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ABSTRACT
Objectives A number of previous studies reported
physiological responses and adaptations after eccentric
muscle contraction of limb muscles. In contrast, no study
has determined physiological response after eccentric
contraction of trunk muscles. The purpose of the present
study was to compare the functional and metabolic changes
after eccentric or concentric exercises of trunk extensor
muscles.
Methods In this randomised, crossover study, 10 men
performed a single bout of 50 maximal voluntary concentric
and eccentric contractions of the trunk extensor with an
interval of 2 weeks between bouts. The activities of the
paraspinal muscles were recorded during concentric and
eccentric contractions. Muscle soreness, muscle function,
blood lipid profiles and glycaemic responses were
measured before, immediately after and at 24, 48, 72 and
96 hours after each bout.
Results The lumbar multifidus and iliocostalis lumborum
activities during eccentric contractions were significantly
higher than those during concentric contractions
(p<0.05). The maximal strength and muscle endurance
of the trunk extensor were not decreased even after the
eccentric contractions. Compared with concentric
contractions, muscle soreness was significantly increased
at 24, 48, 72 and 96 hours after eccentric contractions
(p<0.05). The TG, TC and LDL-C were significantly lower
at 48, 72 and 96 hours after eccentric contractions
(p<0.05), while blood glucose levels and HOMA-IR were
significantly greater at 48 and 72 hours after eccentric
contractions (p<0.05).
Conclusion This study indicated that eccentric
contractions of the trunk extensor had positive effects on
the lipid profile and the glycaemic response.

INTRODUCTION
Unaccustomed intense eccentric exercise
causes muscle damage to induce muscle sore-
ness, a reduction in strength and the release of
intramuscular enzymes into blood.1 Structural
damage to the muscle cells following eccentric
exercise is thought to be caused by immediate
mechanical trauma2 and subsequent chemically
mediated processes.3 On the other hand, it is
generally known that eccentric exercise brings
greater benefits compared to concentric exer-
cise including greater gains in muscle strength
and mass.4 Specific physiological responses

and adaptations to eccentric exercise of limb
muscles have been reported in different tissues
and organ systems. These include
cardiovascular,5 respiratory,6 neuromuscular,7

endocrine8, bone,9 connective tissue,10

inflammatory,11 oxidative stress,12 lipid
profile13 and insulin sensitivity14 responses.
Recent literatures have promoted the

importance of core or trunk muscle
strength for the successful performance of
sports-related and everyday activities. Func-
tionally, the trunk muscles play an impor-
tant role as kinetic link that facilitates the
transfer of torques and angular momenta
between upper and lower extremities dur-
ing the execution of whole-body move-
ments as part of sports skills, occupational
skills, fitness activities and activities of daily
living15 Compared with many other limb
muscles, trunk extensors are postural
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Summary box

What are the new findings?
► A single bout of maximal eccentric contractions of

the trunk extensor muscles had positive effects on
the lipid profile and the glycaemic response
compare to concentric contractions.

► LM and ILL activities increases during eccentric
contractions as compared with during concentric
contractions.

► No changes in muscle function were observed after
eccentric and concentric contractions of the trunk
extensor muscles.

How might it impact on clinical practice in the
future?
► Awareness of the potential metabolic changes

following eccentric exercise may help coaches,
exercise scientists and health and fitness
practitioners to make more informed decisions
about the advice they give to different people.

► A better insight into the mechanisms governing
eccentric exercise adaptations should provide
invaluable information for designing therapeutic
interventions and identifying potential therapeutic
targets.
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muscles rich in slow-twitch fibres,16 which have
uncharacteristically larger diameters than fast-twitch
fibres;17 they are responsible for slow and sustained
contractions at relatively low force outputs. In spite of
the important role of these muscles in performing
activities of daily living, static/dynamic balance, mobi-
lity, injury prevention, there is no study investigating
physiological responses of trunk muscles to eccentric
exercise, so far.
The mechanical and metabolic properties of muscle

fibres differ among fibre types and these characteristics
of different muscles can vary greatly within the same
individual. Evidence suggests that the variability in insu-
lin-stimulated glucose uptake between different skeletal
muscles may be partly due to differences in the muscle
fibre composition and the expression of glucose transpor-
ter type 4 (GLUT-4), an insulin-responsive glucose
transporter.18 Furthermore, it has been suggested that
muscles with different fibre compositions may show dif-
ferent increases in insulin-independent glucose uptake
following muscle contractions.
In addition, Lieber et al19 suggested that the fast-twitch

fibres might become fatigued at an early stage of the
exercise period and might reach a state of rigour,
depending on their ability to regenerate ATP. If muscle
fibres in a state of rigour are subjected to subsequent
stretching, damage may result. Alternatively, motor unit
recruitment patterns may be responsible for the selec-
tive damage observed in specific fibre types, although
glycogen depletion studies of eccentric exercise do not
appear to support this.20

The aim of this study was to provide evidence that
enhances our knowledge and understanding of physiolo-
gical response of slow-twitch muscles to eccentric exercise,
by investigating the functional and metabolic responses to
eccentric exercise of the trunk extensor, which is mainly
composed of slow fibres. On this basis, the present study
was designed to compare the effects of eccentric versus
concentric exercise of the trunk extensor on muscle func-
tion, blood lipid profiles and glycaemic response. We
hypothesised that changes in the blood lipid and glycaemic
profiles in response to eccentric exercise of the trunk
extensor are different from these after concentric exercise,
and that these changes would be significantly greater than
those caused by concentric exercise.

MATERIALS AND METHODS
Subjects
Ten healthy men (age: 23.6±4.9 years, height: 176.9
±2.5 cm, body mass: 74.9±7.3 kg, body mass index: 23.9
±5.4 kg/m2) who had not been involved in a resistance-
training programme for ≥6 months prior to the present
study were enrolled; their characteristics are shown in
table 1. The exclusion criteria were: (i) participation in
any systematic training programmes at least 2 days per
week, (ii) history of operation, severe trauma and/or
fracture, (iii) presence of musculoskeletal diseases, (iv)
any chronic diseases (eg, diabetes mellitus and epilepsy),
(v) use of any medication that affects neuromuscular
performance the last 2 weeks. The subjects reported no
contraindication to exercise testing in a questionnaire.
They were randomly assigned to perform a bout of max-
imal voluntary eccentric contractions or a bout of max-
imal voluntary concentric contractions in a cross-over
fashion. The volunteers were asked to continue their
usual routine (including their physical activity) without
change throughout the study period. This study was
approved by the Ethics Committee of Dankook Univer-
sity, Korea, in accordance with the ethical standards of the
Declaration of Helsinki (IRB no. DKU 2019-09-035-001).
They all provided written consent to participate in the
study after being informed of the potential risks, discom-
forts and benefits involved.

Study design
The study had a randomised, crossover design. Each sub-
ject performed bouts of concentric and eccentric exercise
of the trunk extensor with an interval of 14 days between
each bout. Both bouts of exercise were performed at the
same time of day, and all measurements and blood sam-
ples were taken between 09:00 and 11:00 after an over-
night fast and abstinence from alcohol and caffeine for
24 hours.13

The changes in muscle function of the trunk extensor,
blood lipid profile and glycaemic response were assessed
before, immediately after and 24, 48, 72 and 96 hours
after each bout of exercise (figure 1). Markers of muscle
damage included subjective muscle soreness and serum
creatine kinase (CK) activity. Surface electromyography
(sEMG) of the hip, lumbar and thoracic trunk muscles
was performed to evaluate muscle activity of the trunk

Table 1 Changes in VAS-assessed muscle soreness and serum CK activity before (pre), immediately after (0) and 24, 48, 72
and 96 hours after eccentric and concentric contractions

Parameter Contraction type Pre 0 hour 24 hours 48 hours 72 hours 96 hours

VAS (mm) ECC 0.0 ±0.0 14.3 ±3.1 52.8 ±10.4* 43.2 ±23.5* 38.7 ±16.7* 17.5 ±15.3*
CON 0.0 ±0.0 12.1±2.4 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

CK activity (IU/L) ECC 82.1 ±42.3 135.5 ±155.5 243.2 ±137.5 604.9 ±1125.5 427.6 ±379.7 401.0 ±412.9
CON 68.4 ±53.7 89.8 ±43.1 89.9 ±43.1 76.1 ±29.6 68.6 ±38.5 81.4 ±46.6

*p<0.05 versus CON.
Values are means±SD.
CK, creatine kinase; CON, concentric; ECC, eccentric; VAS, visual analog scale.
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extensor during the concentric and eccentric exercises.
In each exercise bout, an electrode was placed tomeasure
themaximal voluntary contraction (MVC) of eachmuscle
and assess the performance of the concentric and
eccentric exercises. All exercise and measurements were
performed by same physical therapist.

Exercise protocol
The exercises were performed on an isokinetic dynam-
ometer (Cybex 6000; Lumex, Inc., Ronkonkoma, NY,
USA) using HUMAC2004 software (Computer Sports
Medicine, Inc., Stoughton, MA, USA). The subjects sat in
a specially designed chair attached to the dynamometer.
The chair stabilised the pelvis and lower extremities in
order to isolate the centre of rotation of trunk movement
to the L5–S1 motion segment. The L5–S1 interspace was
palpated to align the axis of the actuator arm. The force
output was sensed by a load cell attached to a hard rubber
pad aligned with the inferior angle of the scapula.
Each subject completed a series of isometric contrac-

tions before performing each exercise protocol. As
a warm-up and to familiarise themselves with the dynam-
ometer, the subjects performed three 10-s submaximal
(~50% MVC) isometric contractions of the trunk exten-
sor muscles of 5 s each. After the warm-up contractions,
maximal and submaximal test contractions, each pre-
ceded by 2 min of rest and lasting 5 s, were performed.
The peak torque observed during one maximal contrac-
tion was recorded as 100% MVC. Next, the subjects per-
formed isometric contractions at 20%, 40%, 60% and
80% MVC in a random order. Each submaximal torque
level was maintained by the subject as they matched their
real-time torque level to the objective torque level dis-
played on a computer monitor. All of the isometric con-
tractions were performed with the subjects in an upright,
neutral position (0°).21

The subjects then performed the exercise protocol,
which consisted of a single bout of 50 eccentric or con-
centric contractions (at 100% MVC) of the trunk

extensor muscles according to the assigned intervention.
Eccentric contractions began with the trunk at 10° exten-
sion and ended at 40° flexion. Concentric contractions
began with the trunk at 40° flexion and ended at 10°
extension. Between the contractions, the subjects actively
returned (without resistance) to the starting position.
The movements were performed at an angular velocity
of 20°·s−1.22 This angular velocity has been used before
and was well tolerated by subjects performing maximal
eccentric contractions using the trunk extensor
muscles.23 One contraction was performed every 15 s.22

Assessments
Muscle soreness
Muscle soreness was assessed on a 100-mm visual analog
scale (VAS), where 0mm indicated ‘no pain’ and 100mm
indicated ‘extremely painful’. The subjects were
instructed to place a mark on the VAS while the trunk
extensor was being forcibly flexed.

Muscle function
Muscle function was assessed by measuring the muscle
strength and endurance of the trunk extensor. Muscle
strength of the trunk extensor wasmeasured based on the
MVC. The MVC of the trunk extensors was assessed using
the same apparatus as the exercise protocol.22 The pro-
cedures for these testing bouts were the same as those
used before the exercise protocol, except that no warm-
up was performed, as at least one submaximal contraction
preceded the performance of the 100% MVC.
Muscle endurance of the trunk extensor was measured

using the Sørensen test.23 The subjects lay in the prone
position on the examining table, with the upper edge of
the iliac crests positioned on the upper edge of the table.
The pelvis, knees and ankles were fixed to the table by
three straps, and the arms were bent. The subjects were
asked to maintain their upper body in a horizontal posi-
tion isometrically. A chair was placed in front of the sub-
jects to help them support themselves by holding it with
their hands in case they were unable to keep the position.
The length of time during which the subjects kept their
upper body straight and horizontal was recorded with
a chronometer.

Blood sample
The serum levels of triacylglycerol (TG), total cholesterol
(TC) and high-density lipoprotein cholesterol (HDL-C)
were assayed by enzymic spectrophotometric methods
using a CHOL kit, a TG kit and a HDL-C plus 3rd genera-
tion kit on a Modular Analytics system (all Roche, Man-
nheim, Germany). These biochemical parameters were
determined in duplicate, simultaneously with a control
serum from Roche. LDL-C was calculated using the equa-
tion: LDL-C = TC − HDL-C − (TG/5), as previously
described.16 The TC/HDL-C ratio was also calculated as
an atherogenic index.
Serum glucose was assayed using an enzymatic kinetic

assay (hexokinase) (glu kit; Roche Diagnostics,

Figure 1 Schematic presentation of the experimental protocol.
The figure shows the timing of physical characteristics (●),
muscle soreness (▲), muscle function (■) and blood samples (♠)
assessments. Muscle activity (★) was measured during each
bout of exercise.
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Mannheim, Germany). Serum insulin was determined
using an electrochemiluminescence immunoassay (insu-
lin kit; Roche Diagnostics, Mannheim, Germany). Homo-
eostasis model assessment (HOMA-IR) was used as
a surrogate measure of insulin resistance, and was calcu-
lated as fasting insulin (µU·mL−1)×fasting glucose
(mmol·mL−1)/22.5.Whole-blood glycosylated haemoglo-
bin (HbA1c) was measured using an HbA1c kit on
a NycoCard Reader II (both Axis-Shield, Dundee,
Scotland).14 Creatine kinase (CK) was measured using
a Reflotron spectrophotometer kit (Boehringer-
Manheim, Pode, Czeck Republic).

Electromyography
The sEMG signals of seven unilateral muscles were mea-
sured with an eight-channel sEMG system (Trigno Wire-
less EMG System, Delsys Inc., Boston, MA, USA). To
reduce skin impedance and improve skin contact, the
skin was prepared by shaving and rubbed with alcohol.
After skin preparation, surface electrodes were bilaterally
attached parallel to the muscle fibre orientation over the
following muscles23 24: gluteus maximus (GM—midway
between the posterosuperior iliac spine and the ischial
tuberosity), the lumbar multifidus (LM—2 cm lateral to
the midline of the body, above and below a line connect-
ing the posterior and superior iliac spines), the latissimus
dorsi (LD—3 cm lateral and caudal to the angulus infer-
ior of the scapula), the longissimus thoracis pars thoracic
(LTT—at the L1 level, midway between the line through
the spinous process and a vertical line through the poster-
osuperior iliac spine), the longissimus thoracis pars lum-
borum (LTL—lateral at the intersection of a horizontal
line through the spinous process of L5 and a line between
the interspinous space of L1-L2 and the posterosuperior
iliac spine), the iliocostalis lumborum pars thoracis (ILT
—at the L1 level, midway between the lateral palpable
border of the erector spinae and a vertical line through
the posterosuperior iliac spine) and the iliocostalis lum-
borum pars lumborum (ILL—at the L4 level, midway
between the lateral palpable border of the erector spinae
and a vertical line through the posterosuperior iliac
spine). Muscle activities were measured during all phases
of the contraction exercise.

Statistical analyses
The Shapiro–Wilk test was used to confirm that all of the
dependent variables were normally distributed. The
effects of the eccentric and concentric contraction types
on the dependent variables during the exercise protocol
were evaluated by two-way analysis of variance (time ×
contraction) with repeated time measures. When
a significant time × contraction interaction effect was
observed, Tukey’s post hoc test was performed to com-
pare the eccentric and concentric contractions at each
time-point separately. Values of p<0.05 were considered
statistically significant. The results are presented asmeans
±SD. All analyses were conducted using SPSS software
version 21.0 (SPSS Inc., Chicago, IL, USA).

RESULTS
Markers of muscle damage
The changes inmuscle soreness and serumCK activity are
shown in table 1. Eccentric contractions had significantly
higher muscle soreness at 24, 48, 72 and 96 hours post-
exercise as compared with concentric contractions
(p<0.05). No significant changes in CK activity observed
after either contraction type. However, owing to the large
intra-subject variability in CK levels, we found no signifi-
cant changes in serum CK activity after eccentric contrac-
tions. Nevertheless, all subjects showed increases in CK
levels from baseline following eccentric contractions.

Muscle function
The changes in MVC torque and the results of the
Sørensen test are shown in figures 2 and 3. MVC torque
was not significantly different in the contraction type

Figure 2 Maximal voluntary contraction measured before
(pre), immediately after (0) and 24, 48, 72 and 96 hours after
concentric and eccentric contractions. Values aremeans ±SD.
CON, concentric; ECC, eccentric; MVC, maximal voluntary
contraction.

Figure 3 Results of the Sørensen test performed before (pre),
immediately after (0) and 24, 48, 72 and 96 hours after
eccentric and concentric contractions. Values aremeans ±SD.
CON, concentric; ECC, eccentric.
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generating ability at any time-point. Moreover, the
Sørensen test showed no significant difference in muscle
endurance at any time-point following concentric
contractions.

Lipid profiles and glycaemic responses
The changes in blood lipid profiles and glycaemic responses
are shown in table 2. Compared with concentric contrac-
tions, eccentric contractions had significantly lower TG
levels at 24, 48, 72 and 96 hours post-exercise, together
with lower TC, LDL-C and TC/HDL-C at 48, 72 and
96 hours post-exercise (p<0.05). By contrast, no significant
changes in HDL-C levels were observed after either contrac-
tion type. Eccentric contractions had significantly higher
glucose levels (p<0.01) and HOMA-IR (p<0.05) compared
with concentric contractions at 48 and 72 hours post-
exercise. By contrast, no significant changes in insulin or
HbA1c were observed after either contraction type.

Electromyography
The changes in muscle activity are shown in figure 4. LM
activity was significantly greater during eccentric contrac-
tions than during concentric contractions (p<0.05), as
was ILL activity (p<0.05). By contrast, there were no sig-
nificant differences in muscle activities in the LD, LTT,
ILT, LTL and GM between eccentric and concentric
contractions.

DISCUSSION
The results of this study show that a single bout of max-
imal eccentric contractions of the trunk extensor muscles
induced different post-exercise lipid and glycaemic
responses from concentric exercise. Nevertheless, there
were increases in LM and ILL activities during eccentric
contractions as compared with during concentric con-
tractions, and subjects reported greater muscle soreness
between 24 and 72 hours following eccentric contrac-
tions. However, no changes in muscle function were
observed after eccentric and concentric contractions.
In limb muscles, a reduction in isometric force genera-

tion lasting for several days after a single bout of eccentric
contractions was observed in studies of human knee
extensor muscles25 and elbow flexor muscles.3 26 In one
study, a decrease in force-generating ability persisted for
>2 weeks after an eccentric exercise bout.27 Sustained
increases in muscle activity required to elicit a given sub-
maximal force were also observed after a bout of eccentric
contractions.26 27 Unlike these earlier studies, the present
study did not detect any sustained changes in isometric
torque generation or muscle activity after eccentric con-
traction. One explanation for this may be due to the
difference in fibre type composition between the lumbar
paraspinal muscles and limb muscles. It is generally
accepted that type II fibres are preferentially damaged
by eccentric contractions.28 The lumbar paraspinal

Table 2 Changes in lipid profiles and glycaemic responses before (pre), immediately after (0) and 24, 48, 72 and 96 hours after
eccentric and concentric contractions

Parameter Contraction type Pre 0 hour 24 hours 48 hours 72 hours 96 hours

TG (mM) ECC 0.82 ±0.10 0.71 ±0.13 0.67 ±0.07* 0.69 ±0.12* 0.71 ±0.04* 0.73 ±0.13*
CON 0.83 ±0.12 0.81 ±0.11 0.82 ±0.09 0.83 ±0.18 0.82 ±0.10 0.84 ±0.08

TC (mM) ECC 4.42 ±0.43 4.35 ±0.33 4.01 ±0.75 3.79 ±0.51* 3.82 ±0.97* 3.91 ±0.92*
CON 4.48 ±0.53 4.46 ±0.97 4.40 ±1.03 4.45 ±0.93 4.50 ±0.71 4.49 ±0.97

HDL-C (mM) ECC 1.37 ±0.19 1.35 ±0.11 1.49 ±0.17 1.52 ±0.21 1.49 ±0.18 1.39 ±0.15
CON 1.41 ±0.23 1.44 ±0.17 1.46 ±0.24 1.44 ±0.19 1.43 ±0.21 1.42 ±0.16

LDL-C (mM) ECC 2.78 ±0.36 2.81 ±0.33 2.58 ±0.28 2.21 ±0.29* 2.13 ±0.21* 2.24 ±0.32*
CON 2.71 ±0.34 2.74 ±0.28 2.56 ±0.37 2.64 ±0.29 2.63 ±0.34 2.72 ±0.36

TC/HDL-C ECC 3.23 ±0.23 3.22 ±0.30 2.69 ±0.44 2.49 ±0.24* 2.56 ±0.54* 2.81 ±0.61*
CON 3.18 ±0.23 3.10 ±0.57 3.01 ±0.43 3.09 ±0.49 3.15 ±0.34 3.16 ±0.60

Glucose (mmol/L) ECC 4.44 ±0.16 4.58 ±0.23 4.83 ±0.11 4.96 ±0.12* 4.91 ±0.11* 4.76 ±0.08
CON 4.55 ±0.21 4.52 ±0.16 4.63 ±0.29 4.61 ±0.24 4.57 ±0.13 4.58 ±0.23

Insulin (µU/mL) ECC 13.10 ±1.78 13.92 ±2.03 14.87 ±1.39 15.40 ±2.11 14.91 ±1.21 14.48 ±2.37
CON 13.10 ±2.14 13.27 ±3.12 13.03 ±1.78 12.80 ±2.48 13.02 ±1.62 13.15 ±1.93

HOMA-IR ECC 2.60 ±0.41 2.71 ±0.27 2.92 ±0.47 3.18 ±0.34* 3.07 ±0.29* 2.84 ±0.28
CON 2.68 ±0.74 2.71 ±0.52 2.65 ±0.39 2.66 ±0.69 2.67 ±0.41 2.69 ±0.24

Glycosylated
haemoglobin (%)

ECC 5.58 ±0.14 5.56 ±0.29 5.57 ±0.33 5.55 ±0.11 5.54 ±0.17 5.57 ±0.27

CON 5.59 ±0.07 5.58 ±0.13 5.52 ±0.14 5.49 ±0.10 5.50 ±0.17 5.53 ±0.21

*p<0.05 versus CON.
Values are means±SD.
CON, concentric; ECC, eccentric; HDL-C, high-density lipoprotein cholesterol; HOMA, homoeostasis model assessment index; LDL-C,
low-density lipoprotein cholesterol; TG, triacylglycerol; TC, total cholesterol.
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muscles have a high percentage (~60%) of type I fibres,17

which may render them less susceptible to eccentric exer-
cise-induced muscle damage.
Another possible explanation may be due to the nature

of the lumbar paraspinal muscles. Because these muscles
are important inmaintaining an upright posture, they are
more chronically active and may be ‘trained’ such that
a bout of maximal eccentric contractions does not elicit
sustained changes in torque production or muscle activ-
ity, as compared with the effects on limbmuscles reported
in prior studies. In support of this, there is evidence that
recent contractile history is a better determinant of sus-
ceptibility to eccentric exercise-induced muscle damage
than the fibre type composition.29

TG levels remained diminished for 96 hours after the
eccentric exercise. Increased lipoprotein lipase activity
may be related to the increased demand of working mus-
cles for fatty acids as an energy source, and to replenish
muscle phospholipid and TG stores with fatty acids to
regenerate damaged muscle fibres.30 The lower serum
TG levels after muscle-damaging exercise may also be
due to increases in resting energy expenditure that last
several days after eccentric exercise,31 corresponding to
an increased need for ATP,mainly for the regeneration of
damaged fibres and/or for the formation of new muscle
fibres from satellite cells. Because cholesterol constitutes
approximately 13% of cell membrane32 and signs of heal-
ing have been observed in human subjects within
36 hours after eccentric exercise2, it is possible that the
reductions in serum TC and LDL-C levels after eccentric
contractions were due to outflow of cholesterol from
plasma to muscle to facilitate synthesis of new cell mem-
brane. However, it is shown that normal range of TC and

LDL-C may be due in part to the lower levels of muscle
damage experienced, because less cholesterol molecules
would be needed for the repair process that takes place in
the damaged muscle cells.
Many studies have reported that acute eccentric exer-

cise in limb muscles increases insulin resistance and
plasma insulin levels, and decreases glucose disposal
rates.14 Eccentric exercise has been shown to cause mus-
cle damage and impaired post exercise glycogen
resynthesis33 and causes whole-body insulin resistance,34

but no underlying mechanisms have been established. It
has been suggested that accumulation of inflammatory
cells after eccentric exercisemay be the cause of impaired
glycogen resynthesis due to competition between the
inflammatory cells and muscle fibres for available plasma
glucose.35 Furthermore, inflammatory cells have been
shown to produce a factor that stimulates glycolytic flux
in muscle,36 thus possibly diverting glucose away from
muscle glycogen synthesis. Indeed, the present study
found increased plasma glucose levels and HOMA-IR
after eccentric exercise of the trunk extensor.
Although the lumbar and thoracic paraspinal muscles

can act synergistically to produce an extension force,
several studies have suggested that the back muscles are
not allied muscle fibres,23 but are composed of differ-
ent groups of fascicles with different functions. There-
fore, it is necessary to differentiate between the
thoracic and lumbar muscle groups based on their
anatomical and functional differences. Although both
muscle groups cross the lumbar spine, the lumbar
muscle parts directly attach to the lumbar vertebrae,
while the thoracic parts originate from the thorax and
insert themselves in long tendons that form the erector
spinae aponeurosis.37 The thoracic muscles, which are
more superficial, are primarily force-producing muscles
whereas the deeper lumbar muscles (especially the LM)
are primarily stabilising muscles in the spine. In this
study, the activities of the LM and ILL were greater
during eccentric contractions than during concentric
contractions. The LM has been shown to make a major
contribution to the control and segmental stabilisation
of the lumbar spine,21 whereas the ILL clearly has
a torque-producing and general trunk stabilising
function.24 Furthermore, the ILL is only recruited at
higher force levels during trunk extension.38 It seems
that there is need to more stabilisation and torque-
producing during eccentric contractions than during
concentric contractions.

CONCLUSION
In conclusion, this study showed that eccentric exercise of
the trunk extensor induced different changes in blood
lipid and glycaemic profiles from these after concentric
exercise. Further studies are needed to verify and extend
the present findings, and to investigate the effects of
repeated bouts of eccentric exercise of the trunk extensor
on blood lipid profiles and glycaemic responses.

Figure 4 Activities of paraspinal muscles during concentric
and eccentric contractions. Muscle activities are presented as
the per cent maximal voluntary contraction following each
contraction type. Values are means ± SD. * p<0.05 versus
CON. CON, concentric; ECC, eccentric; GM, gluteus
maximus; LD, latissimus dorsi; ILL, iliocostalis lumborum pars
lumborum; ILT, iliocostalis lumborum pars thoracic; LM,
lumbar multifidus; LTL, longissimus thoracis pars lumborum;
LTT, longissimus thoracis pars thoracic.
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