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Purpose. Epilepsy is a common chronic neurological disorder. We aim to investigate the underlying mechanism of epilepsy with
partial least squares- (PLS-) based gene expression analysis, which is more sensitive than routine variance/regression analysis.
Methods. Two microarray data sets were downloaded from the Gene Expression Omnibus (GEO) database. PLS analysis was
used to identify differentially expressed genes. Gene ontology and network analysis were also implemented. Results. A total of
752 genes were identified to be differentially expressed, including 575 depressed and 177 overexpressed genes in patients. For GO
enrichment analysis, except for processes related to the nervous system, we also identified overrepresentation of dysregulated genes
in angiogenesis. Network analysis revealed two hub genes, CUL3 and EP300, which may serve as potential targets in further
therapeutic studies. Conclusion. Our results here may provide new understanding for the underlying mechanisms of epilepsy
pathogenesis and will offer potential targets for producing new treatments.

1. Introduction

Epilepsy is a common chronic neurological disorder, which
has devastating effects on patients and their families. There
are about 50 million epilepsy patients worldwide and the
occurrence in developing countries is more than twice that
in developed countries [1]. Currently there are more than
20 antiepileptic drugs available for epilepsy patients [2];
however, multidirectional interactions between seizures and
the medications are still challenging for treating patients [3].
Exploring the biological alterations of patients may provide
insights into the pathology and new targets for treatments.

Large-scale microarray expression strategy has provided
greater ease for investigating the underlying mechanisms
of epilepsy. Several gene expression profiling studies have
been carried out earlier and most of them used the routine
variance/regression analysis [4–6]. However, this procedure
cannot remove unaccounted array specific factors, such as
certain demographic profiles. Compared with the routine
analysis, previous studies [7, 8] proposed that partial least
squares- (PLS-) based analysis is more robust in proceeding

gene expression profile datawith higher sensitivity.Therefore,
using PLS analysis may provide new understanding of the
pathogenesis of epilepsy.

In the current study, to identify truly differentially
expressed genes between epilepsy patients and normal con-
trols, we carried out a PLS analysis with two combined data
sets from the Gene Expression Omnibus (GEO) database.
Gene ontology (GO) enrichment analysis was also carried
out for the selected genes to capture the biological relevant
signatures. A network constructed by proteins encoded by
dysregulated genes was used to identify keymolecules among
the differentially expressed genes. Our results here may
provide new understanding on the pathogenesis of epilepsy.

2. Materials and Methods

2.1. Microarray Data. Two data sets (GSE4290 and
GSE50161) from the GEO (http://www.ncbi.nlm.nih.gov/
geo/) database, which include 23 epilepsy patients and 13
healthy controls, were used in this study.
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Table 1: Characteristics of the expression profile used in this study.

Accession ID Description
GSM97800 Brain tissue from epilepsy patient
GSM97803 Brain tissue from epilepsy patient
GSM97804 Brain tissue from epilepsy patient
GSM97805 Brain tissue from epilepsy patient
GSM97807 Brain tissue from epilepsy patient
GSM97809 Brain tissue from epilepsy patient
GSM97811 Brain tissue from epilepsy patient
GSM97812 Brain tissue from epilepsy patient
GSM97816 Brain tissue from epilepsy patient
GSM97817 Brain tissue from epilepsy patient
GSM97820 Brain tissue from epilepsy patient
GSM97825 Brain tissue from epilepsy patient
GSM97827 Brain tissue from epilepsy patient
GSM97828 Brain tissue from epilepsy patient
GSM97833 Brain tissue from epilepsy patient
GSM97834 Brain tissue from epilepsy patient
GSM97840 Brain tissue from epilepsy patient
GSM97846 Brain tissue from epilepsy patient
GSM97848 Brain tissue from epilepsy patient
GSM97849 Brain tissue from epilepsy patient
GSM97850 Brain tissue from epilepsy patient
GSM97853 Brain tissue from epilepsy patient
GSM97855 Brain tissue from epilepsy patient
GSM1214936 Brain tissue from normal control
GSM1214937 Brain tissue from normal control
GSM1214938 Brain tissue from normal control
GSM1214939 Brain tissue from normal control
GSM1214940 Brain tissue from normal control
GSM1214941 Brain tissue from normal control
GSM1214942 Brain tissue from normal control
GSM1214943 Brain tissue from normal control
GSM1214944 Brain tissue from normal control
GSM1214945 Brain tissue from normal control
GSM1214946 Brain tissue from normal control
GSM1214947 Brain tissue from normal control
GSM1214948 Brain tissue from normal control

The twodata setswere both based on theGPL570platform
Affymetrix Human Genome U133 Plus 2.0 Array. Detailed
information of the samples is listed in Table 1.

2.2. Detection of Differentially Expressed Genes. Normaliza-
tion of raw intensity values was carried out with robust mul-
tiarray analysis (RMA) [9]. The resulting log2-transformed
expression values of all probes were used for further PLS
analysis [10, 11], which is a dimension reduction method for
modeling without imposing strong assumptions, to estimate
the effects for each probe in epilepsy patients. Briefly, NIPALS
algorithm [12] was firstly used to obtain PLS latent variables
derived from the expression profile; variable importance on
the projection (VIP) [13] was then calculated to estimate

the effect of the expressed probes on the disease status of
the patients. Finally, the empirical distribution of PLS-based
VIP was obtained with a permutation procedure (𝑁 =
10000 times) and false discovered rate (FDR) of each probe
was calculated based on the empirical distribution. Probes
with FDR value less than 0.05 were selected as differentially
expressed genes in this study.

2.3. Enrichment Analysis. Identified differentially expressed
probes were annotated by using the simple omnibus format
in text (SOFT) format files. All genes were then mapped to
theGeneOntology database [14], which provides a controlled
vocabulary of terms for describing gene product charac-
teristics. Hyper geometric distribution test was carried out
to identify GO items enriched with differentially expressed
genes.

2.4. Network Analysis. Most proteins function through inter-
actions with other proteins. Proteins with more inter-
actions with other proteins are supposed to play more
important roles in biological processes. To identify key
molecules among the differentially expressed genes, we con-
structed an interaction network with the proteins encoded
by selected genes by using the software Cytoscape (V
2.8.3, http://www.cytoscape.org/) [15]. Interaction informa-
tion of the proteins was obtained from the NCBI database
(http://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/). The number of
links (interactions) for each protein was defined as its degree.
Proteins with degrees more than 10 were selected as hub
molecules in this study.

3. Results

After quality control, two samples (GSM1214938 and
GSM1214939) were excluded from subsequent analysis due
to aberrant RNA degradation. Thus, 23 epilepsy patients
and 11 healthy controls were used in PLS analysis. Sample
classification according to the three selected latent variables
is illustrated in Figure 1. After FDR control, a total of
752 genes were identified to be differentially expressed,
including 575 depressed and 177 overexpressed genes in
patients. The top ten GO items enriched with differentially
expressed genes are listed in Table 2. Most of them (60%)
are related to the nervous system, including nervous
system development (GO:0007399), central nervous system
myelin maintenance (GO:0007399), neuroligin clustering
(GO:0007399), synapse assembly (GO:0007416), spinal cord
motor neuron differentiation (GO:0021522), and glial cell
development (GO:0021782).

Figure 2 represents the interaction network of proteins
encoded by selected genes. Two proteins, CUL3 and EP300,
were identified to be hub molecules, with degrees of 56 and
21, respectively.

4. Discussion

Pathophysiology of epilepsy is highly complex. Gene expres-
sion profiling is useful in investigating the underlying mech-
anism of epilepsy. For the data analysis, creating a suitable
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Table 2: The top 10 GO items enriched with differentially expressed genes.

GO id GO description GO class 𝑃 value
GO:0007155 Cell adhesion Process 3.74𝐸 − 05

GO:0072659 Protein localization to plasma membrane Process 4.75𝐸 − 05

GO:0001525 Angiogenesis Process 2.64𝐸 − 04

GO:0007399 Nervous system development Process 9.26𝐸 − 04

GO:0032286 Central nervous system myelin maintenance Process 1.43𝐸 − 03

GO:0097118 Neuroligin clustering Process 1.43𝐸 − 03

GO:0007416 Synapse assembly Process 1.59𝐸 − 03

GO:0021522 Spinal cord motor neuron differentiation Process 2.57𝐸 − 03

GO:0005509 Calcium ion binding Function 4.01𝐸 − 03

GO:0021782 Glial cell development Process 4.18𝐸 − 03
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Figure 1: Sample classification by using the three selected partial
least squares (PLS) latent variables.

model to handle small sample sizes and large number of
genes [7] remains challenging. Previous studies [7, 8] have
demonstrated better performance of the PLS-based method
than common variance/regression analysis, which cannot
remove hidden biological effects. Here we used PLS analysis
to identify differentially expressed genes between epilepsy
patients and healthy controls.

As shown in Figure 1, the selected three latent variables
performed well in classification of the samples. GO enrich-
ment analysis of the selected genes revealed the overrep-
resentation of differentially expressed genes in the nervous
system.This is consistent with previous studies. For example,
glial cells have been reported to play prominent roles in
seizure precipitation and recurrence [16], and the glial cell
development was identified to be enriched with dysregulated
genes in our study (𝑃 = 4.18×10−3). In addition, angiogenesis
(GO:0001525) was also found to be overrepresented with
dysregulated genes. Dysregulation of angiogenesis may be
related to the dysfunction of blood-brain barrier, contribut-
ing to epileptogenesis [17]. Signs of angiogenesis were also

reported to be corresponding with seizure-induced neuronal
death in animal models of familial epilepsy [18]. Our results
here further confirmed the involvement of angiogenesis
process in the pathogenesis of epilepsy.

According to the network analysis, CUL3 was identified
to be a hub molecule with the highest degree (Figure 2).
CUL3 is a core component and scaffold protein of an E3
ubiquitin ligase complex. Previous expression studies have
not reported the differential expression of CUL3 in epilepsy
patients. However, E3 ubiquitin ligase may affect the synaptic
functions in the central nervous system and the stability of
kainate receptors, which form a class of glutamate receptors
implicated in epilepsy [19, 20]. Our results suggested that
CUL3 may serve as a potential target in therapeutic studies.

EP300 is another hub gene with the degree of 21. No
report of this gene and epilepsy has been proposed before.
However, protein encoded by this gene is a transcriptional
coactivator, which stimulates CREB-dependent gene expres-
sion. Seizure disorder was reported to be more frequent in
Rubinstein-Taybi syndrome patients with CREBBP muta-
tions [21]. In addition, the promoted signaling mechanism
of EP300 is important in the neuronal survival process [22]
and this gene was related to other neuronal disorders, such
as familial Alzheimer’s disease [22]. Thus, the correlation of
this gene and epilepsy pathogenesis may involve the activity
of CREB-dependent proteins and further investigation is
warranted.

In summary, using two data sets from the GEO database,
we carried out PLS-based gene expression analysis to inves-
tigate the underlying pathology of epilepsy. Except for pro-
cesses related to the nervous system, we also identified
overrepresentation of dysregulated genes in angiogenesis.
Network analysis revealed two hub genes, CUL3 and EP300,
which may serve as potential targets in further therapeutic
studies. Our results here may provide new understanding for
the underlyingmechanisms of epilepsy pathogenesis and will
offer potential targets for producing new treatments.
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Figure 2: Interaction network constructedwith proteins encoded by selected genes. Proteinswithmore links are shown in bigger size. Proteins
shown in red are encoded by overexpressed genes in patients while those in blue are encoded by depressed genes in patients.
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