each job displays information in the right-hand widget,

including the job’s log file. Double-clicking on the log file

opens the text file in the user’s standard editor. If the standard

error file of the job process is greater than 0 bytes in size then

it is also displayed to alert the user to potential problems.

The Launcher tab highlights important files associated with

the task, for example in the REFMAC (Murshudov et al., 2011)

refinement task the input PDB and map files are shown along

with the refined output PDB file. A brief description of each

file is given and double-clicking will launch an appropriate

application to view the file. For standard files (for example text

or PDF files) the user’s normal desktop application will be

launched, while for structural biology files (e.g. coordinate files

or map volumes) the user can select their preferred molecular-

graphics (MG) program from a list of those available. Clicking

Open Selected will open all selected files at once, allowing the

rapid visualization of the results of a task.

Molecular-graphics integration is provided for three of the

most common MG programs: Coot (Emsley et al., 2010),

Chimera (Pettersen et al., 2004) and CCP4mg (McNicholas et

al., 2011). Coot is packaged with CCP-EM, while the others

are used if available. (CCP-EM searches the system paths to

find the expected MG executable, or users can explicitly set

this path via the CCP-EM settings.) In the simplest cases, tasks

will launch the MG program and the selected files will be

automatically loaded. However, for some tasks specialized run

scripts have been produced. For example, the MRC to MTZ

task loads all calculated map coefficients in Coot so that

different degrees of sharpening and blurring can be compared

(see x4.8), the TEMPy:DiffMap task loads scaled maps into

Chimera and the DockEM task allows selections of best hits to

be displayed in Chimera.

Finally, the Results tab uses a PyQt Webkit widget to

display an HTML file of the task’s results. This HTML file is

produced by the jsrview package from CCP4 (Winn et al.,

2011) via its Python bindings pyrvapi (log files from CCP4-

derived programs are pre-processed using the CCP4 smartie

library; Briggs, 2007). The jsrview package was initially

developed by E. Krissinel to support dynamic HTML output

in CCP4’s jsPISA webserver (Krissinel, 2015). This package

allows a developer to create dynamic and interactive HTML

pages using a library of high-level C functions featuring

various graphical widgets (such as plots, molecular graphics,

tables, buttons, comboboxes etc.) and nested layouts (tabs,

folders and grids). The functions generate a task file with a

pseudo-program for a real-time JavaScript interpreter, based

on jQuery, which is loaded in the browser widget using a

bootstrap HTML page. The package may be used in programs

written in C, C++ and Fortran, as well as Python through the

set of corresponding bindings. The resulting output may be

served either from the local file system or via a remote server.

This would allow CCP-EM to efficiently transfer to web-based

applications in the future if required.

4. CCP-EM tasks

The initial set of applications in the CCP-EM suite is focused

primarily on model building into volumes derived from single-

particle reconstruction and high-resolution subtomogram

averaging. Fig. 5 shows in detail the task for refinement of

atomic models, while Fig. 6 gives an overview of possible

routes through the suite.

If a user has an appropriate atomic model available, such as

a homologous domain from a high-resolution crystal structure,

then either MOLREP (Vagin & Teplyakov, 2010) or DockEM

(Roseman, 2000) can be used to dock the structure into the

cryo-EM volume. If no atomic model is available then

Buccaneer (Cowtan, 2006) can be used for de novo model

building. The next step is to refine the structure, i.e. to opti-

mize the fit of the atomic model to both the experimental

volume and the established stereochemical restraints. Either

Flex-EM (Topf et al., 2008) or REFMAC (Murshudov et al.,

2011) can be employed here. Initially developed for low-

resolution crystallography, additional structural restraints can

be helpful when the information content in the map density is

low. ProSMART (Nicholls et al., 2012) can used to generate

such additional restraints for REFMAC. Flex-EM requires

rigid-body definitions and these can be produced using the
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helper program RIBFIND (Pandurangan & Topf, 2012a,b).

CCP-EM also includes the TEMPy library (Farabella et al.,

2015), and task interfaces for TEMPy:DiffMap (difference

map) and TEMPy:SMOC (Segment-based Manders’ Overlap

Coefficient) for structural validation are provided.

Other general utility tasks that are provided include MRC

to MTZ for the conversion of map files to structure factors,

and MRCEdit for viewing and editing MRC header informa-

tion. CCP-EM also maintains the MRC image-processing

system (Crowther et al., 1996), and GUIs are provided for

the mrc2tif and mrcallspacea routines.

4.1. MOLREP

MOLREP (Vagin & Teplyakov, 2010) was originally

developed as an automated program for molecular replace-

ment in CCP4 and has since been adapted for rigid-body

docking into cryo-EM maps. It was extensively used by
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Figure 6
Model-building pipeline in CCP-EM. For maps (or segments thereof) with resolutions of less than �5 Å and an appropriate model it is suggested to try
DockEM followed by Flex-EM. For higher resolution data MOLREP and REFMAC can be used for refinement if a suitable model is available. If no
model is available then Buccaneer can be used to build a model de novo. Note that for medium-resolution data sets a combination of approaches is
recommended.

Figure 5
CCP-EM REFMAC task for the refinement and validation of atomic models in high-resolution cryo-EM maps. The single task includes the generation of
structure factors from an input reconstruction, as well as the application of multiple blurring and sharpening factors. The left panel shows the CCP-EM
pipeline for refinement and validation against experimental half-maps. The centre panel shows the results tab and the right panel shows the input and
refined model in Coot.



Amunts et al. (2014) for the placement of homologous struc-

tures into the yeast mitochondrial large ribosomal subunit and

other large complexes (for further methodological details, see

Brown et al., 2015). MOLREP works in reciprocal space, is

relatively fast and is best suited to high-resolution maps.

Although by default the single best-fit structure is returned,

multiple solutions can be examined by specifying the number

of copies expected in the cryo-EM volume. MOLREP uses a

rotation function with a phased translation function. A

spherically averaged phased translation function can also be

used in which the centre of mass of the input model is found

before optimizing the orientation (Vagin & Isupov, 2001),

which can be advantageous when using distantly related

search models or with lower resolution maps.

4.2. DockEM

DockEM (Roseman, 2000) is an exhaustive rigid-body

docking algorithm. With a defined angular sweep, all possible

orientations of the search model are examined within a

defined area of the target map and the cross-correlation (CC)

score is calculated. The top ten best poses are returned (as

ranked by CC) and can be selected to be viewed in Chimera.

Once the DockEM scoring has been completed, the analysis

can be repeated to return more poses and/or the peak radius,

which defines the exclusion threshold for neighbouring solu-

tions, can be altered.

Owing to the exhaustive nature of DockEM it is slower than

MOLREP, but it is useful for low-resolution data sets where

MOLREP cannot produce an unambiguous solution. The

scoring function, along with visualization in Chimera, allows

users to consider the relative quality of multiple possible fits.

4.3. Buccaneer

Buccaneer (Cowtan, 2006) is used for automated de novo

model building and originates from the CCP4 suite. Required

inputs are an EM map (MRC format) and an expected

sequence (FASTA format or similar). Partial PDB models can

also be specified for extension by the program. The Buccaneer

pipeline runs multiple iterations of statistical chain tracing

(identifying connected C� atoms and docking sequence)

followed by coordinate refinement using REFMAC. Currently,

input maps should have a resolution of �5 Å or better. Users

can adjust the overall sharpening level, and this can signifi-

cantly improve the number of residues that are able to be

correctly positioned. Models built by Buccaneer can be loaded

into Coot for validation and further manual model building.

4.4. Flex-EM

Flex-EM (Topf et al., 2008; Joseph et al., 2016) provides

flexible fitting of rigid-body domains against EM volumes

using real-space restraints. It requires an atomic model that

has been rigid-body fitted and the corresponding map. Rigid-

body domains must also be supplied, either defined manually

or by using the RIBFIND task. Flex-EM is suitable for

medium-resolution data sets, �15 Å or better, and two modes

of refinement are available: conjugate-gradient minimization

(CG) and simulated-annealing molecular dynamics (MD). By

default, Ramachandran ’– restraints are included, but these

can be switched off as required. The CCF score (real-space

cross-correlation) is recorded per iteration and is shown in the

Results tab. Flex-EM is an extension of Modeller (Webb &

Sali, 2016) and requires Modeller to be installed separately

(https://www.salilab.org/modeller/).

4.5. RIBFIND

RIBFIND was developed by Pandurangan & Topf (2012a,b)

to cluster rigid-body domains for Flex-EM. DSSP (Kabsch &

Sander, 1983) is used to identify secondary-structure elements

(SSEs) via neighbourhood-based clustering. The number of

SSEs generated by the clustering is tuneable via two spatial

proximity parameters: the residue-contact distance, which

represents the contact between any two residues (side-chain

centroid–centroid distance) enforcing the minimum distance

between the clustered SSEs, and the cluster cutoff, which

clusters any two SSEs based on the percentage of residues in

contact with them. The contact distance is set as an a priori

input and the cluster cutoff can be tuned visually, post-

processing, using a JSmol (Hanson et al., 2013) plugin widget.

4.6. REFMAC

REFMAC has been used extensively for high-resolution

structure refinement of macromolecules against X-ray crys-

tallographic data (Murshudov et al., 2011). It has recently been

re-optimized for use with high-resolution EM maps from SPRs

(Brown et al., 2015). REFMAC uses a maximum-likelihood

target function to simultaneously optimize the agreement of

the input model with the experimental density and with

expected stereochemical restraints. Here, the experimental

gradients are calculated in reciprocal space. This has several

advantages compared with real-space refinement beyond the

convenience of use for pre-existing MX-derived applications,

which include the following: all parameters can be refined

against all data, resolution-dependent weighting can be

applied, and overall quality metrics, in particular Fourier shell

correlation (FSC), become available (Brown et al., 2015).

Real-space refinement also has advantages such as local

parameter optimization and rapid local adjustments (for

example rotamer searches), and allows user visualization and

intervention. Therefore, it is recommended that REFMAC is

used in concert with the real-space refinement and validation

routines available in Coot, and the CCP-EM GUI provides

quick launching from the REFMAC task window for this.

For use with EM data, the REFMAC process itself requires

some data manipulation. The CCP-EM task (Fig. 5) uses the

pipeline functionality to handle this automatically for the

convenience of the user. The input map (.mrc) is converted

internally to structure factors (.mtz) and map sharpening can

be applied at this point. If selected, the ‘find in map’ option

will add a MOLREP process to the pipeline to perform rigid-

body docking. The ‘local’ refinement mode extracts the map

volume around the input model coordinates and refines

against this volume only (as opposed to the whole volume).
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This is useful for very large systems or where atomic models

are only available for specific domains; however, careful

manipulation is required to place the refined model back into

the correct orientation (with respect to the whole volume) and

this is handled automatically after refinement in the CCP-EM

pipeline. If the macromolecule includes nucleic acids, LIBG

(Brown et al., 2015) can be added to the pipeline to auto-

matically generate additional restraints to maintain base

pairing and stacking. Finally, if appropriate half-maps are

available after three-dimensional map reconstruction, cross-

validation processes, as described by Brown et al. (2015), are

added to the pipeline and run automatically.

REFMAC has a number of other options which are helpful

for EM refinement and are exposed in the CCP-EM task

window. These include setting the relative weight of the

experimental and stereochemical restraints (along with an

option to automatically determine weights), pre-refinement

map sharpening and the use of additional restraints, including

jelly-body restraints or external restraints from ProSMART.

4.7. ProSMART

ProSMART (Procrustes Structural Matching Alignment and

Restraint Tool) was originally developed by Nicholls et al.

(2012) to aid the modelling of low-resolution X-ray structures

via the generation of additional restraints, and has since been

successfully applied to model refinement from cryo-EM data

(Brown et al., 2015). The external restraints generated by

ProSMART can be added to REFMAC to supplement its

standard dictionary of restraints. The additional interatomic

distances can be generated in a number of ways: from

high-resolution homologous structures, secondary-structure

restraints or multiple chains within the target model, or the

modelled structure can be self-restrained to the current

conformation. The CCP-EM task allows the generation of

these restraints, which can then be visualized in Coot and

edited as required. They can be then be added to the

REFMAC process via the input in the ‘external restraints’

section of the setup task.

4.8. Map to MTZ

This task runs the ‘sfcalc’ mode of REFMAC and has two

specific roles: the conversion of real-space maps in MRC

format to reciprocal-space structure factors in MTZ format,

and map sharpening/blurring (Nicholls et al., 2012). Presently,

the optimum sharpening coefficient (where ‘optimum’ means

maximizing the interpretable density features) cannot be

analytically determined either locally or globally, although

attempts are ongoing. Visual inspection of maps with different

sharpening factors, however, reveal significant differences,

which can impact both manual and automated model building.

Therefore, the Map to MTZ CCP-EM task applies an array of

sharpening factors for assessment. A Wilson plot is displayed,

allowing inspection of potential truncation pathologies arising

from over-sharpening (Nicholls et al., 2012), and the task is

linked to Coot for visual inspection. This process is recom-

mended for new data sets and it should be noted that local

areas may have different optimal sharpening values.

4.9. TEMPy

TEMPy implements a wide variety of scoring functions for

model-to-map and map-to-map fits (Vasishtan & Topf, 2011;

Farabella et al., 2015; Joseph et al., 2017), as well as other

functions for map and model manipulations. It was designed

as a Python library with a series of command-line scripts

for useful routines. The CCP-EM suite currently has two

TEMPy interfaces: TEMPy:DiffMap and TEMPy:SMOC.

TEMPy:DiffMap produces difference density maps via the

scaled subtraction of two experimental maps or an experi-

mental map and a coordinate model (where the model is

converted into a calculated volume). TEMPy:SMOC

(Segment-based Manders’ Overlap Coefficient) is a local

validation metric that produces a correlation score per residue

calculated on segments of overlapping residue windows. This

method of calculating localized fit to density can alert users to

areas of a model which require attention, and is particularly

suited to medium-resolution data sets (�4–10 Å).

4.10. MRC image-processing system

The MRC–LMB have provided a comprehensive software

library for EM since the early days (Crowther et al., 1996),

together with a large set of programs and utilities (for example

XIMDISP; Smith, 1999). CCP-EM has taken over long-term

maintenance of this software and it is distributed as part of the

suite. The majority of the routines are written in Fortran and

are available via a CLI; however, two programs (mrc2tif and

mrcallspacea) have CCP-EM GUIs and more will be produced

if requested by the community.

5. Availability and future plans

Currently, CCP-EM binary installations are available to

download from http://www.ccpem.ac.uk and are available for

64-bit Linux and Apple platforms, with plans to extend to

64-bit Windows in the near future. The Linux distributions are

built on a nightly basis using a Jenkins CI (continuous inte-

gration) platform hosted by SESC Build Service (STFC). This

autonomous system compiles the code, runs the unit tests and

reports the status of the distribution, highlighting any poten-

tial errors that have inadvertently been introduced. This allows

the rapid development and deployment of new functionality.

Here, we have described the current functionality of the

CCP-EM software suite, which is focused on the fitting and

building of atomic models, while also providing generic tools

for manipulating and visualizing image and volume data. We

are currently working on extending the range of applications

for single-particle reconstruction, and have plans to cover

subtomogram averaging as well. We are working closely with

the EMDB (Patwardhan, 2017) on providing tools for map

and model validation as part of structure determination, i.e.

to be applied prior to deposition (Henderson et al., 2012).

Documentation on the CCP-EM software is available from
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the website, and further information, feedback and user

questions can be obtained from the mailing list at http://

www.jiscmail.ac.uk/CCPEM. Software developers who wish to

discuss including their programs in the CCP-EM distribution

should contact the authors of this article.
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P., Long, F., Murshudov, G., Scheres, S. H. W. & Ramakrishnan, V.
(2014). Science, 343, 1485–1489. (2014).
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