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Background. Bacillus anthracis, the etiologic agent of inhalational anthrax, is a facultative intracellular pathogen. Despite
appropriate antimicrobial therapy, the mortality from inhalational anthrax approaches 45%, underscoring the need for better
adjuvant therapies. The variable latency between exposure and development of disease suggests an important role for the
host’s innate immune response. Type I and Type II Interferons (IFN) are prominent members of the host innate immune
response and are required for control of intracellular pathogens. We have previously described a protective role for exogenous
Type I and Type II IFNs in attenuating intracellular B.anthracis germination and macrophage cell death in vitro. Methodology

and Principal Findings. We sought to extend these findings in an in vivo model of inhalational anthrax, utilizing the Sterne
strain (34F2) of B.anthracis. Mice devoid of STAT1, a component of IFN-a and IFN-c signaling, had a trend towards increased
mortality, bacterial germination and extrapulmonary spread of B.anthracis at 24 hrs. This was associated with impaired IL-6, IL-
10 and IL-12 production. However, administration of exogenous IFN-c, and to a lesser extent IFN-a, at the time of infection,
markedly increased lethality. While IFNs were able to reduce the fraction of germinated spores within the lung, they increased
both the local and systemic inflammatory response manifest by increases in IL-12 and reductions in IL-10. This was associated
with an increase in extrapulmonary dissemination. The mechanism of IFN mediated inflammation appears to be in part due to
STAT1 independent signaling. Conclusions. In conclusion, while endogenous IFNs are essential for control of B.anthracis
germination and lethality, administration of exogenous IFNs appear to increase the local inflammatory response, thereby
increasing mortality.
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INTRODUCTION
Bacillus anthracis (B.anthracis), a gram positive aerobic spore-forming

bacilli, is found ubiquitously in animals and soil and, depending on

the site of entry, causes a wide array of diseases in humans [1].

Inhalation of B.anthracis spores results in mediastinal hemorrhage,

pneumonia and sepsis with a high mortality in spite of appropriate

anti-microbial therapy [2]. While vaccination of animals and

humans in animal husbandry had nearly eliminated this disease in

the United States, anthrax has gained renewed attention as

a bioterrorism agent. During the attacks of 2001, 11 people

contracted inhalation anthrax, 11 contacted cutaneous anthrax,

and hundreds of individuals were exposed to potentially dangerous

level of spores [2]. In spite of adequate antimicrobial therapy,

inhalational anthrax had a 45% mortality, underscoring the need

for better adjuvant therapies in case of future outbreaks [2].

Once inhaled, B.anthracis spores are ingested by alveolar

macrophages. Spores subsequently germinate into the vegetative

form, with resultant production of both Lethal Toxin (LeTx) and

Edema Toxin. Lethal Toxin, a zinc metallopeptidase, is capable of

disrupting numerous intracellular signaling cascades, including

cleavage of MAP kinase kinase (MKK) family members [3]. This

has numerous effects on the host including suppression of cytokine

production and impairment in macrophage phagocytic capability

[4–6]. However, the long and variable latency between exposure

and development of disseminated disease in humans and primates

suggests this disruption is incomplete in nature and raises the

possibility that modulation of innate immune pathways as an

important target for immunomodulatory therapy [7].

Interferons (IFN) play a prominent role in the host innate

immune response to intracellular pathogens. There are two broad

categories of IFNs, Type I (IFN-a, IFN-b) and Type II (IFN-c).

Type I IFNs, while traditionally thought to be involved in the host

response to viral infections are also involved during the initial

stages of infection with intracellular pathogens such as Mycobac-

terium tuberculosis [8,9]. Interferon-c is the prototypical Type II IFN.

Multiple studies show a prominent role for IFN-c in controlling

intracellular infections including M.tuberculosis and L.monocytogenes

[10–14]. Both IFN-a and IFN-c have been used successfully as

immunoadjuvants for pulmonary tuberculosis with treated subjects

demonstrating earlier resolution of sputum cultures, earlier

radiologic improvement and reductions in BALF cytokine levels

[15–17].

However, little is known about the role of IFN-a and IFN-c on

the control of B.anthracis in vivo. In vitro, B.anthracis is capable of

disrupting IFN signaling. Lethal toxin inhibits LPS mediated

Interferon Response Factor-3 production, a prerequisite for

IFN2a/b production. In addition, B.anthracis inhibits IFN2c
mediated nitric oxide (NO) production and IFN2a mediated

STAT1 activation [6,18]. We have recently described a protective
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effect for exogenous IFNs during infection with B.anthracis in vitro.

Exogenous IFN-b or IFN-c inhibited intracellular B.anthracis

germination and increased macrophage survival for murine and

human alveolar macrophages [18]. Finally, a recent study

documents an essential role for IFN-c producing CD4+ cells in

the development of effective cell mediated immunity after

vaccination with inactivated B.anthracis spores [19]. Therefore,

the purpose of this study was to determine whether exogenous

IFN-a or IFN-c is capable of protecting mice during infection with

B.anthracis in vivo.

RESULTS
We first wished to establish an in vivo model for pulmonary

anthrax. C57BL/6 mice were administered 108 spores 34F2

intratracheally. This resulted in significant pulmonary infiltration

and PMN recruitment into the alveolar space (data not shown) and

an approximate 20% mortality. Saline administration had no

effect on mortality or PMN recruitment (Data not shown).

Quantitative cultures from whole lung performed 30 min after

administration resulted in.90% yield of original inoculums. We

next wished to test the role of endogenous IFN in our model. We

chose STAT12/2 mice, as STAT1 is required for IFN-a and IFN-

c signaling. STAT12/2 mice had a 2-fold increase in mortality

compared to WT mice (37% vs. 19%) with B.anthracis infection

(Figure 1). This was associated with an increase in the fraction

germinated spores within the lung (Figure 2A) as well as

extrapulmonary spread as assessed by splenic cultures

(Figure 2B). Interestingly, in contrast to WT mice, STAT12/2

mice had marked attenuation in systemic levels of IL-6, IL-10 and

IL-12 (Figure 3) suggesting endogenous IFN are required for

maximal innate immune activation and cytokine production

during inhalational anthrax. Finally, STAT12/2 mice had no

difference in total lung Myeloperoxidase activity (MPO) (12.5630

vs. 8.168 pg MPO/Lung; p = NS) compared to WT mice,

suggesting little role for STAT1 in controlling PMN recruitment.

Given the requirement of endogenous IFN signaling for optimal

control of germination and inflammatory cytokine production in

vivo, we next wished to assess whether administration of exogenous

IFN-a or IFN-c would improve bacterial control and lethality in

Figure 1. STAT12/2 mice have increased susceptibility to B.anthracis.
WT and STAT12/2 mice were infected with 108 spores B.anthracis
intratracheally and monitored for survival. p = 0.13. 8–10 mice/group
doi:10.1371/journal.pone.0000736.g001

Figure 2. STAT12/2 mice have increased bacterial burden in lung and spleen. Mice were infected with B.anthracis (108) and A. Lungs were
harvested at 24 hrs and the fraction of germinated spores determined by the formula (CFU B.anthracis in lung-CFU B.anthracis lung after heat
treatment{dormant spores})/CFU B.anthracis lung. B. Quantitative culture from spleen harvested at 24 hrs. Serial dilutions were made of whole splenic
homogenate. * p,0.05 compared to WT. N = 5/group
doi:10.1371/journal.pone.0000736.g002

Figure 3. STAT12/2 mice have impaired cytokine induction during infection with B.anthracis. Mice were administered B.anthracis 108 spores/
mouse and plasma harvested at 24 hrs. IL-6/10/12p40 determined by ELISA. N = 5/group.
doi:10.1371/journal.pone.0000736.g003
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our model. Co-administration of IFN-a (104 U) intratracheally

with spores slightly increased mortality of B.anthracis infection

compared to spores alone (38% vs. 18%). However, administration

of 1 mg IFN-c with B.anthracis spores resulted in a 100% lethality at

3 days with similar results obtained with 0.2 mg IFN2c (Figure 4).

These effects were specific for the interaction of IFN and

B.anthracis as mice treated with IFN alone had a 100% survival

(data not shown).

We next wished to assess the effect of exogenous IFN on control

of B.anthracis germination. Neither IFN-a nor IFN-c had any effect

on the total number of viable bacteria and spores recovered from

the lung at 24 hrs. However, consistent with previously reported in

vitro data, both IFN-c and IFN-a significantly reduced the fraction

of germinated spores obtained from the lung (Figure 5A) [18]. In

addition, exogenous IFN-c and to a lesser extent IFN-a,

significantly increased extrapulmonary dissemination of B.anthracis

as determined by quantitative cultures from splenic homogenates

(Figure 5B). These changes we not due to alteration in lung PMN

content, as WT, IFN-a and IFN-c treated mice had similar

amounts of MPO activity in whole lung (8.168.5 vs. 10.266.1 vs.

7.264.6 pg MPO/Lung; p = NS) and BALF (Not shown).

The propensity of exogenous IFN to facilitate extrapulmonary

spread of B.anthracis raised the possibility that IFN stimulation

exaggerated the local inflammatory response. Infection with

B.anthracis resulted in marked upregulation of IL-6, IL-10 and

IL-12 in BALF 24 hrs after infection compared to saline treated

controls (Figure 6). Exogenous IFNs, in the absence of infection,

had no effect on BALF IL-6 or IL-10, but did increase BALF levels

of IL-12p40 compared to saline treated controls. This increase in

IL-12p40 was further augmented in the setting of inhalation

anthrax, especially with IFN-c. In addition, exogenous IFNs

attenuated the B.anthracis induction of anti-inflammatory IL-10 in

BALF, with no effect on IL-6. In contrast, IFN resulted in marked

upregulation of systemic IL-6, with no significant effect on IL-10

and IL-12 (Figure 6). Interestingly, levels of systemic IL-6

correlated with splenic bacterial burden (R2 = 0.44; p = 0.02),

suggesting IL-6 as a potential marker for extrapulmonary spread

of B.anthracis.

Finally, we wished to ascertain whether the changes in

inflammatory cytokine production were associated with alterations

in signaling pathways known to be altered by either B.anthracis or

exogenous IFN. As expected, infection with B.anthracis resulted in

cleavage of MKK3 in BALF cells, representing functional LeTx

activity in vivo. Interestingly, this was attenuated by administration

of exogenous IFN-c (Figure 7A). Similar to our in vitro data,

infection with B.anthracis was only a weak inducer of IFN signaling,

Figure 4. IFN-c increases mortality in mice with inhalational anthrax. C57BL/6 mice were given 108 spores 34F2 intratracheally in 100 ml saline. IFN-c
or IFN-a at described doses was added to saline and administered with B.anthracis spores. Mice were subsequently monitored for survival. N = 5–7
mice/group.
doi:10.1371/journal.pone.0000736.g004

Figure 5. IFN-c reduces the fraction of germinated spores in the lung. Mice were infected with B.anthracis (108)6IFN. A. Lungs were harvested at
24 hrs and the fraction of germinated spores determined by the formula (CFU B.anthracis in lung-CFU B.anthracis lung after heat treatment{dormant
spores})/CFU B.anthracis lung. B. Quantitative culture from spleen harvested at 24 hrs. Serial dilutions were made of whole splenic homogenate. *
p,0.05 compared to WT. N = 5/group.
doi:10.1371/journal.pone.0000736.g005
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as manifest by minimal BALF STAT1 phosphorylation (Figure 7B)

[18]. Furthermore, infection with B.anthracis inhibited both IFN

induced total STAT1 protein expression as well as IFN induced

phosphotyr701-STAT1 formation, suggesting the phenotypic effects

induced by exogenous IFN maybe in part due to STAT1

independent IFN signaling.

DISCUSSION
One of the major findings of this paper is the sensitizing role for

exogenous IFN in the treatment of pulmonary anthrax in vivo. Our

group has previously described a protective role for exogenous

Type I and Type II IFN for macrophages infected with B.anthracis

ex-vivo, with exogenous IFNs improving both macrophage viability

and preventing intracellular germination [18]. Interferons appear

to have a similar effect in vivo, with IFN treated mice having

a significant attenuation in the fraction of germinated bacterium

24 hrs after infection. However, this inhibition was associated with

an increase in lethality and extrapulmonary dissemination of

B.anthracis. The finding of a sensitizing role for exogenous IFN,

while surprising, has been described in other infectious models.

Exogenous IFN2c, while improving phagocytosis in vitro and in

vivo, increases mortality in a murine model of invasive aspergillosis

[20]. Similar results have been observed in a murine model of

invasive candidiasis [21]. In similar fashion, IFN2a mediates the

sensitivity to M.tuberculosis in mice, with IFN-a/b treated mice

having higher bacillary loads and increased mortality [22].

There are many potential explanations for this phenomenon.

First, is both IFN2a and IFN2c augment the local inflammatory

response within the lung allowing for loss of pulmonary capillary

integrity and facilitating extrapulmonary dissemination. The

ability of IFNs, especially IFN-c, to attenuate anti-inflammatory

cytokines (IL-10) while maintaining (IL-6) or increasing pro-

inflammatory cytokines (IL-12p40) supports this hypothesis.

Although we can not exclude this is in part mediated by IL-23,

which shares the common IL12p40 subunit, our results are

consistent with the observation that exogenous IL-12 administra-

tion increases lethality in murine candidiasis by further up

regulating endogenous IFN-c production [23,24]. The mechanism

by which IFN mediates these cytokine effects is less clear. Similar

to in vitro data, infection with B.anthracis in vivo results in only mild

induction of IFN signaling as determined by STAT1 phosphor-

ylation. Furthermore, exogenous IFN fails to significantly augment

this activation in the setting of infection with B.anthracis suggesting

a potential for STAT1 independent IFN signaling. While these

effects are not due to changes in PMN recruitment, we can not

exclude these effects are in part due to differential recruitment of

Figure 6. IFN alters the balance of inflammatory cytokines in the lung and serum during infection with B.anthracis. Mice were administered
B.anthracis 108 spores/mouse+IFN-c (1 mg/ml), IFN-a (104U/ml) or vehicle and BALF and plasma harvested at 24 hrs. IL-6/10/12p40 determined by
ELISA. N = 5/group. *p,0.05 compared to WT.- = levels in uninfected mice
doi:10.1371/journal.pone.0000736.g006
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other inflammatory cells to the lung with IFN treatment during

infection with B.anthracis, including lymphocytes and NK cells.

Further studies investigating lineage specific changes in cytokine

production and transcriptional activation would help further

clarify these changes.

One potential mechanism is restoration of MAPK signaling.

Both IFN-a and IFN-c are known to alternatively signal through

MAP kinase family members with resultant inflammatory cytokine

production [25227]. In addition, activation of MAP kinase

members is required for optimal serine phosphorylation of STAT1

[25,28]. A hallmark of B.anthracis LeTx activity is proteolytic

cleavage and inactivation of numerous upstream MKKs, including

MKK3 [3]. This results in impaired host response and attenuated

cytokine production in response to subsequent inflammatory

stimuli [29,30]. Infection with B.anthracis resulted in proteolytic

cleavage of MKK3 in BALF. Interestingly, this was inhibited by

administration of exogenous IFN-c suggesting possible restoration

of MAPK signaling cascades. Given the observation that MKK3 is

required for IL-12 production, this may also explain the

preferential effect for exogenous IFN on increasing IL-12p40

levels [31].

However, the sensitizing effect of IFNs in our model does not

negate a potentially important role for endogenous IFNs in

regulating the host response to B.anthracis. The trend towards

increased mortality, bacterial germination and dissemination and

impaired cytokine production in STAT12/2 mice, suggest an

important role for endogenous STAT1 activation in innate

immune activation in inhalational anthrax. This is consistent with

a recent observation that CD4+ cell mediated IFN2c production

is required for optimal cell mediated immunity to B.anthracis [19].

However, the mild increase in susceptibility in STAT12/2 mice,

compared to the highly lethal phenotype for these mice in

M.tuberculosis, may provide additional evidence for a role for STAT

independent signaling of endogenous IFN in B.anthracis [32].

There are limitations to our study. First, these studies used the

34F2 strain (Sterne) of B.anthracis. Although capable of producing

both LeTx and EF, the presence of the former verified by the

cleavage of MKK3 in our mice, it is a capsule deficient strain

(pXO2). This could have significant effects on the ability of IFNs to

alter intracellular germination and survival. Therefore, it would be

imperative for these results to be repeated with a virulent strain of

B.anthracis such as Ames. Another limitation is the use of C57BL/6

mice. These mice are known to be more prone to a vigorous Th1

response and are relatively resistant to infection with B.anthracis

compared to other strains including C3H [33,34]. Therefore, it is

possible exogenous IFNs could have a differential response in

other strains. Finally, the use of STAT12/2 mice, while abolishing

all typical Type I and Type II IFN signaling, still leaves JAK-

STAT independent IFN signaling intact. Further studies, in-

cluding replicating these experiments in IFN-a/b and IFN-c
receptor deficient mice as well as administration of exogenous

IFNs to STAT12/2 mice, will be required to fully ascertain the

role of STAT independent IFN signaling in inhalational anthrax.

In conclusion, administration of exogenous IFN-c, and to

a lesser extent IFN-a, while attenuating germination, increases

inflammation and extrapulmonary spread of B.anthracis. This is in

part mediated by STAT1 independent IFN signaling. Further

studies are required to determine the role of IFN mediated MAPK

activation in B.anthracis. Further studies are required, especially

with virulent B.anthracis, before IFNs can be used as immunoadju-

vants for inhalational anthrax.

METHODS

Mice
6–8 week old Female C57BL/6 mice were obtained from Jackson

Labs (Strain #00664). Age and sex matched STAT12/2 mice,

bred on C57BL/6 background were obtained from Dr. David

Levy at NYU School of Medicine and housed in SPF conditions

till use. All experiments were approved by the NYU School of

Medicine IUCAC.

Preparation of B.anthracis spores
Sterne strain of B.anthracis spores (34F2-Coloroda Serum Compa-

ny) were prepared as previously described [18]. Briefly spores were

allowed to germinate overnight at 37uC in Phage Assay broth

(8 gm Difco Nutrient broth, 015 gm CaCl2, .2 gm MgSO4,

0.05 gm MnSO4, 5 gm NaCl, 10% horse serum). Flasks are then

incubated at 30uC for 3–5 days. Spores were spun down and

washed with sterile H2064. Spores are resuspended in sterile H20

and heat treated at 65uC for 30 minutes to kill any vegetative

spores. Remaining spores are spun down and washed62 in sterile

water and resuspended in sterile H20 at a concentration of 109/ml.

Concentration is determined by quantitative cultures.

In vivo infection model
Mice were anesthetized with 2.5% isoflourane and supplemental

oxygen. 100 ml of B.anthracis spores or control vehicle were inserted

directly into the trachea with a 20 g blunt tip needle. For

experiments with exogenous interferon, 10 ml of IFN2c (provided

by Dr. David Levy), IFN2a (R&D systems) or control vehicle was

mixed with the spores and inserted simultaneously into the lung.

For survival experiments, mice were monitored every 12 hrs for

a total of 30 days or until death/sacrifice.

Quantitative Cultures
Quantitative cultures were made by serial dilutions of whole lung

or spleen homogenized in 0.1% Triton X-100. To determine the

number of ungerminated bacterium, lung homogenate was

incubated at 65C for 30 min, to kill all germinated bacteria.

Figure 7. Effect of IFN and B.athracis on MKK3 and STAT1 signaling.
Mice were administered B.anthracis 108 spores/mouse+IFN-c (1 mg/ml),
IFN-a (104U/ml) or vehicle and BALF cells harvested at 24 hrs. For
immunoblot. A. Immunoblot for MKK3. B. Immunoblot for phosphor-
Tyr701 and Total STAT1. Data represent pooled BAL from 5 mice. All
lanes were normalized for protein (50 mg/lane)
doi:10.1371/journal.pone.0000736.g007
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ELISAs and Immunoblots
ELISAs for IL-6, IL-10 and IL-12p40 were performed using

commercially available ELISAs (R&D systems). BALF cells were

lysed in NP-40 lysis buffer as previously described [18].

Immunoblot for total and phosphor-STAT1 and MKK3 were

performed on BALF cell lysates as previously described [18]. For

all blots, lanes were normalized for total protein. MPO was

assessed from whole lung homogenates by commercially available

ELISA (Hycult Biotechnologies).

Statistics
Comparisons between groups was performed with non-parametric

T-Test. Survival data was analyzed with Kaplan Meier survival

analysis. All data analyzed with Graph Pad 4.0 statistical software.
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