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Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-
CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs.
ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo
fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and
produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1)
that involves in the b-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of
physiological and pathological conditions. ACC1 is the major member of ACCs in
mammalian, mountains of documents record the roles of ACC1 in various diseases,
such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in
protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA
and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-
translational modifications, resulting in alternated biological processes in mammalian cells.
In the review, we summarize our understandings of ACCs, including their structural
features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a
promising target for diseases treatment, so that the specific inhibitors of ACC1 for
diseases treatment are also discussed.
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INTRODUCTION

In mammalian cells, acetyl-CoA is a global currency that can mediate the carbon transactions
between metabolic pathways, including glycolysis, tricarboxylic acid cycle, amino acid metabolism,
gluconeogenesis, and fatty acid synthesis. Lipid metabolism or fatty acid metabolism is the bank of
acetyl-CoA. It can deposit extra acetyl-CoA in the form of fatty acids and regulate the intracellular
availability of acetyl-CoA to the global metabolism network by controlling the conversion of acetyl-
CoA into fatty acids. As such, fatty acid synthesis is a central pathway in harnessing a myriad of
metabolic pathways and related physiologies in cells.

Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to
produce malonyl-CoA, which in turn is utilized by the fatty acid synthase (FASN) to produce long-
chain saturated fatty acids (1). There are two members of ACCs in mammalian cells. ACC1 localizes
in the cytosol and takes the major responsibility of converting cytoplasmic acetyl-CoA into
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https://www.frontiersin.org/articles/10.3389/fonc.2022.836058/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.836058/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yugangw@hust.edu.cn
https://doi.org/10.3389/fonc.2022.836058
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.836058
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.836058&domain=pdf&date_stamp=2022-03-11


Wang et al. Acetyl-CoA Carboxylases and Diseases
malonyl-CoA for fatty acid synthesis (2). Despite ACC2 also
catalyzing the conversion of acetyl-CoA into malonyl-CoA, it
localizes on the outer membrane of mitochondria that makes the
downstream pathways of ACC2-produced malonyl-CoA
different from ACC1. It is reported that the ACC2-produced
malonyl-CoA can allosterically influence the activity of carnitine
palmitoyltransferase 1 (CPT1) in the b-oxidation of fatty acid (3).
More functional studies about ACC2 are expected in this field.

Fatty acid synthesis controls the storage and expenditure of
carbon source and energy, which can regulate the activities of
other metabolic pathways, such as amino acid metabolism and
glucose metabolism, so that fatty acid synthesis is frequently
alternated to harness the intracellular metabolism network to
meet the requirement of materials and energy for diseases
progressions, such as cancer and metabolic diseases (4–8).
ACC1 is the first rate-limiting enzyme in the fatty acid
synthesis that plays a central role in fatty acid synthesis, so
that ACC1 is the hub of the fatty acid synthesis-related
metabolism network. Its dysregulation in diseases is intensively
studied, including the roles of ACC1 in regulating tumour cell
proliferation, migration, and metabolic disease progression
(9–12). In addition, because acetyl-CoA and malonyl-CoA are
cofactors in protein acetylation and malonylation, respectively,
the emerging non-metabolic functions of ACC1 in diseases are
discussed in recent studies (11, 13, 14), which further expand
the roles of ACC1 in physiologies and pathophysiologies. ACC1
is therefore considered as a promising therapeutic target for
treating diseases, such as cancer and metabolic diseases.

This review summarizes our current knowledge about ACCs,
including the structure of ACCs, the regulatory mechanisms, and
the roles of ACCs in tumorigenesis and metabolic diseases.
Besides, we briefly introduce ACCs inhibitors that are under
investigation for cancer and metabolic diseases therapy.
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STRUCTURE OF ACETYL-COA
CARBOXYLASES

In mammals, ACCs have two isoforms: ACC1 and ACC2.
Human ACC1 (ACCa, 265 kDa) is encoded by the ACACA
gene on chromosome 17q12 while ACC2 (ACCb, 275 kDa) is
encoded by the ACACB gene on chromosome 12q23 (15). ACC1
and ACC2 share 75% identity in amino acid sequence and are
composed of conservative domains for enzyme activity (16, 17).

ACC1 and ACC2 have similar structures and molecule bases
in catalyzing carboxylation of acetyl-CoA to produce malonyl-
CoA. ACC1 is discussed here in terms of ACCs’ structure. ACC1
contains three major functional domains: a biotin carboxylase
domain (BC domain), a carboxyl transferase domain (CT
domain), and a biotin carboxyl carrier protein domain (BCCP
domain) that links the BC domain and CT domain (Figure 1).
To perform the catalytic activity, the BC domain of ACC1 firstly
consumes ATP and bicarbonate to catalyze the carboxylation of
biotin, in which bicarbonate serves as the donor of the carboxyl
moiety (18). Then, the BCCP domain transfers the carboxyl
moiety from the carboxylated biotin to the CT domain (19),
where the carboxyl moiety is transferred to the acetyl-CoA to
accomplish the carboxylation of acetyl-CoA, converting acetyl-
CoA into malonyl-CoA (20) (Figure 1). Although the BC
domain and CT domain are linked by the BCCP domain in a
single ACC1 molecule, the spatial dimension of ACC1 is so
broad that the functional domains are spatially separated, which
makes the carboxylated biotin in the BC domain can hardly
reach to the acetyl-CoA that bond by the CT domain of the same
molecule of ACC1. To link the cascade reactions of acetyl-CoA
carboxylation, ACC1 molecules form homodimers to enable
the carboxylated biotin in the BC domain reaching to the
acetyl-CoA in the CT domain of the other ACC1 molecule of
FIGURE 1 | Structure of ACC1 and function of three main domains. Three steps to a functional ACC1: First, the BC domain consumes ATP and catalyzes the
carboxylation of biotin, in which bicarbonate serves as the donor of the carboxyl moiety. Subsequently, the BCCP domain transfers the bicarbonate moiety from
carboxylated biotin to the CT domain of ACC1. Lastly, the CT domain catalyzes the carboxylation of acetyl-CoA carboxyl moiety, converting acetyl-CoA into malonyl-
CoA. Created with BioRender.com.
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the homodimer (19–23). Therefore, regulating the formation of
ACC1 homodimers is considered as an important mechanism
controlling the acetyl-CoA carboxylation activity of ACC1.
DISTRIBUTION AND FUNCTIONS OF
ACETYL-COA CARBOXYLASES

ACC1 and ACC2 are widely distributed in organs and tissues in
mammals. ACC1 is highly enriched in lipogenic tissues, such as
liver and adipose tissue, while ACC2 is majorly expressed in
oxidative tissues, such as cardiac and skeletal muscle (24), which
are consistent with the functions of ACC1 in lipogenesis and
ACC2 in regulating fatty acid b-oxidation. In mammalian cells,
ACC1 and ACC2 are differently distributed (Figure 2). ACC1 is
a cytoplasmic protein that catalyzes the conversion of acetyl-CoA
into malonyl-CoA, which is utilized by the fatty acid synthetase
(FASN) and subjected to the de novo fatty acid biosynthesis (2).
It controls the synthesis of mid-and long-chain fatty acids that
serve as building blocks for the cell biology process. Inhibiting
ACC1 by 5-tetradecyloxy-2-furoic acid (TOFA) can completely
inhibit hepatic de novo lipogenesis (DNL), which is considered a
new strategy for non-alcoholic fatty liver disease (NAFLD)
treatment (25). Soraphen A, another ACC1 inhibitor, can
pharmacologically inhibit fatty acid synthesis in diet-induced
obesity mice and significantly suppress weight gain, which sheds
new light on controlling diet-induced obesity (26). Liver-specific
ACC1 knockout (LACC1 KO) mice can survive but show
dysregulated lipid metabolism and deficiency in triglycerides
metabolism (27). In cancer cells, inhibition of ACC1 by
Soraphen A significantly reduces saturated and mono-
unsaturated phospholipid species and increases the proportion
of poly-unsaturation, rendering cells vulnerable to oxidative
Frontiers in Oncology | www.frontiersin.org 3
stresses (28). Moreover, activity-impeded ACC1 reduces
cytoplasmic membrane fluidity and impairs mobilities of
transmembrane receptors, ultimately impairing cell membrane-
dependent biological processes (29).

ACC2 contains a hydrophobic N-terminal region that leads
ACC2 attaching to the outer membrane of mitochondria (25). The
mitochondria-located ACC2 also catalyzes the conversion of
acetyl-CoA into malonyl-CoA. However, instead of entering the
de novo fatty acid biosynthesis, the ACC2-generated malonyl-CoA
locally interacts with carnitine palmitoyltransferase 1 (CPT1) that
also localizes on the outer mitochondrial membrane. CPT1
accounts for the first step of long-chain fatty acids b-oxidation
in mitochondria. The binding of malonyl-CoA allosterically
inhibits the activity of CPT1 and therefore influences the
process of fatty acid b-oxidation in mitochondria (30). In animal
experiments, inhibition of ACC2 can increase hepatic fat
oxidation, reduce hepatic lipids, and improve hepatic insulin
sensitivity in mice with NAFLD (31), which is further confirmed
inmice with genetic depletion of ACC2 (3, 32, 33). In addition, the
fatty acid oxidation rate in the soleus muscle of the ACC2-/- mice
is 30% higher than that of wild-type mice and is not affected by the
addition of insulin, leading to reduction of body weight under
normal food intake and slower weight-gain with high-fat/high-
carbohydrate diets (34).

In addition to the roles in metabolic flow, fatty acids, acetyl-
CoA, and malonyl-CoA are effector molecules that participate in
signaling pathways in cells (35–37). Correspondingly, ACCs, as
the consumer of acetyl-CoA and the producer of malonyl-CoA
that function as the rate-limiting enzyme in fatty acid synthesis,
play intriguing roles in regulating cellular signaling networks. For
example, polyunsaturated fatty acids (PUFAs) are the precursors
of various signaling molecules, such as eicosanoids, that regulate
the activity of sterol-regulatory-element-binding protein 1c
(SREBP1c) in fatty acid metabolism in liver (38). Inhibition of
FIGURE 2 | ACCs in fatty acid metabolism. ACC1 is a cytoplasmic protein that catalyzes the conversing of acetyl-CoA to malonyl-CoA in the de novo fatty acid
biosynthesis (2). On the other hand, the hydrophobicity of the N-terminal region of ACC2 allows its localization to the outer membrane of the mitochondria, regulates
CPT1 which controls fatty acid b-oxidation (25). Created with BioRender.com.
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ACCs is considered as a promising strategy for treating liver
diseases (39). However, on the other hand, it leads to a decrease in
malonyl-CoA and the synthesis of downstream PUFA, which in
turn activates SREBP1c and upregulates the expression of glycerol-
3-phosphate acyltransferase 1 (GPAT1) that catalyzes triglyceride
synthesis, stimulating hepatic VLDL secretion and leading to
hypertriglyceridemia (40). As such, hypertriglyceridemia is used
to be accompanied with the ACCs-targeting therapies. Acetyl-
CoA is another instance. It can regulate gene transcription by
donating the acetyl-moiety in the acetyltransferases-mediated
histone acetylation (41). Inhibition of ACCs can increase the
intracellular acetyl-CoA level and stimulate the influx of calcium
into the cells, which lead to the activation and translocation of
NFAT (nuclear factor of activated T cells 1) into the nucleus to
promote the transcription of adhesion and migration-related
genes, promoting adhesion and migration of glioblastoma cells
through Ca2+– NFAT signaling. Malonyl-CoA plays roles in
regulating dietary behavior and appetite (42). It is shown that
mammalian neural tissue was able to rapidly convert administered
acetate into acetyl-CoA, which subsequently entered the Krebs
cycle to promote ATP production. Excessive ATP level, in turn,
down-regulates AMPK activity and secures ACC2’s enzymatic
activity. As a result, malonyl-CoA was produced to a great extent,
causing the downstream effector molecular pro-opiomelanocortin
upregulation and neuropeptide Y downregulation, eventually
leading to loss of appetite in mice (43, 44).

In addition to the metabolic functions, ACC1 and ACC2
regulate protein acetylation by manipulating the availability of
acetyl-CoA in cells. In liver-specific ACC1 knockout mice, the
amount of acetyl-CoA in the extra-mitochondrial space is
substantially elevated, which can serve as the substrate cofactor
for acetyltransferases and increase the acetylation of proteins to
regulate the functionome, including metabolic enzymes that
regulate the metabolism network in ACC1 KO mice (13).
Another study also shows that attenuated expression of ACC1
leads to a substantial increase in histone acetylation and alters
transcriptional regulation, resulting in increased histone
acetylation that consequently regulates biological processes in
cells via influencing gene transcription (14). While the causal
relationship between ACCs’ activities and protein acetylation is
confirmed, the detailed mechanism underlying ACC1-related
hyperacetylation remains elusive. Besides, ACC1 regulating
protein acetylation by control l ing the intracel lular
concentration of acetyl-CoA might also play a role in disease
development. A supportive study reported that ACC inhibition
regulates smad2 acetylation, which consequently affects the
activity of smad2 and breast cancer metastasis (11). Malonyl-
CoA is the product of ACCs’ enzymatic reactions. It can also
serve as the substrate cofactor in the enzyme-catalyzed protein
malonylation. Increased intracellular malonyl-CoA can result in
upregulation of protein malonylation, which might affect protein
functions and biological activities in cells (9). Despite evidences
are supporting the importance of the non-metabolic functions of
ACC1 in regulating protein modifications and functions, it is
premature to conclude the non-metabolic functions of ACC1 in
diseases development and treatment.
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Altogether , ACCs regulate the physiologies and
pathophysiological processes of cells by executing metabolic and
non-metabolic functions. It should sense the alternatives in cells
and precisely translate the alternated signals into the responses of
cells. As such, sophisticated regulation of ACCs is required to
secure the metabolism network matching the physiologies of cells.
REGULATION OF ACETYL-COA
CARBOXYLASES

The activities of ACCs in cells can be transcriptionally and post-
transcriptionally regulated that are tightly associated with the
metabolic status of cells. In general, the protein level and
enzymatic activities of ACCs are upregulated in nutrient and
energy abundant conditions, aiming to store the excess nutrient
and energy in the form of fatty acids. Correspondingly, the protein
level and enzymatic activities of ACCs are suppressed in nutrient
and energy-deficient conditions, aiming to secure the limited
energy and nutrients being utilized for survival (45, 46). The
AMP-activated protein kinase (AMPK) is the most studied
energy sensor that senses the nutrient and energy status of cells
and is an important regulator of ACC1. When cells suffering
metabolic stresses, such as glucose deprivation or hypoxia,
AMPK is activated that can phosphorylate the serine-79 residues
in ACC1 (equivalent to ACC2 Ser212) (47). Phosphorylation of the
Ser-79 residue effectively blocks the formation of ACC1
homodimer, leaving ACC1 molecules as monomers that are
unable to catalyze acetyl-CoA carboxylation (21). The fatty acid
synthesis pathway is therefore suppressed. However, when cells
return to a nutrient and energy-abundant environment, the
phosphorylation of Ser-79 in ACC1 can be removed by the type
2A protein phosphatase (PP2A), allowing the reformation of ACC1
homodimer that is active in catalyzing acetyl-CoA carboxylation
(48, 49). Besides nutrient and energy stresses, the Ser-79 residue in
ACC1 can be phosphorylated and maintained to prevent
lipogenesis in certain pathophysiological processes. For example,
the susceptibility gene 1 (BRCA1) C-terminal (BRCT) domain
binds to p-ACC1 to from BRCA1/p-ACC1 complex (50), which
prevents dephosphorylation of p-ACC1 and constantly suppress
the activity of ACC1 to reprogram the metabolism network in
breast cancer. Insulin-like growth factor-1 (IGF-1) treatment can
disrupt the interaction between BRCA1 and p-ACC1, which leads
to the dephosphorylation and reactivation of ACC1 (51).

In addition to phosphorylation, metabolites that are associated
with changes in metabolism can allosterically regulate the
activities of ACCs. For example, citrate is an intermediate
metabolite in the TCA cycle that can allosterically activate
ACC1 to drive the fatty acid synthesis pathway in normal
condition (52, 53). Intriguingly, opposite effects of citrate on
ACCs’ activities were reported (54), the underlying mechanism
remains elusive. Glutamate can allosterically activate phosphatase
that mediates dephosphorylation and activation of ACCs in
cardiomyocytes, which may contribute to the cardioprotective
effects of glutamine against lipolysis (55).. Fatty acyl-CoAs can
induce the de-dimerization of ACC1 that inhibits the activities of
March 2022 | Volume 12 | Article 836058
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ACC1 and fatty acid synthesis in cells (54). By interplay with
metabolites from different metabolic pathways, ACCs mediate the
cross-talk between fatty acid synthesis and other metabolic
pathways, forming a sophisticated regulation network to secure
the metabolic status fit the physiologies of cells.

The protein levels of ACC1 and ACC2 are dynamically
regulated in cells. The expression level of ACC1 can be regulated
by certain transcription factors. SREBP1c is a well-studied instance.
The ACACA gene has two distinct SREBP binding sites, which
recruit SREBP1c to initiate RNA Polymerase II-dependent
transcription. Carbohydrate response element (ChRE) -binding
protein (ChREBP) is another transcription factor that regulates
ACC1. It binds to the promoter regions and activates the
transcription of ACACA, in response to the high-carbohydrate
diet (56, 57). Besides transcription, the protein stability of ACC1
can also be regulated. In breast cancer, small interfering RNA-
mediated Aldo-keto reductase family 1B10 (AKR1B10)
knockdown induces ACC1 degradation via the ubiquitination-
proteasome pathway, resulting in a markedly drop in fatty acid
synthesis in RAO-3 cells (58). In prostate cancer, the expression of
prolyl isomerase Pin1 positively correlates with the protein level of
ACC1. It binds to ACC1 to prevent ACC1 from entering the
lysosomal pathway, leading to the stabilization of ACC1 protein
and resulting in enhanced activity of ACC1 in cells (59).

ACC1 activity can also be regulated by post-transcriptional
and translational mechanisms. There are 64 exons included in
the gene ACACA that result in 7 alternatively spliced minor
exons (1A, 1B, 1C, 3, 5A’, 5A, and 5B). The exon 5B can lead to
transcriptional termination of the upstream exon 5 in two
different transcripts, producing a short peptide that leads to
the production of truncated ACC1 that affects the transcriptional
efficiency and activity of ACC1. These studies suggest that ACC1
activity can be regulated by post-transcriptional and translational
mechanisms and consequently result in suppression of fatty acid
synthesis (60). The protein level of ACC1 can be post-
transcriptionally reduced in calcium/calmodulin-dependent
protein kinase kinase2 (CAMKK2) knock out cells, suppressing
the proliferation of human prostate cancer cells (61).

Taken together, ACC1 and ACC2 are sophisticatedly regulated
in cells to make the process of fatty acid synthesis, as well as its
cross-talk metabolic networks, meet the physiologies of cells.
There are myriad factors that regulate ACC1’s activities,
including nutrients, protein kinases, phosphatases, allosteric
regulators, transcriptional factors et al. Dysregulation of these
regulatory factors usually serves as causative signaling for the
development of cancer and metabolic diseases (10, 54, 61–63).
Dysregulation of ACCs in diseases is therefore intensively studied.
DYSREGULATION OF ACETYL-COA
CARBOXYLASES IN DISEASES

Fatty acid synthesis is central in the cross-talk between multiple
biological processes, including membrane biosynthesis, energy
storage, and the generation of signaling molecules (64).
Lipogenesis is dynamically regulated in response to the
Frontiers in Oncology | www.frontiersin.org 5
physiologies of cells. Correspondingly, dysregulation of fatty
acid synthesis can induce or promote the development of
diseases. ACCs is the first rate-limiting enzyme in fatty acid
synthesis. It is therefore the focus of mountains of studies and be
validated as a critical participant in diseases, especially cancer
and metabolic diseases (11, 65–71).

Signaling regulators of lipid biosynthesis are major
downstream targets of oncogenes and tumour suppressor
pathways. Alternations of oncogenes and tumour suppressor
pathways can manipulate de novo fatty acid synthesis.
Dysregulation of fatty acid metabolism, in turn, influences the
cellular processes that are linked to diseases, such as cancer. For
example, the AMPK pathway is important in regulating cell
growth, lipid and glucose metabolism, and autophagy (72). It
senses the relative level of ADP to ATP and be activated when the
ratio of ADP to ATP increased. When tumour cells suffering
metabolic stresses, AMPK can be activated, which then
phosphorylates ACCs to suppress the lipid biosynthesis
pathway, resulting in metabolism reprogramming that influences
the survival and growth of tumour cells. Mutagenic blockage of the
AMPK phosphorylation site of ACC (ACC1 Ser76Ala and ACC2
Ser212Ala) increases liver DNL and accelerates the development
of hepatocellular carcinoma (HCC). Liver-specific inhibitor ND-
654, which mimics ACC phosphorylation, inhibits liver DNL and
the progression of HCC, resulting in an improved prognosis for
tumour-bearing mice (73). In head and neck squamous cell
carcinoma cells (HNSCC), the AMPK activator cetuximab and
5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside
(AICAR) can suppress tumour cell growth (74, 75). Abolishing the
AMPK phosphorylation sites on ACC1 by mutagenesis can
protect HNSCC from cetuximab-induced growth inhibition.
Decreased AMPK activity in hereditary leiomyomatosis renal
cell cancer (HLRCC) leads to the elevated activity of ACC1,
which contributes to the oncogenic growth of HLRCC (76).
Metformin is an agonist of AMPK that can promote
phosphorylation of ACCs. Metformin treatment can effectively
suppress lipogenesis and cancer cell proliferation (10). Because
ACC1 can mediate the AMPK-sensed metabolic stress and the
downstream of cancer metabolism reprogramming, it is
considered a potential target for cancer therapy. However, some
studies also show exceptional viewpoints on the AMPK/ACC
signaling pathway for tumour growth (77). For example, under
energy stress conditions, activated AMPK can phosphorylate and
inhibit ACC1, which can suppress the NADPH-consuming fatty
acid synthesis and maintain the NADPH homeostasis in tumour
cells. Similarly, ACC1 depletion can also suppress the NADPH
consumption by fatty acid synthesis, which in turn partially
facilitates solid tumour survival under stress conditions (77).
Thus, under special conditions, the AMPK/ACC signaling
pathway that can alternatively regulate tumour cell proliferation
by maintaining NADPH homeostasis.

The phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian
target of the rapamycin (mTOR) is another signaling pathway
that senses the physiologies of cells and executes important
functions by regulating ACC1 activities. In general, receptor
tyrosine kinases (RTKs)-mediated activation of PI3K can activate
March 2022 | Volume 12 | Article 836058
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Akt. Hyperactivated Akt then activates mTOR, which processes the
upstream signals and forms mTORC1 (78). PI3K/Akt/mTOR
signaling pathway regulates tumour metabolism, growth, survival,
and metastasis (79, 80). ACC1 is tightly associated with the PI3K/
Akt/mTOR signaling pathway in cancer cells. For example, the
melanoma antigen ganglioside GD3 is a downstream target of
PI3K/Akt/mTOR signaling. In melanoma, GD3 can induce the
activation of SREBP-1, which is a transcription factor that regulates
the expression of ACC1 (81). In breast cancer, the HER2 oncogene
can induce ACC1 expression through translational regulation of
the mTOR signaling pathway (82). Correspondingly, inhibition of
ACC1 by siRNA or chemical inhibitors can inhibit AKT-related
pathways, which is detrimental for cancer, such as human HCC
(83). It is therefore concluded that ACC1 protein level and activity
can be regulated by various internal alterations, which in turn
affects lipid synthesis in tumors. Dysregulated lipid metabolism
impacts multiple intracellular processes, such as membrane
synthesis and energy metabolism that may influence tumor
development ultimately. However, the mechanisms underlying
lipid metabolism influencing tumor progressions, such as
proliferation and metastasis, have not been fully elucidated. How
ACC1 cross-talk with other pathways remains open for discussion.

Metabolic diseases are also tightly associated with the
dysregulation of ACCs. In mammals, the accumulation of lipid
in tissues, such as muscle and liver, is closely related to insulin
resistance that associates with a myriad of metabolic disorders (84,
85). Likewise, dysregulated lipogenesis may lead to metabolic
diseases such as obesity, diabetes, and NAFLD (6–8). As a
central player of lipogenesis, ACCs promptly participates in the
progression of metabolic disease. For example, a high-fat diet leads
to increased ACC1 activity and obesity in mice while inhibition of
ACC1 antagonizes the high fat diet induced obesity. ACC2 plays
roles in controlling diet-induced diabetic nephropathy (DN).
High-glucose diets promote lipid deposition and reduce fatty
acid b-oxidation in human podocytes. Depletion of ACC2
attenuates the high-glucose diet-promoted lipid deposition and
podocyte injury. The expression of glucose transporter 4 (GLUT4)
is also restored by ACC2 depletion, which hampers the insulin
signaling pathway. Besides, the expression of SIRT1/PGC-1a, an
important complex related to the insulin metabolic pathway is also
restored in the cells with ACC2 depletion, leading to the reduction
of cellular insulin resistance and ultimately alleviating DN-
induced cell injury (86). ACCs knockout animal models are
powerful tools to understand the roles of ACCs in the
progression of metabolic diseases, with which, a study
demonstrated that ACC1 is necessary to maintain functional
pancreatic b cells and glucose homeostasis in vivo, which
indicates that ACC1 might be used to improve insulin secretion
during diabetes (71). Liver-specific ACC1-KO mice (LACC1 KO)
accumulate 40%-70% lower triglycerides in livers than that of
wide-type mice when overnutrition is provided. Similarly, ACC2
knockout (ACC2 KO) mice do not gain weight when fed with
high-fat diet (HF) (34). It might be due to the hepatic peroxisome
proliferator-activated receptor-g (PPAR-g) proteins that are
significantly reduced in ACC2 KO mice that are fed with high-
fat and high-carbohydrate diet (HFHC). In this case, lipid
Frontiers in Oncology | www.frontiersin.org 6
synthesis-related enzymes such as ACC1, FASN, and ATP
citrate lyase (ACL) are decreased, which in turn reduced diet-
induced obesity. Besides, ACC2 KO mice are able to alleviate the
HFHC diet-induced insulin resistance. ACC2 KO mice with HF
diet show reduced AKT level and increased phosphorylation of
AKT, which is critical in the insulin signaling pathway that can
protect the mice from diabetes (87). The above researches
demonstrate that ACCs is responsible for metabolic disorders
caused by dietary factors (27). Moreover, hyper-activation of
ACC1 can also result in abnormal physiologies in metabolic
disease. For instance, the enhanced activity of ACC1 accelerates
lipogenesis and lipid accumulation when animal suffering
overnutrition and obesity, which leads to the accumulation of
triglycerides in hepatocytes and thus causing NAFLD (88).

In general, dysregulated lipogenesis leads to the development
of tumorigenesis and metabolic diseases. The roles of ACCs in
regulating metabolism reprogramming in cancer and metabolic
diseases are revealed in accumulated studies, which shed bright
light on diseases treatment. As such, ACCs are becoming a
promising therapeutic target for discovering novel therapeutic
strategies and therapeutics development.
ACETYL-COA CARBOXYLASES-
TARGETING SMALL MOLECULES FOR
THERAPEUTIC PROPOSES

With the evidence of ACCs participating in the progression of
diseases and its structural information, countless screenings for
ACCs antagonists are performed and several promising leading
compounds are confirmed for further validations (65, 83, 89–94).
The ACCs inhibitors mainly target its BC domain and CT domain.

The BC domain accounts for the biotin carboxylation and
formation of the homodimer of ACCs molecules. The main
mechanism of action (MOA) of the BC domain targeting
inhibitors is allosterically inhibiting the dimerization of the BC
domain, maintaining ACC1 molecules as inactive monomers
that are unable to perform the catalytic activity (21). Soraphen A,
AMPK activators, and ND-series inhibitors (ND-630, ND-646,
ND-654) inhibit ACC1 belong to this category (73, 91, 95–98).
These inhibitors can effectively inhibit ACCs activity and affect
the process of lipid metabolism and the development of disease
(10, 26, 28, 29, 90, 99, 100). It is worth noting that there are
studies already confirmed that inhibiting ACCs in the liver by
using ND-630 (GS-0976) can significantly reduce 29% liver fat,
hepatic steatosis, and markers of liver injury in NAFLD patients
(101, 102), which further encourage the finding of ACCs
inhibitors for therapeutic proposes.

The CT domain catalyzes the transfer of carboxyl-moiety
from the carboxylated biotin to the acetyl-CoA to produce
malonyl-CoA. Competitive inhibitors targeting the binding of
acetyl-CoA by CT domain are therefore another promising
strategy for inhibiting ACCs. TOFA, CP-640186, piperidinyl
derived analogs, and spiropiperidine derived compounds are
antagonists that belong to this category (103–108). These
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antagonists can reduce the mice’s appetite and accelerate weight
loss (93, 109) and lead to apoptosis in different cancer cell lines
(92, 110, 111). Despite no relevant clinical trials of this class of
antagonists are found, it keeps recruiting screenings for new
leading compounds.

In conclusion, numbers of commercially available ACCs
inhibitors have exhibited strong therapeutic effects on disease
models in vivo and in vitro, supporting that ACCs are promising
therapeutic targets for the treatment of tumour and metabolic
diseases. However, no agonist can specifically inhibit one ACCs
member and keep another member intact. This might lead to
adverse effects, because ACC1 and ACC2, indeed, are different in
physiologies and pathophysiologies. To this end, the
development of agonists that are specifically against ACC1 or
ACC2 might be a promising strategy to target ACCs for
diseases treatment.
LIMITATIONS AND PROSPECTS

Antagonists that target ACCs are intensively studied in clinic but
hampered by several side-effects. For example, inhibiting lipogenesis
via suppressing the expression of ACCs can reduce hepatic steatosis,
but it simultaneously results in hypertriglyceridemia due to the
activation of SREBP-1c and increased VLDL secretion (40).
Another instance is PF-05175157, the first-in-human clinical trials
ACC inhibitor, contributes to DNL reduction in treatment for
T2DM but with concomitant reductions in platelet count (112).
Recently, an exciting result in phase II clinical trial shows that the
co-administration of PF-0522134 (a new ACC1 inhibitor in clinical
trial) and PF-6865571 (DGAT2 inhibitor) has a strong effect in
treating NASHwithout the side effect of hypertriglyceridemia (113).
However, there are several challenges to address the side-effects of
ACCs inhibition in clinical practice.

The principal challenge is that the inhibitors can hardly
distinguish ACC1 from ACC2. As described above, ACC1 and
ACC2 share 75% identity in amino acid sequence and are similar
in structures that are composed of conservative domains for
enzyme activity. However, the ACCs antagonists, such as
Soraphen A and TOFA, can target and influence the activity of
both ACC1 and ACC2, which might lead to the side-effects
Frontiers in Oncology | www.frontiersin.org 7
caused by the inhibition of unwanted ACC isoform. In nutrient-
abundant condition, fatty acid synthesis and breakdown are
coordinately controlled, avoiding a wasteful cycle of
metabolism. However, in cancer cells, both fatty acid synthesis
and breakdown are boosted to support cancer growth. To this
end, coordinately antagonizing the dysregulation of ACC1 and
ACC2 in cancer cells would be a promising strategy for cancer
treatment. So far, none of ACCs inhibitors is approved useful in
clinic. This might be due to the fact that ACC inhibitors that are
not isoform-specific only partially reverse cancer’s preferences.
Moreover, it is shown that the selectively inhibition of ACC2
may be ineffective in treating some metabolic diseases (114). A
selective inhibitor targeting ACC1 that shows anti-NAFLD/
NASH effects in pre-clinical models is reported in a recent
study (115), which is expected to strengthen the efficacy.

Accumulating studies indicate the importance of ACCs in
tumour cell growth which shows the great potential of ACCs
in the treatment of cancer. However, studies on the role of ACCs
in cancer have been attributed to their roles in fatty acid
synthesis, the exact mechanism of which remains to be
investigated. The role of fatty acid metabolism in cancer
biology is not fully understood (116). More in-depth research
about fatty acid metabolism in cancer will help examine and
detail the roles of the ACCs, in cancer initiation, progression,
and development.
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