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Integrating inflammatory serum 
biomarkers into a risk calculator 
for prostate cancer detection
Amirhossein Jalali1,2,3,8*, Michael Kitching1,4,8, Kenneth Martin5, Ciaran Richardson5, 
Thomas Brendan Murphy6, Stephen Peter FitzGerald7, Ronald William Watson1,2,8 & 
Antoinette Sabrina Perry1,4,8

Improved prostate cancer detection methods would avoid over-diagnosis of clinically indolent 
disease informing appropriate treatment decisions. The aims of this study were to investigate the 
role of a panel of Inflammation biomarkers to inform the need for a biopsy to diagnose prostate 
cancer. Peripheral blood serum obtained from 436 men undergoing transrectal ultrasound guided 
biopsy were assessed for a panel of 18 inflammatory serum biomarkers in addition to Total and Free 
Prostate Specific Antigen (PSA). This panel was integrated into a previously developed Irish clinical 
risk calculator (IPRC) for the detection of prostate cancer and high-grade prostate cancer (Gleason 
Score ≥ 7). Using logistic regression and multinomial regression methods, two models (Logst-RC 
and Multi-RC) were developed considering linear and nonlinear effects of the panel in conjunction 
with clinical and demographic parameters for determination of the two endpoints. Both models 
significantly improved the predictive ability of the clinical model for detection of prostate cancer 
(from 0.656 to 0.731 for Logst-RC and 0.713 for Multi-RC) and high-grade prostate cancer (from 
0.716 to 0.785 for Logst-RC and 0.767 for Multi-RC) and demonstrated higher clinical net benefit. 
This improved discriminatory power and clinical utility may allow for individualised risk stratification 
improving clinical decision making.

Prostate cancer (PCa) is the most common non-cutaneous cancer in men in the Western  world1. A prostate tissue 
biopsy is a key step in the diagnosis of PCa. However the decision to refer a patient for a biopsy is challenging, as 
TRUS biopsies are associated with significant  morbidity2. Clinicians usually base this decision on serum prostate 
specific antigen (PSA), abnormal digital rectal exam (DRE)3 and increasingly multiparametric magnetic reso-
nance imaging (mpMRI) as well as other factors, such as family history and previous biopsy results. PSA lacks 
 specificity1 and has led to over-diagnosis and over-treatment of clinically indolent disease and a large number 
of unnecessary biopsies in  men4 and the mpMRI PROMIS trial did show that there is still a chance of missing 
clinically significant disease at PI-RADS scores of 1 or  25.

Improved detection methods for high-grade significant disease that would reduce unnecessary biopsies are 
highly sought. Risk stratification of men suspected of PCa and high-grade significant disease would allow clini-
cians and patients to make a more informed decision on whether or not to biopsy. Risk calculators that utilise 
patient clinical data have already been developed for cardiovascular  disease6 and  stroke7. There are several guide-
lines which suggest a risk adapted approach that considers clinical information along with serum PSA should be 
used to predict PCa  risk8. Previous risk calculators have been developed and assessed such as the European Ran-
domised Study of Screening for Prostate Cancer Risk Calculator (ERSPC-RC)9 and the Prostate Cancer Preven-
tion Trial Risk Calculator (PCPT-RC)10,11 in large multi-institutional cohorts. However, the accuracy of the risk 
score nomograms to detect high grade cancer (Gleason score ≥ 7) are ~ 69–79% for both PCPT and the ERSPC.

The use of multiple serum biomarkers may be the key to improving the identification of significant disease. 
Commercial tests that utilise serum biomarkers are already on the market, such as the Prostate Health Index 
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(PHI)12, which comprises total PSA, free PSA and [-2]  proPSA13 and the 4 K score, which assesses total PSA, 
free PSA, intact PSA, and human kallikrein-related peptidase  214. Although promising, these commercial tests 
are currently not widely routinely used, as there is still uncertainty as to their utility and interpretation in a 
clinical setting. Previous studies have shown that the inclusion of serum and Urine biomarkers improves on risk 
calculators. Our own studies have shown that the addition of the PHI score to an Irish clinical risk calculator 
improved the accuracy of the Irish risk  calculator15. The urinary biomarkers prostate cancer antigen 3 and the 
gene fusion product of transmembrane protease serine 2 with the transcription factor v-ets erythroblastosis virus 
E26 oncogene homolog (TMPRSS2-ERG) also improved the accuracy of ERSPC-RC16. It is clear that the use of 
multiple biomarkers improves on the accuracy of risk calculators.

It is well recognised that inflammation plays a causal role in the development of several types of  cancer17 
and there is direct evidence of an inflammatory  microenvironment18 and higher inflammatory marker levels 
effecting a greater PCa  risk19. This environment is associated with impaired differentiation of prostate epithelial 
 cells20 and aberrant basal to luminal differentiation promoting cancer  initiation21.

The aim of this study was to investigate the utility of inflammatory serum biomarkers combined with clinical 
information for the detection of (i) PCa and (ii) high-grade PCa in patients that are suspected of having PCa.

Materials and methods
Patient cohort and sample collection. The study cohort consisted of 436 Caucasian Irish men referred 
for a TRUS biopsy on the basis of an elevated PSA and/or abnormal DRE between April 2012 and June 2016. 
Blood samples (9 mL) were collected in a serum separator tube prior to biopsy and processed within 3 h of col-
lection. Samples were centrifuged at 1500×g for 15 min at room temperature. Serum (~ 3 mL) was removed and 
stored at − 80 °C until further analysis. Patients were classified as either biopsy-negative (having no detectable 
PCa) or biopsy-positive (having detectable PCa) and further sub-divided into low-grade (Gleason score 6) and 
high-grade (Gleason score 7 or above)15 disease. The clinicopathologic details of the cohort are summarised in 
Table 1.

Sample collection and processing were ethically approved by the St James Hospital and Mater Misericordiae 
University Hospital ethics committees. The patient information leaflet and consent form were written and con-
structed in line with best practice and the EU Data protection Directive and Data protection Acts 1988 and 2018 
and approved by the two ethics committees. All patients gave written informed consent agreeing to participate 
in the study. All steps were carried out in accordance with national guidelines and regulations.

Table 1.  Clinical Features of the Patient Cohort. *Student’s T-test. ¥  Pearson’s chi squared test. † Wilcoxon Rank 
test.

All Patients Biopsy positive Biopsy negative P Value High-grade PCa Low-grade PCa P Value

Patients, n (%) 436 211 (48.4) 225 (51.6) 146 (69.2) 65 (30.8)

Age in years

Median 63.9 65.2 63.2 0.096† 65.6 62.2 0.045†

Mean 63.3 63.8 62.8 0.156* 64.4 62.2 0.051*

Range (41.70–84.96) (41.70–84.96) (41.77–79.13) (41.7–85.0) (45.6–77.0)

DRE, n (%)

Normal 263 (60.3) 110 (52.1) 153 (68.0) 0.002¥ 70 (48.0) 40 (61.5) 0.184¥

Not recorded 9 (2.1) 7 (3.3) 2 (0.9) 5 (3.4) 2 (3.1)

Abnormal 164 (37.6) 94 (44.6) 70 (31.1) 71 (48.6) 23 (35.4)

PSA in ng mL−1

Median 6.5 7.0 6.0  < 0.001† 8.2 5.9  < 0.001†

Mean 14.0 21.9 6.6 28.4 7.0

Range (0–1,400) (0–1,400) (0.5–31.40) 0.027* (0–1,400) (0.54–29.3) 0.032*

Family history of PCa, n (%)

Positive 75 (17.2) 4 (20.9) 31 (13.8) 0.067¥ 33 (22.6) 11 (16.9) 0.451¥

Negative 361 (82.8) 167 (79.1) 194 (86.2) 113 (77.4) 54 (83.1)

Previous negative biopsy, n (%)

Yes 87 (20.0) 29 (13.7) 58 (25.8) 0.002¥ 17 (11.6) 12 (18.5) 0.266¥

No 349 (80.0) 182 (86.3) 167 (74.4) 129 (88.4) 53 (81.5)

Gleason score, n (%)

6 – 63 (29.9) – – – 63 (100) –

7 99 (46.9) – 99 (67.8) –

8 26 (12.3) – 26 (17.8) –

9 20 (9.5) – 20 (13.7) –

10 3 (1.4) – 3 (2.1) –
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Biomarker analysis. In total, analysis of 20 biomarkers was performed. The Evidence Investigator platform 
(Randox) uses sandwich chemiluminescent immunoassay methods for the simultaneous detection of multiple 
analytes. Two multiplexed Evidence Investigator biomarker panels were employed; the Cytokine and Growth 
Factors High Sensitivity Array (Cat. No. EV 3623) for IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, VEGF, IFN-
γ, TNF-α, MCP-1 and  EGF22 and the Adhesion Molecules Array (Cat. No. EV3519) for VCAM-1, ICAM-1, 
E-Selectin, P-Selectin, L-Selectin23. Biochip analyses were performed according to the manufacturer’s instruc-
tions. Briefly, serum samples diluted where appropriate, reconstituted calibrators and assay specific quality con-
trols utilised in duplicate were incubated on the biochip. Following washing, detector conjugate solution was 
applied to the biochip and binding was revealed using chemiluminescent detection. Concentration of all ana-
lytes in the samples were calculated using a nine-point calibration curve by the Evidence Investigator analyser. 
Individual assay runs were deemed to have passed if the measured values for the quality control samples were 
within the specified range for each of the target values for each analyte, as per kit instructions. Values measured 
below the lower limit of detection were taken as zero.

IL-18 was measured in all serum samples by ELISA (Cat. No. ILE10068, Randox) according to the manufac-
turer’s instructions. Serum samples, calibrators and quality control samples were added to each well in duplicate. 
The IL-18 standard provided in the kit was reconstituted in deionised water to make up the calibrators and the 
two quality control samples (312.5 pg mL−1 and 56.25 pg mL−1). Total PSA and Free PSA were determined in 
all samples using the Roche COBAS 8000 system according to manufacturer’s instructions at Randox Clinical 
Laboratory Services (Antrim, UK).

Even though PSA values were available for each patient we included its analysis as the patients were recruited 
from different clinics and the pre-biopsy PSA values attained using various platforms. Therefore, serum PSA of 
the patients were reanalysed on the single platform.

Clinical information: Age, Family history, DRE and prior negative biopsy were collected as part of the study 
from the patients chart or at time of recruitment.

Statistical analysis. Basic analysis of patient information. Basic statistical analysis of the study popula-
tion’s characteristics was performed using GraphPad Prism (ver. 5.0). Descriptive statistics were performed in 
the dataset, which was divided into those with and without a PCa diagnosis and high-grade PCa (> = Gleason 7) 
versus all other patients. The unpaired Student’s t-test and the Wilcoxon Rank test were used to investigate the 
significant difference in means and medians of continuous variables, respectively. Pearson’s chi-squared test was 
also performed to studying the significant difference for categorical variables.

Risk calculator model development and performance. Development of the risk calculator for the prediction 
of PCa and high-grade PCa were performed in R software version 3.4.324. Logistic and multinomial regres-
sion methods were used to model the linear and nonlinear effects of serum biomarkers combined with clinical 
information (age, DRE, family history of PCa, previous negative biopsy). These two modelling strategies are 
considered as relevant approaches to stratify patients to high-grade PCa, low-grade PCa or those without PCa. 
The stepwise method was applied as the variable selection technique to integrate potentially relevant biomarkers 
into the risk calculator. In both methods, the probabilities for each patient were modelled through the log odds 
of risk factors which were then transformed into probabilities and assigned a percentage risk for each patient. 
Internal validation is built into the cross-validation approach to prevent overfitting of the data by using tenfold 
cross validation.

The final models for diagnosis of PCa and/or high-grade PCa were compared to the Irish prostate risk 
calculator (IPRC) which has been previously developed and outperformed the available risk calculators in the 
Irish  population25. Accuracy of the models was determined using the area under the curve (AUC) calculated 
from the Receiver Operator Curve (ROC) by plotting the sensitivity and specificity at each of its risk thresholds. 
Comparison of ROC curves took place via the method described by DeLong et al.26. Decision-curve analysis 
was undertaken to examine the potential net benefit of the application of each model over the benefit offered by 
the strategies of performing a biopsy in all patients and performing a biopsy in  none27. Calibration plots were 
plotted to represent the agreement between the observed incidence of cancer visually and predicted  risk28. The 
Chi-Square Hosmer–Lemeshow test was used to assess the goodness of fit of models, where a p < 0.05 indicates 
a poor agreement between the predicted risk and observed incidence of cancer and a poorly calibrated model.

Results
Baseline cohort characteristics. This was a retrospective biomarker study intended to improve the detec-
tion of clinically relevant disease. The clinical endpoint of the study was the histopathological findings from the 
TRUS biopsy. The study cohort consisted of 436 patient biopsies, of which 211 (48%) were diagnosed with PCa 
with different Gleason scores (Table 1).

In Table 1, the univariate effects of ’DRE’ and ’Previous negative biopsy’ were statistically significant in 
detecting PCa, and ’age’ for detecting high-grade PCa. The effect of ’PSA’ was also significant in both cases. This 
implies that if patients are older, have higher PSA, abnormal DRE or did not have a previous negative biopsy, 
(on average) they have more chance of PCa and high-grade PCa.

Statistical modelling. Descriptive analysis of all biomarkers assessed is presented in Table 2.
Integrating serum biomarkers with the clinical risk factors using multinomial and logistic models identified 8 

biomarkers (TNFα, VEGF, IL1α, IL1β, ICAM-1, E-selectin, P-selectin, L-selectin) with 4 (IL1α, IL1β, E-selectin, 
P-selectin) biomarkers identified in both models, to confer significant additional predictive ability. Two separate 
risk calculators were developed to predict PCa and high-grade PCa using a multinomial model (Multi-RC) and a 
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logistic model (Logst-RC) where Table 3 presents the models and Table 4 evaluates the model performances. We 
also built models using the biomarkers alone for both the multinomial model (Multi-bio) and a logistic model 
(Logst-bio) presented in Table 4 which showed no significant improvement over the clinical model (IPRC).

The odd ratios of the Multi-RC model for detecting low-grade (column A) and high-grade PCa (column B) 
compared to not detecting PCa are presented in Table 3. We combined odd ratios of low grade and high grade 
PCa to evaluate the performance of the Multi-PC model for detecting PCa and High-grade PCa and these are 
presented in Table 4 and show a significant improvement above the IPRC model. The model variables consist 
of Age, DRE, Family History, previous biopsy, PSA, TNF-a, IL-1a, IL-1b, ICAM-1, E-Selectin, P-Selection, Free 
PSA (FPSA) and Free to total PSA (FTPSA).

The odd ratios of the Logst-RC model for detecting PCa compared to not detecting PCa (column C) and 
detecting high-grade PCa compared to low-grade or not detecting PCa (column D) are presented in Table 3. 
The model performance for detecting PCa and High grade PCa are presented in Table 4 and showed a significant 
improvement above the IPRC model. The model variables consist of Age, DRE, Family History, previous Biopsy, 
PSA, VEGF, IL-1a, IL-1b, E-Selectin, P-Selectin, L-Selectin and FPSA.

To give some insight into the clinical significance of the study, we selected thresholds manually based on 
the Youden index criteria. Using the threshold of 0.3 for high-grade Logst-RC (and the threshold of 0.275 for 
high-grade Multi-RC) with would have resulted in saving 71.2% (72.6%) of the biopsies at the cost of delaying 
the diagnosis of 27.9% (33.8%) of the high-grade cancers. The negative predictive value of the test results below 
this threshold would be 0.833 (0.828).

Model performance. Table 4 represents the discriminative abilities of both risk calculators for the diagno-
sis of PCa and high-grade PCa using AUC. Multi-RC showed an AUC of 0.7126 and 0.7671 and Logst-RC an 
AUC of 0.7308 and 0.7847 for diagnosis of PCa and high-grade PCa respectively. This significantly improved the 
predictive ability of the IPRC model, as demonstrated in the ROC in Fig. 1A,D.

Figure 1 shows the decision curve analyses of the clinical utility of both models in detecting PCa (Fig. 1B) or 
high-grade PCa (Fig. 1E). For detecting PCa there was an improved net benefit for the threshold ranges of 0.35 
to 1.0 and for detecting high-grade PCa there was an improved net benefit for the threshold ranges of 0.15 to 1.0 
compared to the IPRC—clinical model alone. The calibration curves (Fig. 1C,F) show good agreements between 
predicted probabilities and the actual outcome indicating that all models are well calibrated, which have been 
confirmed by the (non-significant) Hosmer–Lemeshow results.

Integrating the panel of serum biomarkers with the clinical risk factors outperform the previously developed 
Irish risk  calculator25. Logst-RC has shown slightly higher improvement when internally validated; however, fur-
ther validation in an independent cohort will be required in order to confirm improvements and identify the most 
appropriate model and could be employed to select the best clinically accepted threshold to be used in practice.

Table 2.  Descriptive analysis of serum biomarkers (median and interquartile range) grouped by biopsy and 
grading outcomes. The p-value of Wilcoxon Rank test indicates whether the observed differences in median for 
each biomarker is significant.

Median (IQR) All patients (n = 436) Biopsy positive (n = 211) Biopsy negative (n = 225) P Value
High-grade PCa 
(n = 146) Low-grade PCa (n = 65) P Value

tPSA (ng mL−1) 6.28 (4.87) 7.15 (5.72) 5.51 (4.13)  < 0.001 7.92 (9.11) 5.69 (3.10)  < 0.001

fPSA (ng mL−1) 1.02 (0.95) 1.03 (1.20) 1.01 (0.82) 0.112 1.10 (1.69) 0.85 (0.65) 0.017

IL-1α (pg mL−1) 0.09 (0.14) 0.09 (0.14) 0.09 (0.16) 0.655 0.09 (0.14) 0.09 (0.14) 0.988

IL-1β (pg mL−1) 0.44 (0.75) 0.49 (0.80) 0.16 (0.73) 0.389 0.44 (0.75) 0.56 (0.82) 0.253

IL-2 (pg mL−1) 0.0 (1.15) 0.0 (1.08) 0.0 (1.21) 0.645 0.0 (1.14) 0.0 (0.98) 0.916

IL-4 (pg mL−1) 1.33 (0.57) 1.34 (0.56) 1.28 (0.58) 0.730 1.36 (0.62) 1.28 (0.45) 0.074

IL-6 (pg mL-1) 1.12 (1.05) 1.16 (1.26) 1.04 (0.88) 0.069 1.34 (1.51) 0.95 (0.51) 0.005

IL-8 (pg mL−1) 7.24 (5.17) 7.38 (5.07) 7.05 (5.18) 0.395 7.60 (4.78) 6.86 (5.23) 0.176

IL-10 (pg mL−1) 0.54 (0.34) 0.57 (0.33) 0.51 (0.35) 0.145 0.56 (0.32) 0.59 (0.40) 0.911

IL-18 (pg mL−1) 185 (165) 193 (148) 179 (174) 0.216 205 (152) 179 (105) 0.105

VEGF (pg mL−1) 72.1 (78.9) 76.3 (78.6) 68.2 (80.0) 0.193 78.8 (80.2) 75.6 (69.8) 0.630

IFN-γ (pg mL−1) 0.18 (0.30) 0.18 (0.31) 0.18 (0.28) 0.242 0.20 (0.22) 0.16 (0.29) 0.208

TNF-α (pg mL−1) 1.92 (0.90) 1.94 (0.84) 1.86 (0.95) 0.391 1.98 (0.88) 1.82 (0.77) 0.391

MCP-1 (pg mL−1) 155 (96.1) 154 (97.9) 155 (94.9) 0.751 150 (92.2) 166 (117) 0.350

EGF (pg mL−1) 5.34 (12.8) 5.82 (12.4) 4.64 (13.4) 0.794 5.51 (12.9) 6.48 (10.2) 0.630

VCAM-1 (ng mL−1) 645 (211) 666 (212) 635 (199) 0.121 692 (208) 612 (190) 0.016

ICAM-1 (ng mL−1) 272 (80.6) 275 (76.2) 270 (78.9) 0.283 283 (79.2) 265 (66.7) 0.010

E-Selectin (ng mL−1) 23.3 (10.7) 25.2 (12.9) 22.7 (9.47) 0.016 26.4 (12.5) 22.3 (10.9) 0.027

P-Selectin (ng mL−1) 164 (60.8) 197 (50.5) 192 (72.8) 0.301 198 (51.0) 193 (46) 0.993

L-Selectin (ng mL−1) 896 (230) 898 (214) 894 (251) 0.977 899 (210) 890 (207) 0.486
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Discussion
In this study, we have utilised a retrospective approach to show that the integration of inflammatory serum bio-
markers into the clinical risk factors significantly improves the discriminatory power and clinical utility of the 
clinical risk factors alone for PCa and high-grade PCa (Gleason Score ≥ 7). This suggests that the Multi-RC or 
Logst-RC models would improve the detection rate and/or reduce unnecessary biopsies compared to the IPRC 

Table 3.  Summary of Multi-RC and Logst-RC models using odds ratio, standard error and p-value for each 
risk factor in the model. ¥  The non-linear effect of the predictor using a log transformation.

Multi-RC (A) Multi-RC (B) Logst-RC (C) Logst-RC (D)

Odds ratio Std. Error p-value Odds ratio Std. Error p-value Odds ratio Std. Error p-value Odds ratio Std. Error p-value

Age 0.997 0.023 0.884 1.031 0.020 0.137 1.021 0.017 0.238 1.038 0.020 0.058

DRE (Abnormal) 1.203 0.324 0.569 1.545 0.276 0.115 1.498 0.240 0.093 1.501 0.265 0.125

DRE (Missing) 4.084 1.051 0.181 2.790 1.016 0.313 3.250 0.949 0.214 1.659 0.905 0.576

Family history (Posi-
tive) 1.339 0.408 0.475 1.341 0.342 0.392 1.251 0.296 0.450 1.303 0.322 0.412

Previous biopsy (Yes) 0.605 0.385 0.192 0.318 0.344  < 0.001 0.426 0.284 0.003 0.366 0.333 0.003

TNFα 0.213 0.891 0.083 1.022 0.075 0.770 – – – – – –

TNFα¥ 22.06 1.848 0.094 1.108 0.178 0.564 – – – – – –

VEGF – – – – – – – – – 1.003 0.002 0.104

VEGF¥ – – – – – – 1.214 0.108 0.073 – – –

IL1α 1.605 0.282 0.093 1.578 0.258 0.077 1.527 0.253 0.095 – – –

IL1α¥ 0.921 0.072 0.257 0.856 0.065 0.017 0.894 0.055 0.041 – – –

IL1β¥ 1.115 0.049 0.028 1.057 0.042 0.193 1.068 0.036 0.06 – – –

ICAM-1 0.954 0.004  < 0.001 0.991 0.002  < 0.001 – – – – – –

ICAM-1¥ 89,574.6 0.409  < 0.001 11.806 0.341  < 0.001 – – – – – –

E-selectin 1.006 0.020 0.768 1.052 0.016 0.001 1.029 0.013 0.029 1.052 0.014  < 0.001

P-selectin 1.004 0.003 0.232 0.996 0.003 0.129 0.983 0.009 0.084 0.995 0.003 0.057

P-selectin¥ – – – – – 22.22 1.963 0.114 – – –

L-selectin – – – – – – 0.993 0.003 0.037 0.993 0.003 0.028

L-selectin¥ – – – – – – 404.6 2.961 0.043 1088.2 3.213 0.030

FPSA 0.813 0.510 0.685 1.634 0.345 0.155 – – – 1.709 0.303 0.077

FPSA¥ 1.056 0.394 0.891 0.487 0.319 0.024 0.285 0.277  < 0.001 0.103 0.474  < 0.001

TPSA – – – – – – 1.092 0.041 0.034 – – –

TPSA¥ 1.357 0.238 0.200 2.704 0.238  < 0.001 3.400 0.384 0.001 11.43 0.342  < 0.001

FTPSA¥ 0.778 0.307 0.414 0.180 0.252  < 0.001 – – – – – –

Table 4.  The discriminative ability of IPRC, Multi-bio, Logst-bio, Multi-RC and Logst-RC using the areas 
under the curve (AUC) and 95% confidence interval of the calculated probabilities. The p-values indicate if 
each model significantly improve the IPRC.

Risk calculators AUC 95% CI P-value (compared to IPRC)

IPRC

PCa 0.656 (0.609–0.711) –

High-grade PCa 0.716 (0.663–0.769) –

Multi-bio

PCa 0.686 (0.637–0.735) 0.392

High-grade PCa 0.749 (0.701–0.798) 0.271

Logst-bio

PCa 0.708 (0.659–0.756) 0.127

High-grade PCa 0.770 (0.724–0.816) 0.068

Multi-RC

PCa 0.713 (0.664–0.761) 0.038

High-grade PCa 0.767 (0.719–0.815) 0.036

Logst-RC

PCa 0.731 (0.684–0.778) 0.006

High-grade PCa 0.785 (0.738–0.831) 0.003
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risk calculator based on clinical features alone. These models demonstrated consistently higher net benefits over 
different preferences of wanting or avoiding a  biopsy29 and following further validation and threshold selection 
could have clinical utility.

Chronic inflammation is associated with the development of many cancers including PCa and is possibly 
playing a role in its formation and  development30. In the current study we identified a number of inflammatory 
mediators that increased the prediction of PCa and high-grade PCa when integrated with the current clinical 
features compared to clinical features alone. These included TNF-α, VEGF, IL-1α, IL-1β, ICAM-1, E-Selectin, 
P-Selectin and L-selectin. There is evidence in the literature that some of these mediators are associated with 
tumour development and progression including PCa. VEGF has been shown to be overexpressed in patients with 
 colorectal31 and PCa. Fryczkowski et al. demonstrated that VEGF concentrations were significantly higher in 
the PCa groups compared to the BPH patient group however on multiple logistic regression analysis VEGF was 
not an independent predictor of PCa and did not add to the clinical features  alone32. Soluble adhesion molecules 
ICAM-1 and the selectins have been shown to be increased in  Breast33 and colorectal  cancer31 but there is no 
evidence in PCa to date. TNF-α levels have also been correlated with disease stage in breast  cancer34 but there 
is no evidence that TNF-α serum levels are associated with high grade of lethal PCa at the time of diagnosis of 
localised disease as well as IL-1α and IL-1β35. The power of our study is that we evaluated a number of inflam-
matory serum mediators and built a model selecting the biomarkers that gave the best prediction of PCa and 
high-grade PCa.

The multinomial regression modelling approach identified a single combination of biomarkers for the risk 
assessment of PCa and high-grade PCa. However, two different sets were selected to estimate the risk of PCa 
and high-grade PCa in the logistic regression approach. The use of logistic regression helps to access the partial 
effect of the biomarkers on either detecting PCa or high-grade PCa, while the use of multinomial regression 
reduces the standard  errors36. Both of these methods are employed in previous studies, including, the European 
risk calculator (ERSPC-RC9) used the logistic regression approach, and two American risk calculators (PCPT-
RC10 and PBCG-RC11) are developed using the multinomial regression.

The use of a logarithm transformation for some biomarkers in the model (e.g. IL-1β) represents a nonlinear 
effect of the biomarker on the risk, which indicates that a small change in the biomarker is critical. In contrast, 
the linear effect of some biomarkers in the model (e.g. E-selectin) represents that a change in any value of the 
biomarker has the same importance. The use of both linear and logarithm effects of the biomarkers in the model 

Figure 1.  The receiver operating characteristic (ROC) curves (A,D) and decision curves (B,E) represent the 
discriminative ability of IPRC (green), Multi-RC (red) and Logst-RC (blue) in diagnosis of cancer (A,B) and 
high-grade cancer (D,E). Calibration curves are represented in (C,F).
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(e.g. IL-1α) indicates that, although any change in the biomarker is important, a small change in the values of 
the biomarkers are more critical.

A limitation of the study is not having PSA density as a variable which is part of the ERSPC-PC8. We did not 
have access to the prostate volume data for this study at the time of patient recruitment as the Irish health care 
setting did not facilitate the collection of prostate volume until the TRUS biopsy was carried out.

Conclusion
Our study has demonstrated that as both models are well calibrated and utilise variables that are available from 
the patient (Age, Family history, DRE and Previous Biopsy) and assessed from their blood sample they are 
appropriate for individualized risk assessment. Both models show a statistically significant improvement above 
the IPRC justifying the addition of the serum biomarkers and their clinical use. Selecting the best model requires 
additional validation cohorts which would be used to independently validate and identify the best model and 
select the appropriate thresholds which are clinically accepted and maximize their discrimination and clinical 
benefit.

Data availability
Data is available to other researchers on written request to the corresponding author.
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