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Abstract

We develop a 3D synthetic animated mouse based on CT scans that is actuated using animation 

and semi-random, joint-constrained movements to generate synthetic behavioural data with 

ground-truth label locations. Image-domain translation produced realistic synthetic videos used to 

train 2D and 3D pose estimation models with accuracy similar to typical manual training datasets. 

The outputs from the 3D model-based pose estimation yielded better definition of behavioral 

clusters than 2D videos and may facilitate automated ethological classification.

While powerful, feature tracking methods such as DeepLabCut (DLC)1 require substantial 

user effort to label training images. We propose an approach using synthetic video data, 

where annotation data is readily available both in 2D and 3D space (Supplementary Video 

1). We facilitate such an approach with a synthetic animated mouse (SAM), an open-source, 

high-resolution, realistic model of the C57BL/6 adult female mouse skeleton, skin, whiskers, 

and fur (Fig. 1a, b, Supplementary Video 2)2. We extend previous digital mouse models3,4 

by using CT scan images and introducing realistic skin and fur on an animation-ready 

model. Synthetic data has unique advantages5 including the diversity, quantity, and quality 

of labels which are unbiased and placed based on ground-truth positions from a 3D model’s 
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anatomy and not reliant on rater inference6. We create short animation sequences of the 

mouse in repeated and randomized poses, providing a potentially infinite dataset where 

ground-truth body part labels are accessible from multiple camera angles (Fig. 1c, d). We 

introduced additional image diversity by adding lighting, and camera noise. The model in 

Blender uses a 3D environment, allowing placement of multiple virtual cameras providing 

training data for multi-camera pose estimation systems with shared ground-truth labels (Fig. 

1d, Supplementary Video 1 and 2).

We generate synthetic data of common mouse behavioural experiments (Supplementary 

Videos 3, 4, and 5) as well as 3D models for freely moving and head-fixed animals during 

International Brain Lab (IBL)7 and water reaching tasks8 (Supplementary Videos 6 and 7), 

and for pellet-reaching mice9 (Fig. 1c,d). We recreated the scenes in Blender to resemble the 

setups, including lighting and cameras, to match the real videos, manually generated short 

animation sequences (Supplementary Table 1) and rendered the images (Fig. 1c).

While initial renders captured most aspects of a crude mouse form, including skin and fur, 

pose estimators require a closer match between the training set and the real experimental 

setup. Accordingly, we used image domain transformation to transfer style (textures, 

lighting, and background), from real mouse videos onto the animation (Fig. 2a, 

Supplementary Videos 3–6). We use a single U-GAT-IT 10 image domain transformation 

model (Supplementary Table 1) for each mouse using the first trained model as pre-trained 

weights for subsequent models, and observe accurate transfer of the subsequent mouse style 

within the first few thousand iterations. Such synthetic approaches provide an infinite set of 

images for training while ensuring that the initial pose from the original animation remained 

largely unaffected. Through randomization, the poses generated spanned a larger space than 

real recordings alone, adding more diversity to the data (Fig. 2b Supplementary Videos 3–6.

We compute the structural similarity index measure (SSIM)12 to assess differences between 

real, animated and synthetic images (after style transfer). Synthetic images were more 

similar to real videos than animation alone (Fig. 2c). The use of individual mouse U-GAT-IT 

models further increased the SSIM score compared to the use of a single aggregate model. 

We observed that the SSIM scores for the paired (same mouse) synthetic-real images were 

higher than for both the unpaired mouse sets and the aggregate model (mean = 0.543). 

Furthermore, SSIM scores for the comparison of real mouse images with other real mouse 

images from another mouse (real unpaired) resulted in lower SSIM scores than for all 

synthetic approaches. Pairing real images of single mice with other images of themselves 

(real paired) resulted in the highest SSIM scores given some frames would closely match, 

however the bulk of the distribution overlapped with the paired synthetic-real condition 

(mean = 0.696). For further evaluation we used Kernel Inception Distance (KID)13. The 

lower the KID, the more shared features between real and generated images. U-GAT-IT style 

transfer achieved similar KID scores when comparing real with real images and real with 

synthetic images on paired mice (Fig. 2d).

Using our realistic synthetic mouse videos, we trained a DLC model for 2D pose estimation 

using synthetic training data. We define the markers within Blender, and export the pixel 

coordinates on the camera frame as a CSV file using a custom Python script (Fig. 2a)14. The 
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format follows the training label text defined in DLC1 to easily transfer the marker 

coordinates to a DLC project. A benefit of synthetic data is the ability to export a large 

number of labels with no added cost. With this in mind, we chose to export 28 markers with 

half defining the spine and half defining the left limbs. We trained DLC using the 1000-

frame animation after style transfer (5 mouse models in total or 5000 frames) using the 

resnet-50 model (Fig. 2a). We then applied the synthetically trained model to real video data 

(see ‘1 - Videos/Synthetic-DLC_Performance.mp4’ at https://osf.io/h3ec5/)2 and assessed its 

performance by comparing the model to multiple models trained on various subsets of a 

manually labeled 1,280-frame project. We used a 27,000 frame long video, composed of 

multiple recordings from multiple mice, as input to the manually and synthetically trained 

models. We computed the mean Euclidean distance error for each frame for each of the paw 

labels using the full 1,280-frame manual model as the ground truth. The value is calculated 

after each of the 2D predictions are passed through a linear regression to correct the 

differences in labelling between the synthetic model and the manual model. The results 

show that the synthetically trained model achieved comparable errors to manually labeled 

models with ~200 labeled frames (Fig. 2e). We then computed the mean Euclidean distance 

error for the other labels that could be paired (n=11). Overall the mean errors were on 

average 6.7 pixels from the manual model prediction on an image frame of 640 × 320 pixels 

(Supplementary Fig. 1).

We test two methods for 3D pose estimation: a multi-camera system using DLC 3D 15, and a 

single camera 2D-to-3D pose lifter 5,16. We used in-house mouse behavioral running wheel 

data where calibration images could be acquired and camera specifications were known 

(Supplementary Video 8). We could consistently and accurately label markers in multi-

camera systems using synthetic data and show similar DLC 3D performance to a project of 

manually labelled 2-camera real videos (Supplementary Fig. 2). Generation of synthetic 

data, while potentially equal in labour cost for a single camera, can quickly become 

substantially less laborious when dealing with multiple camera setups and/or large amounts 

of labels.

The second method for 3D pose estimation leverages the ability to extract ground-truth 3D 

information from the digital model. We tested the ability to “lift” 2D poses onto 3D space by 

training a linear neural network using the previously extracted 2D pixel coordinates and 3D 

coordinates relative to a reference marker also using the running wheel dataset 5,16 (Fig. 2f). 

We compared the lifted poses to the previously described DLC 3D model trained on 

synthetic data after matching the scale and applying a rigid transformation to align 

coordinate systems, and show an RMSE of 3.97 mm and 4.17 mm for camera 2 and 3 

respectively (Supplementary Fig. 3 and Supplementary Video 8). We believe 3D pose 

estimation could allow researchers to analyze their data in a manner less dependent on initial 

camera position and other setup-specific factors. The transformation of 2D pose estimation 

onto this relative 3D space, independent of camera position and rotation, could also allow us 

to combine data from different sources where mice share inherent behaviours (such as 

grooming or reaching), but the resulting 2D coordinates vary from having a different camera 

perspective. While true 3D datasets are expected to contain more information than 2D 

videos17 or projections, it was unclear whether the use of the synthetic mouse 3D model 

could improve pose classification. Accordingly, we compared 2D and 3D poses, and found 
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that 3D approaches yield better qualitative and quantitative measures of clustering than 2D 

poses (Hopkins18 score: 0.02, 3D; versus 0.04, 2D) (Fig. 2g), providing incentive to track in 

3D using multi-camera systems, or if impractical, using the single-camera pose lifter.

While we have shown that 3D information from synthetic data can improve clustering, it 

comes with a setup time for the initial rendering. However, by creating multiple pre-made 

animated models (Supplementary Videos 6 and 7) and future automation of movement 

generation using scripting we hope that this barrier can be reduced. Scripting could generate 

potentially a wider repertoire of training data for models that examine specific movements 

necessary for advanced phenotyping. The 3D model space could be thought of as a mouse 

common behavioral framework, representing movements in a space less subject to variation 

due to camera placement, lighting, and other scene-related factors than typical laboratory 

recording conditions.

Methods

Blender.

Blender (https://www.blender.org/download/) is a free open-source program for 3D 

computer graphics with features spanning the entire pipeline for creating animated films. We 

use Blender as the primary software to generate synthetic data by animating a digital mouse 

which we use to extract ground-truth information for machine learning models. The digital 

mouse was created within Blender and is animation-ready providing a foundation for the 

generation of synthetic data of behaving mice (Supplementary Video 1, https://osf.io/h3ec5/, 

note: Blender v2.83+ required to illustrate full model).

CT scan preprocessing and mouse behavioral videos.

All animal experiments were performed with institutional ethics approval. Animal protocols 

were approved by the University of British Columbia Animal Care Committee and 

conformed to the Canadian Council on Animal Care and Use guidelines and animals were 

housed under standard 12 h light cycle, 20–24 degrees C and 40–60% humidity. Adult male 

approximately 4 month old C57BL/6 mice were used for headfixed video imaging during a 

running wheel task or water reaching, other real mouse videos were obtained from open 

source datasets or as cited. Female C57BL/6 mice, aged 8–13 weeks, were used for CT 

imaging, with an expected weight range of 18–22 g (jax.org). Mice were group-housed in a 

conventional animal facility. Mice were anaesthetized throughout the micro-CT imaging 

session with isoflurane in O2 (5% to induce and 1.5–2% for maintenance) delivered via a 

nose-cone. Datasets from 3 mice were used (containing the head, thorax and hind end) and 

tiled together into a composite image. In vivo micro-CT images of the thorax and hind end 

were acquired using an eXplore CT120 (Trifoil Imaging, Chatsworth, USA) with 80 kVp, 40 

mA, and 4–8 minute scan times. The head image was acquired on a Locus Ultra (GE 

Healthcare, London, Canada) with 80 kVp, 50 mA and a 1 minute scan time. The images 

were reconstructed with a filtered backprojection algorithm and scaled into Hounsfield units. 

The thorax and hind end images were reconstructed with 0.1 mm isotropic voxel spacing, 

while the head image was reconstructed at 0.15 mm spacing. The CT scans were converted 

to high density meshes at two thresholds (corresponding to the skeleton and the skin) using 
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3DSlicer (https://www.slicer.org, Fig. 1a). These meshes were combined in Blender to 

produce a full body model of a mouse.

3D model creation.

We create a mouse model through retopology of the high density meshes, generating a single 

unified mesh with a lower density of quad polygons useful for deformation and animation. 

The 3D model was UV unwrapped, and a texture was manually drawn using various images 

of C57BL/6 mice as reference. The addition of particle systems to simulate fur increased the 

realism of the final mouse model, and materials were defined for both the Cycles and Eevee 

render engines within Blender.

Rigging of the model.

Rigging—the process of adding control bones for the deformation of the mesh— was guided 

by the skeletal model generated using the CT scans. Bone segments were added to create the 

entire skeleton of the mouse with the addition of various control bones for inverse 

kinematics and volume preservation. Volume preserving bones were added to improve skin 

deformation in large body regions during extreme poses (Fig. 1b), while inverse kinematic 

controls were added to all paws and skull bones to make animation quicker and easier. 

Deformation bones were also added to the ears, cheeks, and chest to enable the user to 

animate breathing and sniffing.

Synthetic data generation.

Scene setup.—For the generation of synthetic data, a new scene is opened in Blender to 

model the experimental setup of interest. From our experience, it is not necessary to model 

all objects in high detail. For the running-wheel experiment, the mouse is animated on top of 

a simple wheel model. In the case of pellet reaching, more objects were used as the mouse 

would interact with each of them (bar, pellet, food wheel). Camera objects are added and 

Blender allows a ‘background’ image to be added to the camera view. For this, an image of 

the experimental setup is imported and used to match the camera perspective to the real 

videos (using calibration images here helps speed up the process and ensures proper 

alignment in the case of multi-camera systems). We try to keep the alignment between the 

animation and the real videos as close as possible to prevent shifting of objects during style 

transfer which could compromise the integrity of marker positions on the image frame. The 

mouse model is copied into the new scene, placed and posed to match the silhouette of the 

real mouse. Finally, lighting is added to the scenes, again matching the real videos, and 

materials—properties which define how an object is shaded—are created for the new 

objects.

Animation.—A two-part strategy is employed in order to generate a large amount of 

simulated mouse behaviour from a minimalist set of manually animated sequences. The first 

part of the strategy uses the skeletal model described above to pose the synthetic mouse. 

Poses are manually defined, and keyframes are set to create the 3D animations, with Blender 

automatically interpolating between keyframes. In an effort to reduce the manual work these 

primary animations (for example of running, reaching and grabbing) consist of a small 

number of frames (Supplementary Table 1). The primary animations are combined and 
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looped to create a longer animation using the Non-Linear Animation stack in Blender. In 

creating longer animations noise is added to several properties (limb offsets, lighting 

intensity, and camera angles) to increase the amount of parameter space covered by the 

synthetic mouse behaviour and to avoid identical, repetitive sequences. In the case of the 

running wheel, two animation sequences were created: a 20-frame long sequence of mice in 

various poses (running, resting, and grooming) and a 28-frame loop of a mouse running 

(Supplementary Video 2). A similar approach was taken for the multi-camera scenes with 

added care to ensure alignment of the two camera views (Fig. 1c).

Importantly, Blender supports Python scripting which allows libraries of movements to be 

imported or used in a format that supports inverse kinematics where video data can be used 

with pose estimators leading to the control of the Blender model’s skeleton and generation 

of movements within the model. Our approach also supports forward kinematics where the 

Blender model’s skeleton can be directly controlled using rotation matrices. To show the 

flexibility of our Blender model, we transfer unique human movements from the CMU 

Motion Capture dataset, like upright walking to the mouse model (see 1 - Videos/ 

MOCAP_humanoid-walk.mp4 and MOCAP_humanoid-jump.mp4 at https://osf.io/h3ec5/). 

The toolkit we used for reading the dataset is AMCParser (https://github.com/CalciferZh/

AMCParser/).

Noise.—To generate diverse training data we add noise to the animation. We added various 

‘empty’ objects to the scenes in Blender and set a single keyframe of either their position or 

rotation. Using the Graph Editor, we added noise modifiers such that their position or 

rotation attributes were randomly animated throughout the entire timeline sequence. These 

objects could then be referenced to modify existing animations by adding their procedural 

movements to the object or bone. Using the Bone Constraint or Object Constraint panels, we 

could reference the empty noise objects by adding either the Copy Transform or Copy 

Rotation modifiers and choosing the empty object of interest. The settings were changed 

such that the noise was added to the original position or rotation of the constrained object 

rather than replacing it, and the constraint’s influence was changed to limit the amount of 

noise to prevent overstretching or clipping. The Influence property could also be animated in 

the original sequences to allow users to specify sections of the animation where a limb or 

object could not deviate drastically from the original animation, for example at the end of a 

reaching sequence where the paw must be grabbing the pellet (though, other properties such 

as the other paw, elbow rotation, and digit spread could still have the noise added). For 

lighting changes, we either referenced a random position object and added its noise to 

change the direction of the light, or a keyframe could also be set for the intensity of the light 

which would have its own noise modifier.

Rendering and data export.—Once the animation is complete, rendering is done using 

the Eevee render engine as it is significantly faster than Cycles, but at a loss of realism 

which is compensated for by style transfer in the subsequent image domain translation step. 

We saved renders as .png files for lossless compression while saving current render progress 

if a system crash were to occur.

Bolaños et al. Page 6

Nat Methods. Author manuscript; available in PMC 2021 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/h3ec5/
https://github.com/CalciferZh/AMCParser/
https://github.com/CalciferZh/AMCParser/


To export label coordinates, new empty objects are created and named accordingly. These 

empty objects serve as a proxy to the marker of interest, using a Copy Location object 

constraint modifier to follow a bone or object of choice. The ‘mCBF-2d-3d_marker-

extraction.py’ python script is opened in the text editor under the scripting panel within 

Blender, and the variables are changed to match the markers of interest. The script is run, 

iterating through all the frames and saving both 2D and 3D relative coordinates (https://

github.com/ubcbraincircuits/mCBF).

Image domain translation: U-GAT-IT. As it is unlikely for the render to truly be hyper-

realistic, realism is added through an image-domain translation model. We use a U-GAT-IT-

PyTorch model for its high performance capabilities in style transfer tasks. The folders are 

set up using all the rendered images for both the trainA and testA datasets. trainB and testB 

datasets are composed of frames extracted from the behavioural videos of interest that will 

ultimately be analyzed. We use Blender’s video editing tool to extract these frames as .png 

files. Due to hardware limitations, we use a cut-down version of the default U-GAT-IT-

PyTorch model to train using a GTX 1070 with 8GB of vRAM. The parameters used in 

training are described in Supplementary Table 1. These parameters provided images at a 

high enough resolution with good accuracy in style transfer, while retaining the original 

render’s pose. However, smaller details such as individual digits were much harder to 

transfer accurately while keeping the exact pose of the render. While it could be a limitation 

due to the cut-down parameters, continued development of style transfer methods may lead 

to improvements. Once the translated images are visually indistinguishable from the real 

images and pose is retained, we halt the training and run the entire test set through the 

model. For further quantitative evaluation for the performance of the U-GAT-IT model we 

employ the structural similarity index. To reduce training time for multiple mice, a single 

mouse U-GAT-IT model was trained for 300,000 iterations, and that model was used as pre-

trained weights for the subsequent individual mouse models. Style transfer performance 

could potentially be further improved by widening the real dataset, creating recordings for 

the sole purpose of generating more data by changing camera angles and lighting. The more 

diverse the real training dataset is, the easier it is to transfer style during new poses or 

camera angles in the animation. Differences in age and weight of mice can be managed by a 

general scaling of the 3D model and letting the nuances in appearance be handled by the 

style transfer. We suggest that users perform 300,000 iterations of the U-GAT-IT algorithm 

and halt based on visual inspection and that these conditions typically yield high similarity 

using quantitative measures. We suggest monitoring SSIM and KID scores and using these 

as a method of optimizing the number of iterations as performance may vary based on the 

initial animation or training data. In our experience, more iterations did not always generate 

a more realistic result.

DeepLabCut.

We created a new DeepLabCut1 (DLC) project and edited the config file to have the labels 

and skeleton of interest. We created new folders inside of the labeled-data folder 

corresponding to each synthetic dataset and copied the frames generated by U-GAT-IT, after 

being cropped and scaled to original video size, into the folder. We modified a custom script 

“generate_csv_h5.py” to point to the correct .csv exported by Blender (input) and the folder 
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previously created (output). We ran the script and generated a .csv and h5 file with the 

training data. This was done for each synthetic dataset. Once complete, we trained the DLC 

model. We trained 2D models using the resnet-50 model to 750,000 iterations and 3D 

models to 1,030,000 iterations again on resnet-50.

For benchmarking DLC 2D we applied the synthetically trained model (5,000 frames) to 

real video data and assessed its performance by comparing the model to multiple models 

trained on various subsets of a 1,280 frame, manually labelled project. For this testing, we 

discarded 13 frames of a 27,000 frame long video due to having no illumination or frames in 

which the 1,280-frame manual labeled model performed poorly. We calculated the 

Euclidean distance error after the 2D predictions underwent a linear regression to correct 

differences in labelling between the synthetic and manual models.

For both real and synthetic video multi-view 3D pose generation we employed DLC 3D 15 

using mouse running wheel real multi-camera data or synthetic data generated for matched 

views.

Single camera 2D-to-3D pose lifting.

Using a custom Google Colab notebook with a GPU instance, we train a linear neural 

network 5,16 with a linear size of 1024 nodes, with 2 stages and a “p_dropout” of 0.667 to an 

error of 5x10−5 to 8x10−5 14. The training data is composed of the extracted pixel 

coordinates of all the labels as input, with the target as the 3D relative coordinates from 

Blender. The input pixel coordinates have random noise added in the range of 1 to 2 pixels 

to prevent the model from quickly over-fitting. Once trained, we tested the model on real 

videos using the predicted 2D poses from DLC and saved results as CSV files in a similar 

format to DLC’s result with an added dimension.

2D and 3D poses clustering.

To classify the 2D and 3D poses, we used the unsupervised clustering algorithm 

PhenoGraph19. Each 2D or 3D pose matrix with N rows (each containing all joints from a 

frame) is partitioned into clusters by a graph that represents their similarity. The graph is 

built in two steps, first it finds k nearest neighbors for each pose (using Euclidean distance) 

resulting in N sets of k nearest neighbors. In the second step, a weighted graph was built 

such that the weight between nodes depends on the number of neighbors they share. We then 

performed Louvain community detection20 on this graph to partition the graph that 

maximizes modularity.

Time and labour cost:

In general, for a two-camera set up, users will need to optimize the location and angle of the 

Blender virtual cameras to fit the pose to the scene. This is an iterative process that consists 

of fitting the scene to one camera, then switching views and fitting the scene to the second 

camera, until the scene fits both camera views properly (calibration images can simplify this 

process). More time will be required to set up the scene if additional objects are needed. 

However, this can be improved with the use of previously created CAD models of common 

objects (such as optomechanical components from Thorlabs).
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To create an animation, key frames must be set up every few frames and the mouse’s pose 

must once again match both camera angles in each scene. The animation data can then be 

looped with added noise and rendered. Looping the data means that once the original 

animation is made, the user can create many times more data quickly with added variation. 

In contrast to manual labeling, more synthetic training data can be produced quickly and 

independently of the time that it took to create the initial animation. In addition, once the 

animation has been created, different lighting and new cameras can be set up for the same 

scene. Small changes such as mouse coat color or adding experimental components can also 

be made quickly with minimal manual work in Blender and no requirement for manual re-

labeling of data. Since labels used for DLC training are specified directly with the Blender 

3D environment its greatest advantage is in labeling features of the subject that would be 

difficult or impossible to manually annotate due to their sheer number or ambiguity about 

their location within 2D projections that are typically used for manual annotation. From 

experience, a novice user may spend around 15–20 hours on scene setup with 4–8 hours 

taken on animation and randomization (6–10 and 4–8h respectively for experienced users). 

Rendering times vary substantially in time depending on frame count and scene complexity. 

We found, for the mouse-wheel experiment, a single frame took approximately 8 s to render 

using Eevee, and 25 s using Cycles render engines on a Ryzen 1700x 8-core processor. U-

GAT-IT took approximately 60 hours for 300,000 iterations on a GTX 1070 8Gb. These 

steps are automated and do not require user intervention or supervision. For comparison, an 

experienced DLC labeler spends ~8 hours to label 208 frames (28 markers for each frame) 

but this number can quickly grow in proportion to the number of cameras and labels. The 

labour time investment to produce a workable Blender model for an experiment corresponds 

to the labelling of between 494 to 768 frames for a novice user and 260–468 frames for an 

experienced user. While the added utility (in generating additional training data for a new 

camera view for example) of the model may or may not be sufficient motivation for every 

researcher to adopt this approach, the true power of the synthetic approach will be realized if 

and when adopted for team science projects21 with standardized rigs (such as the IBL 

example; https://osf.io/h3ec5, IBL-scene_non-rendered_demo.mp4). IBL behavioral video 

data from https://docs.google.com/document/d/e/2PACX-1vS2777bCbDmMre-

wyeDr4t0jC-0YsV_uLtYkfS3h9zTwgC7qeMk-GUqxPqcY7ylH17I1Vo1nIuuj26L/pub. If 

adopted at the project outset the savings are magnified across all participating labs.

Sampling and statistics.

The sample size for the number of paired real and synthetic images was 1000 images per 

mouse, in total 10000 images. We used groups of 4 and 5 mice for the comparisons as this is 

a typical minimal number used in a behavioral group. The 5 mice were used for individual 

U-GAT-IT model training and an aggregate DLC 2D model as well as comparisons on SSIM 

and KID. Four mice were used to train U-GAT-IT models on two cameras and were used to 

train a DLC 3D project, a sample analysis was done on a single video as shown. The sample 

size for the comparison of 2D poses and 3D poses was 18,063 paired poses. Data was 

analyzed using GraphPad Prism 6 and custom software in MATLAB (2020) and Python 

(3.7). The Mann-Whitney non-parametric test was used to compare real and synthetic 

images generated by the U-GAT-IT model. Dunn’s Multiple Comparison test was used to 

compare the performance between synthetically trained and manually trained DLC 3D 
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projects. *** denote p<0.001. No data points were excluded from the analysis. Each 

comparison presented in the paper was repeated in multiple animals as stated above. Real 

and synthetic images were assigned randomly for the SSIM comparison. Mice belonged to a 

single group and were not split into categories. Computational analysis was not performed 

blinded as there was only a single group of animals for each modeled scene.

For quantitative evaluation for the performance of the U-GAT-IT model we employ the 

structural similarity index measure (SSIM) 22. This is a well-accepted method of evaluating 

changes in image quality after compression or other manipulations. Its values range between 

0 and 1 with 1 being an identical image and 0 being no similarity. Histograms of SSIM 

scores were created by comparing 100 frames from each pair of mouse videos per condition 

and calculating their SSIM, resulting in 10,000 scores for each mouse pairing. Same 

conditions were combined to generate single histograms of 50,000 measurements during 

paired conditions and 200,000 in unpaired (bin counts: 100 & 400 respectively, Fig. 2c)

For further quantitative evaluation for the performance of the U-GAT-IT model, we use the 

recently proposed Kernel Inception Distance (KID) 13, which computes the squared 

Maximum Mean Discrepancy between the feature representations of real and generated 

images (https://github.com/abdulfatir/gan-metrics-pytorch). The feature representations are 

extracted from the Inception network 23. The lower the KID, the more shared visual 

similarities between real and generated images. Therefore, if well translated, the KID will 

have a small value in several datasets.

Hopkins score 18 is a statistical test that examines the distribution of data working from the 

premise that normally distributed data would have less tendency to cluster. It can be used as 

an independent way to compare and quantify a clustering algorithm on two or more different 

datasets. Values range from 0 which is highly cluster-able to 1 which indicates random but 

uniformly distributed data.

Data availability

All data and raw behavioral video images are available online at Open Science Framework 

https://osf.io/h3ec5/ 2. Source data for Fig. 2 and Supplementary Figures 1–3 are provided 

with this paper.

Code availability

All code and models are available on public repositories: https://github.com/

ubcbraincircuits/mCBF 14 and https://osf.io/h3ec5/ 2 see workflow document for an 

overview of software steps. Code (KID score, U-GAT-IT, pose-lifting and clustering) is set 

up for reproducible runs via a capsule on Code Ocean24.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A realistic 3D mouse model suitable for generating labels for machine learning.
a, Creation of the 3D model, starting with high resolution CT scans and their respective 

high-density triangle meshes to model a single mesh of lower-density quad faces. Rigging of 

the model using the skeleton shown in the CT scans as guides, and the addition of textures, 

materials, and fur. b, The effect of the volume preserving bones used to enhance large body 

regions during deformation. c, The process of creating the initial renders by modelling the 

scene of interest, creating animations based on real videos, and the addition of noise. d, 

Bolaños et al. Page 13

Nat Methods. Author manuscript; available in PMC 2021 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Demonstration in a multi-camera synthetic setup with shared labels suitable for machine 

learning training.
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Fig. 2. Image domain translation makes realistic videos of animated mouse models.
a, Implementation of image domain translation into our workflow to generate realistic 

synthetic videos. b, Kernel density estimation plots of both fore paw and hind paw positions 

in synthetic data generated with limb and camera noise (n=1,000), and real recordings 

(n=26,477). c. Histograms of SSIM scores for the indicated comparisons (n = 50,000 for 

paired conditions, n = 200,000 for unpaired). d, Kernel Inception Distances (KID) for 

further analysis of synthetic images. KID scores show no significant difference between real 

and synthetic images of paired mice (scatter dot plot, line at mean with SEM, real with real, 
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mean ± SEM=2.701± 0.6941; real vs synthetic, mean ± SEM= 4.207± 1.339, n=5 mice, 

1000 paired real and synthetic images for each mouse, real and synthetic images were 

assigned randomly to the comparison). Mann Whitney test, two-tailed test results in a p 

value of 0.5476. e, Comparison of 2D pose estimation between a synthetically trained model 

and multiple manually labeled models. f, Single-camera 2D-to-3D pose lifting using a linear 

neural network. g, Comparison of 2D and 3D poses generated by the pose lifter. 

Unsupervised clustering algorithm (Phenograph) was used to classify the poses (n = 18,063 

paired poses). Different colors in the t-SNE plot indicate different pose clusters. Hopkins test 

shows 3D poses (Hopkins score: 0.02) are more clusterable than 2D poses (Hopkins score: 

0.04).
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