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Abstract: Methylene blue (MB) has been used in the textile industry since it was first extracted by
the German chemist Heinrich Caro. Its pharmacological properties have also been applied toward
the treatment of certain diseases such as methemoglobinemia, ifosfamide-induced encephalopathy,
and thyroid conditions requiring surgery. Recently, the utilization of MB as a safe photosensitizer in
photodynamic therapy (PDT) has received attention. Recent findings demonstrate that photoactivated
MB exhibits not only anticancer activity but also antibacterial activity both in vitro and in vivo.
However, due to the hydrophilic nature of MB, it is difficult to create MB-embedded nano- or
microparticles capable of increasing the clinical efficacy of the PDT. This review aims to summarize
fabrication techniques for MB-embedded nano and microparticles and to provide both in vitro and
in vivo examples of MB-mediated PDT, thereby offering a future perspective on improving this
promising clinical treatment modality. We also address examples of MB-mediated PDT in both cancer
and infection treatments. Both in-vitro and in-vivo studies are summarized here to document recent
trends in utilizing MB as an effective photosensitizer in PDT. Lastly, we discuss how developing
efficient MB-carrying nano- and microparticle platforms would be able to increase the benefits of PDT.

Keywords: methylene blue; photosensitizer; photodynamic therapy; antimicrobial photodynamic therapy

1. Introduction

Methylene blue (MB), first extracted by the German chemist Heinrich Caro, has been
recognized not only as a dye, but also as a medicine that has been used in the treatment of
malaria (Figure 1) [1]. MB can stain malarial parasites in infected red blood cells [2]. Thyroid
surgery and the treatment of methemoglobinemia and ifosfamide-induced encephalopathy
are a few typical examples of MB applications (Table 1) [3,4]. Preliminary investigations
suggest that MB may also be used in the treatment of septic shock, neurodegenerative
diseases including Alzheimer’s disease, and cancers [5–11]. When intravenously pretreated,
MB can also reduce the pain associated with injection of propofol, which induces general
anesthesia [12]. Moreover, MB is reported to show antiviral activity against COVID-19
caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) [13]. It hinders
the binding interaction between SARS-CoV-2 spike protein and angiotensin-converting
enzyme 2 (ACE2), which is known as the entry point of the virus. MB is commonly available
in the market as a form of solution (e.g., 0.5% MB injection USP). The recommended
dosage of MB is between 1 and 4 mg/kg, and oral and intravenous administrations
for 5 to 10 min are suggested [14]. A terminal plasma half-life of MB after intravenous
administration is about 5 to 7 h [15]. Because of the phenothiazinium chromophore of
MB, it absorbs light near 630–680 nm, resulting in the formation of reactive oxygen species
(ROS), including singlet oxygen [16,17]. Hence, MB is a photosensitizer essential for
photodynamic therapy (PDT). PDT is a well-documented and evolving therapy wherein
photosensitizing molecules are photoactivated and react with oxygen, thus helping to
create ROS [18–23]. There has been growing interest in applying PDT for a variety of
benign and malignant diseases [21,24,25]. For example, a light-excited photosensitizer (PS)
such as MB generates cytotoxic reactive oxygen species (ROS) from molecular oxygen and
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achieves specific cancer cell death or tumor tissue damage [21]. The sensitized PS is able to
create a superoxide anion radical (O2

•−), a hydroxyl radical (OH•), or hydrogen peroxide
(H2O2) through proton or electron transfer (type I mechanism) while the type II mechanism
results in the formation of singlet oxygen (1O2) [26]. ROS produced by PDT is responsible
for cancer cell death, and there are several PDT-mediated cell death pathways: apoptosis,
necroptosis, autophagy, and necrosis. Details of the molecular mechanisms associated
with them have been previously explained (Figure 2) [27,28]. Likewise, these oxidizing
molecules also react with bacterial biomolecules, resulting in the eradication of infectious
bacteria [29]. Antimicrobial photodynamic therapy (aPDT) uses the same principle of
cytotoxic ROS formation under a specific wavelength of light and is recognized as a
potential option for treating multidrug-resistance bacteria [30]. Several nanomaterials such
as gold nanoparticles (NPs), silica NPs, and upconversion nanoparticles (UCNPs) have also
been studied as PS carriers to improve the clinical potential of the PDT modality [31]. These
materials improve the localized delivery of PS and enhance the efficacy of the irradiation
of a specific light on the targeted tissue [32]. Moreover, they can protect the PS molecules
from photobleaching [33].
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Table 1. Examples of clinical use of methylene blue (MB).

Indications Descriptions Ref.

Alzheimer’s disease

Positive effects are proposed through multiple
neurological systems such as cholinergic,

serotonergic and glutamatergic
neurotransmitter systems

MB reduces aggregated amyloid-β (Aβ)
peptide while preventing tau aggregation
A recommended dose of 3 × 60 mg/day

for treatment

[11,34–37]

Hepatopulmonary Syndrome Intravenous dose of MB (3 mg per kg)
for treatment [38–40]

Ifosfamide-induced
encephalopahty

Intravenous dose of MB (6 × 50 mg/day)
for treatment [41–43]

Malaria

MB has the high antimalarial potency
(IC50 = 4 nM) against Plasmodium falciparum

MB inhibits P. falciparum glutathione reductase
(Pf GR) known as a drug target against Malaria
MB is a partner drug for combination therapies

[2,44–46]

Methemoglobinemia MB is an electron donor for the non-enzymatic
reduction of methemoglobin [47–49] 1

1 The effect of MB on Methemoglobin can be reversed, for example, in aniline-induced methemoglobinemia [50].
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necroptosis, and autophagy.

The purpose of this review is to provide an overview of fabrication techniques for
MB-embedded nano or microparticles and to share examples of MB-mediated PDT in
the treatment of various cancers and infectious diseases in order to gain perspective on
exploring new fabrication techniques for MB. MB-mediated PDT helps to combat against
cancers and human infections through the cytotoxic effect of ROS, including singlet oxygen
generated from photoactivated MB. Increasing the utilization of MB-embedded nano and
microparticles in PDT may improve the clinical outcome of this promising therapy in the
modern medicinal era.

2. Fabrication of Methylene Blue Nano and Microparticles

Drug delivery through nano and microparticles is a recent trend for improving thera-
peutic outcomes while minimizing the side effects that are commonly involved with sys-
temic drug delivery. A nano-sized or micro-sized PDT therapeutic tool has been considered
as a promising modality that may have a number benefits [51]. Specifically, photosensitizer-
embedded nano or microparticles can effectively deliver the photo-responsive molecules
to tissues and cells and can even be used for translocating them into cellular compart-
ments, thereby producing significant amounts of ROS in the target tissues. Targeted
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photosensitizer delivery would maximize the therapeutic efficacy of PDT while reducing
immunogenicity and side effects. Several fabrication techniques for MB encapsulation
have been studied (Figure 3) [52–55]. Polymeric nanoparticles, gold nanoparticles, silica
nanoparticles, and nano graphene oxide as carbon-based nanomaterials have been utilized
to improve MB-mediated PDT’s efficacy. This review presents both typical fabrication tech-
niques and recent new strategies able to deliver MB in a sustained manner for improving
the potential of MB-mediated PDT in clinical usages.
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2.1. Methylene Blue in Polymeric Nano and Microparticles

MB can be incorporated into polymeric nanoparticles (NPs). In a 2005 study per-
formed by Philbert group, MB was encapsulated within polyacrylamide NPs for the
efficient delivery of singlet oxygen [52]. In this study, the MB-embedded polyacrylamide
nanoparticles were fabricated by polymerizing acrylamide monomers and MB solution
together. A 650 nm light stimulated the release of singlet oxygen from the entrapped
MB, resulting in the damage of rat C6 glioma tumor cells, a model cancer cell line for
glioblastoma. In the subsequent study, the polyacrylamide nanoparticles also retained the
activity of embedded MB against diaphorase enzymes where the embedded MB within
polyacrylamide NPs can enhance the therapeutic efficacy of PDT [53]. In another recent
study, a poly (N-isopropylacrylamide) (PNIPAM) microgel was used to deliver MB without
compromising its activity against enzymatic or environmental degradation [56]. This study
showed that the PNIPAM microgel holds more MB than the PNIPAM-co-PAA microgel,
whose outer surface consists of negatively charged PAAs (polyacrylic acids), indicating
that the positively charged MB binds mostly to the AA groups located on the outer surface.
To increase the loading efficacy, MB was covalently conjugated onto acrylamide in order
to create MB-conjugated PAA nanoparticles, instead of physically entrapping MB in the
polymeric matrix [57]. Using a tumor-homing peptide known as F3-peptide to provide
a better affinity toward cancer cells, the authors demonstrated the possibility of using
selective PDT for cancers. To achieve better singlet oxygen production in the NPs, a new
strategy was studied where two different MB derivatives, 3,7-bisallylmethylene blue (MBI)
and 3,7-bismethylacrylamide methylene blue (MBII), were synthesized and incorporated
to create functionalized polyacrylamide nanoparticles [58].

A recent study demonstrated that MB can easily bind to the negative surface of
nano-sized vinyl hybrid silica nanoparticles (VSNPs). Furthermore, when VSNPs were
used as crosslinkers, the final PAA-based hydrogel can absorb significantly higher MB
concentration than conventional PAA microgels. Although the purpose of this study was
to remove MB from industrial water, this approach would provide a new perspective on
developing new MB-embedded nano or microparticles for PDT (Figure 4) [59].
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Figure 4. A novel super-adsorbent nanocomposite (NC) hydrogel adsorbent. In this study, a PAA
[poly(acrylic acid)]-based hydrogel was prepared by vinyl hybrid silica nanoparticles (VSNPs) with
average diameter of 30 nm as crosslinking agent. This adsorbent can absorb methylene blue at a
high concentration (1690 mg/g) within 90 min. Reproduced from [59] with permission, copyright
Elsevier, 2021.
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As another encapsulation technique, water-soluble MB can be incorporated into NPs.
A biodegradable NP composed of dioctyl sodium sulfosuccinate (Aerosol OTTM; AOT)
and sodium alginate has been utilized to achieve a sustained release of MB [60]. The MB
loading efficiency is dependenton both the sodium alginate concentration and the AOT
concentration. It is likely that negatively charged sodium alginate helps to entrap the
MB while forming a gel-like structure via calcium within the AOT-alginate nanoparticles.
In these biodegradable nanoparticles, branched hydrocarbon AOT tails form a bilayer
structure while a sulfonic head group of AOT surrounds a calcium-crosslinked alginate
matrix. In one study, a zwitterionic polymer-lipid, poly(12-(methacryloyloxy)dodecyl
phosphorylcholine), was used to create MB-encapsulated liposomes [61]. The fabricated
MB-liposomes exhibited stable liposomal features, including a storage stability of up to 14
days, and more ROS was created by MB-liposome compared to free MB when triggered by
six minutes of irradiation with 165 mW of light at 660 nm.

2.2. Methylene Blue in Inorganic Nano and Microparticles

In a recent study, MB was successfully incorporated into silica nanoparticles (SNPs),
forming nanoparticles with a 190 nm average diameter [52]. The SNP was fabricated
using a modified Stöber method without any surfactant in order to load MB molecules
into the negatively charged silica. The same work also used organically modified silicate
(ORMOSIL) nanoparticles obtained by a two-step method for hollow silica particles using
phenyltrimethoxysilane (PTMS) and methyltrimethoxysilane (MTMS) [62]. ORMOSIL is
a highly porous inorganic material capable of holding different organic molecules and
biomolecules such as oxazine-1, Coumarin-480, and Rhodamine-6G [63–65]. The porosity
of ORMOSIL-based material ranges between 4 nm and 10 nm, offering microchannels
that allows sustained delivery of entrapped molecules [66]. In terms of functionality, gold
nanoparticles (GNPs) are a promising carrier for several drugs, including MB. Because of
its unique physical, chemical, electrical, and optical properties, GNPs have been extensively
utilized as multifunctional nanomedicine platforms [67–70]. A modified Turkevich method
can create citrate-capped gold nanoparticles in order to load MB, which is a positively
charged photosensitizer [71]. Citrate forms a physisorbed passivation layer onto the
gold nanoparticles that stabilize the gold suspension. The interaction of absorbed citrate
molecules can be explained as the physisorbed interaction, because physisorption describes
all weak electrostatic interactions including van der Waals interaction [72]. In the formation
of the citrate-capped GNPs through this technique, trisodium citrate helps to form 9 to
120 nm GNPs with negatively charged surfaces, which easily interact with positively
charged molecules such as MB. Compared to polymeric platforms associated with MB,
GNP inorganic matrices can increase the potential of MB for therapeutic benefits, as they
have excellent thermo-plasmonic activities [73]. In this regard, combination treatment
with MB and GNPs has resulted in enhanced photodynamic inactivation of Staphylococcus
epidermidis, leading to augmentation of the antimicrobial activity of MB [74]. MB-loaded
gold nanoparticles prepared by ultrasonication from the modified Turkevich method
reduced clinical S. aureus isolates when irradiated by a 660 nm diode laser [54]. MB-GNP
was demonstrated to inhibit recalcitrant pathogenic Candida albicans fungal biofilm as
well [75]. As another inorganic nanomaterial, nano graphene oxide (nanoGO), was also
introduced to create an inorganic MB conjugate [55]. Positively charged MBs interact with
nanoGO, creating nanoGO-MB, which shows in-vivo photodynamic and photothermal
ablation of breast cancer (Figure 5).
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Figure 5. Combined PDT/PTT treatments with nanoGO-MB. (a) Schematic representation of nanoGO-
MB phototherapies. On both therapies, only the tumor region was exposed to the irradiation, thus
the other areas were protected from the light. (b) Real-time thermal camera imaging during PTT
treatment. A temperature increase of approximately 40 ◦C was observed only at the tumor region.
In this study, the 4T1-Luc tumor-bearing mice were used. (c) Tumor site after combined PDT/PTT
therapies. The healing tissue measured 5 mm. Reproduced from [55].
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2.3. Methylene Blue in Inorganic Polymeric Composites

Entrapment of MB within polymeric materials may provide better biocompatibility,
however, more versatile types of functional materials for MB can be achieved with inorganic
polymer composites. In one study, MB was entrapped in silicone elastomers with nanogolds
and sustained within the elastomeric polymer composite, since the interaction between the
MB and nanogolds would limit the leakage of the highly water-soluble MB over time [76].
Controlled MB delivery platforms using inorganic polymeric composites enables us to
expand the range of medical applications for MB, including medical devices for cancers
and infectious disease. For example, Noimark et al. incorporated 660 nm laser-activated
MB and 2 nm gold nanoparticles into commercial polyvinyl chlorides (PVCs) to inhibit
Staphylococcus epidermidis and Escherichia coli [77]. In a similar work, a mixture of MB and
gold nanoparticles were incorporated into a silicone polymer, which is one of the most
common biocompatible materials for medical devices [78].

3. Methylene Blue in the Photodynamic Therapy

As described previously, PDT uses a photosensitizer (PS) that creates ROS when
activated by a specific light source. This easy-to-use clinical modality has been used in the
treatment of superficial skin cancers as well as acne. Additionally, PDT can be adopted
either as an independent modality or in combination with another regimen to improve
clinical outcomes in cancer treatment. There have been a number of clinically approved PDT
protocols for the treatment of various cancers, including skin, bladder, lung, esophagus,
and cervix cancer [27]. The engulfed PS within cancer cells is excited enough to generate
intercellular ROS, leading to tumor cell death. A comprehensive review on PDT for cancer
treatment demonstrated that it involves all of the three major tumor-regression pathways:
cell death, damage of microvasculature, and induced inflammatory reactions [16].

3.1. In-Vitro Observation of Methylene Blue (MB)-Mediated PDT in Cancer Treatment

Several studies have aimed to elucidate the mechanism of MB-mediated PDT. One
study used radiolabeled 125I- and 211At-methylene blues to demonstrate that MB can be
selectively concentrated in pigmented melanoma, indicating that MB has an affinity to
melanin [79]. Another study indicated that mitochondria is the intercellular binding site
where photoactivated MB creates singlet oxygen, leading to mitochondrial damage and
subsequent apoptosis [80,81]. Proteomic analysis of expressed proteins from treated B16F1
melanoma cells revealed that MB-induced ROS is responsible for the altered expression of
mitochondrial proteins, leading to apoptosis via caspase-3/9 apoptosis pathways [81]. MB,
which is one of the phenothiazines that efficiently absorb light, has been recognized for
treating cancer cell lines.

A growing number of in-vitro studies with MB indicate that the photosensitizer has
great potential for selectively treating cancer cells. Mouse Gardner lymphoma, sarcoma
180, Ehrlich ascites, and mammary adenocarcinoma have all been successfully treated
using MB in animal models [82]. Likewise, some human cancer cells have been reported as
responders of MB-mediated light therapy, including HeLa cervical adenocarcinoma cells,
early stage head and neck squamous cell carcinoma (HNSCC), and lung adenocarcinoma
cells [83–85]. Although some studies have indicated that the cytotoxicity of MB can be
improved by chemical modifications, these studies are beyond the scope of this review,
particularly considering the functionality of the safe, proven molecules in the treatment
of a variety of cancers using MB-mediated light therapy. One recent study demonstrated
the potential of MB-mediated light therapy to inhibit human breast cancer cells in vitro.
This study showed that MB-mediated PDT inhibits the growth of MDA-MB-231 cells,
which are Triple-Negative Breast Cancer (TNBC) cells [86]. Only 20% of breast cancers
are TNBC, meaning they do not express estrogen receptor, progesterone receptors, or
human epidermal growth factor receptor-2. With the application of MB-mediated light
therapy, the intercellular level of reduced glutathione (GSH) remains low, comparable
to normal conditions. It was speculated that the innate nature of reducing GSH may
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contribute to the rapid impact of oxidative stress. Another study found that treatment
with antioxidant in conjunction with PDT reduces ROS production, thereby negating the
effect of MB-mediated PDT. Hence, combination treatment with both MB and PDT increase
ROS-induced cell death.

Similarly, osteosarcoma is another subject for MB-mediated PDT. Two studies showed
that MB is responsible for inducing necrosis and apoptosis of mouse osteosarcoma (LM8)
and osteosarcoma-derived UMR 106 cells [87,88]. Both studies also demonstrated that the
source of light does not affect the efficacy of this convenient therapeutic modality. Since
MB is more toxic to cancerous cells than non-cancerous cells, this photosensitizer is a great
option for improving the long-term use of PDT. Treatment of early-stage head and neck
squamous cell carcinoma (HNSCC) is another example of a MB-mediated PDT application.
Kofler et al. showed the effect of MB-mediated PDT activated with a diode laser (660 nm) on
HNSCC [84]. The authors demonstrated that MB is an effective photosensitizer for reducing
HNSCC, which is usually difficult to treat without surgical interventions. They also noted
that dark cytotoxicity of MB should be considered in treating cancers. To maximize the
efficacy of this treatment, three parameters warrant consideration: concentration of MB,
time of light exposure, and dark toxicity that can be shown by photosensitizers.

3.2. In-Vitro and In-Vivo Applications of Methylene Blue (MB)-Mediated Antimicrobial
Photodyanmic Therapy (aPDT)

MB was among the first generation of photosensitizers to demonstrate antimicrobial
activity with light activation (Table 2) [89,90]. According to this seminal observation, MB
facilitates the rapid killing of paramecia, which are unicellular ciliates easily found in
freshwater, when exposed to normal daylight. In the dark, however, MB did not influence
the survival of paramecia. In antimicrobial photodynamic therapy (aPDT), light-activated
MB, which likewise stimulates ROS generation, is likely to inhibit microbial activity, even
within bacterial biofilms, expediting the eradication of microbial infection. Many previously
published studies showing the effect of aPDT on bacterial inhibitions, either alone or in
combination with antibiotics, suggest that MB-mediated aPDT may be an alternative
therapeutic option for reducing the misuse of antibiotics [90]. In fact, antibiotic overuse
has become one of the top medical problems in the modern age, and has contributed to the
emergence of multiple-drug-resistant bacteria [91]. aPDT may be an optional therapy to
overcome bacterial resistance. In this review, we have highlighted several in-vitro and in-
vivo studies of MB-mediated aPDT in human infectious diseases. Based on the advantages
of aPDT, there have been attempts to use MB-mediated aPDT for treating infectious bacteria,
including Staphylococcus aureus and Pseudomonas aeruginosa [92,93]. In one study, lactic-co-
glycolic acid (PLGA)-coated M B nanoparticles (MPNPs) were evaluated for the treatment
of methicillin-resistant Staphylococcus aureus (MRSA) infections in-vivo where the MRSA
infected mice were irradiated with a 660 nm laser at a power density of 1 W/cm2 for
5 min. Compared to the control group over seven days, the MPNPs plus light treatment
group showed a significant wound reduction associated with eradicating MRSA, which
was confirmed by observing the colony-forming unit (CFU) results from each treatment at
each time point (Figure 6) [94].

Multiple bacterial infections localized in specific parts of the body cause a variety of
diseases. For example, both methicillin-resistant S. aureus (MRSA) and P. aeruginosa are
commonly found in chronic diabetic wounds and are recognized as inhibiting wound heal-
ing [95]. Dental caries is also attributed to bacterial infection of the tooth, and Streptococcus
mutans is indicated as a major cause of dental decay [96]. MB-mediated aPDT has been
utilized to remove or inhibit the cause of these diseases. For treating in vitro dentin caries
microcosms, a MB solution and a red LED light source with different energy densities are
used [97]. When applied on the in vitro model of dentin caries microcosms, 100 mg/L of
MB solution and 75 J cm−2 LED irradiation exhibited the best result in reducing associated
bacteria, including S. mutans. Almost 23.9% of S. mutans was eradicated through this single
treatment. In another in vitro study, S. mutans biofilms were treated with 100 µM MB under
660 nm-LED irradiations with different doses. S. mutans biofilms were inactivated after
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several minutes of treatment, indicating the potential of MB-mediated aPDT for the treat-
ment of dental caries [98]. MB-mediated aPDT can also be used for peri-implantitis therapy.
The oral biofilm that grows on the surface of implants can result in damage to and ultimate
failure of dental implants. Gram-negative Porphyromonas gingivalis and Aggregatibacter acti-
nomycetemcomitans and Gram-positive S. mutans were seeded onto sandblasting, large-grit,
and acid-etching (SLA)-pretreated titanium alloy implants and subsequently subjected to
MB-mediated aPDT in vitro [99]. Although the authors observed the best killing efficacy of
those bacteria in the harshest conditions, including a pH of 10 and 200 µg/mL MB, this
study indicates the potential of the MB-mediated aPDT as a treatment for peri-implantitis.

Table 2. Phototoxicity of methylene blue against typical types of pathogenic bacteria 1.

Strains
Minimum Lethal Concentration (µM)

Type of Bacteria
Dark Light

Staphylococcus aureus 2.5 1

Gram-negativeEnterococcus faecalis 500 100

Bacillus cereus 1000 1000

Escherichia coli 100 100
Gram-positive

Pseudomonas aeruginosa 500 125
1 The experiments were performed by a non-laser light source at a fluence of 1.75 mW/cm2. A total light dose
was 6.3 J/cm2 for 1 h illumination [90].
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Figure 6. (a) Photographs of infected wounds in mice at different timepoints after different treatments:
PBS, PBS + light, MB, MB + light, MPNPs, and MPNPs + light. (b) Photographs of bacterial
colonies formation on LB agar plates from the infected wounds after different treatments. (c) H&E
staining (Hematoxylin and Eosin) of tissue sections of MRSA infected wounds in mice with different
treatments. The scale bar is 500 µm [94].

4. Future Perspective on Methylene Blue Fabrications

To improve the bioavailability of MB for PDT, development of efficient MB-loaded
drug delivery systems is of great importance. While improving the therapeutic efficacy of
MB associated with PDT, the nano and microparticles should show sustained and localized
MB distribution near the target sites. In this regard, a high-MB loaded liposomal formula-
tion would be a good candidate for the sustained and localized delivery of MB, creating an
attractive methylene blue-based vesicle that offers better translatable PDT modalities in
various disease treatments [100]. MB enclosed within the hydrophobic and biocompatible
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lipidic materials of the liposome will prevent the rapid loss of drug in the PDT-based
treatment, as the drug will be slowly released into the area [101]. In addition, customizable
features of a liposomal formulation enables us to create an on-demand PDT modality. For
example, cationic liposomes were successfully used to enhance the permeability of MB
within the biofilms, which is one of the critical factors leading to antibiotic resistance [102].
Similarly, MB could be internalized within aqueous core nanocapsules created by a thin
polymer layer [103]. Compared to conventional nanoparticles made from polymers, the
aqueous core nanocapsules are able to hold hydrophilic molecules with a relatively small
amount of polymer for a tunable pharmacokinetic profile and bioavailability. Through
higher MB loadable vesicles fabricated by the aforementioned techniques, PDT can become
a more effective and more viable option for the treatment of cancers and infectious diseases.

5. Conclusions

MB has been utilized as a photosensitizer for PDT in the treatment of cancers and
infectious diseases. Despite the early use of this hydrophilic molecule in PDT, few studies
have been reported to improve MB has been utilized as a photosensitizer for PDT in the
treatment of cancers and infectious diseases. Despite the early use of this hydrophilic
molecule in PDT, few studies have been reported to improve the loading capacity of MB.
It has been speculated that the hydrophilic nature of MB might limit the clinical efficacy
of MB-mediated PDT. As reviewed here, however, recent technological development in
creating nano and microparticles for targeted drug delivery is likely to increase the chance
of the presence of MB in the target area. A polymeric micro composite complexed with MB
shows the formation of singlet oxygens for cancer cell treatment. Similarly, coating onto
the surface of a gold nanoparticle, covalent attachment onto the surface of a functionalized
graphene, and co-formation of a silica hollow nanoparticle are good examples of MB
encapsulation techniques to create a successful MB delivery system for the enhanced MB-
mediated PDT. These functional materials show the potential benefit of delivering MB to a
disease area of interest and provide insight into how MB-carrying materials help increase
the clinical efficacy of PDT. Moreover, recently studied techniques such as liposome and
aqueous core nanocapsules offer the promising potential of MB-mediated PDT, where MB
can localize in the specific target area and be a safe photosensitizer for treating a wide
range of cancers and infectious diseases in the near future.
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